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Figure 2.1. Example for the construction of a deterministic fractal
embedded into two dimensions. Figure 2.1a demonstrates how one can
generate a growing fractal using an iteration procedure. In Fig. 2.1b
an analogous structure is constructed by subsequent divisions of the
original square. Both procedures lead to fractals for ¥ — co with the
__same dimension D =~ 1.465. ‘
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Figure 2.2. Construction of a stochastic fractal. Its fractal dimensifm
is exactly the same as that of the structure shown in Fig. 2.1, despite
the fact that they look quite different.
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Figure 2.3. The triadic Cantor set shown in this figure is generated on
the unit interval by replacing each of the intervals obtained at a given
stage with two shorter ones.

Figure 2.4. Construction of a growing fractal curve having the same
fractal dimension as the objects shown in Figs. 2.1 and 2.2.
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Figure 2.5. Application of Eq. (2.10) to the above displayed Peano
curve gives D = d = 2 which means that this construction does not
lead to a fractal according to the definition given in Section 2.2.
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Figure 2.6. The Sierpinski gasket shown in this figure has loops on
all length scales.

e Xy

e W

Figure 2.7. The rich variety of apparently self-similar Julia sets is well
demonstrated by the above selected examples reproduced from Peitgen
and Richter (1986).

Figure 2.8. The region of y values (Mandelbrot set) for which the it-
__erates given by (2.20) remain finite for arbritrary & (Mandelbrot 1982).
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Figure 2.9. This non-uniform fractal grows by adding to the four prin-
cipal tips of the (n — 1)th configuration the structure itself without the
lower main stem. This addition has to be done by applying appropriate
rotation and shrinking to keep the ratio of the corresponding branches

equal to b < 1.

Figure 2.10. Example for a random coastline. This Brown hull repre-
sents the external perimeter of the trajectory of a looping random walk
on the plane which is indicated by a darker line (Mandelbrot 1982).
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Figure 2.11. The shapes of disconnected clusters corresponding to
the stopovers of a long Levy flight on the plane. The stochastic self-
similarity of the clusters is demonstrated by blowing up small parts of
the configurations. The picture on the right side is an approximately
100 times enlarged image of a tiny region in the left configuration in-
dicated by the arrow (Mandelbrot 1982).
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Figure 2.12. Deterministic model for a self-affine function defined
on the unit interval. The single-valued character of the function is
preserved by an appropriate distortion of the z-shaped generator (k =
1) of the structure.
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Figure 2.13. These plots of Xj,3(t) were obtained by rescaling of
Brownian plots of various lengths. For each of the three plots the
vertical scale is proportional to the square root of the horizontal scale

(Meakin 1986).




Figure 2.14. A Brownian surface having a local fractal dimension
close to 2.4 (Mandelbrot 1982).

Botet 1987)

Figure 2.15. This growing self-affine fractal is generated by a pro-
cedure analogous to that used for constructing Fig. 2.1a, except that
in the present case the seed configuration is not isotropic (Jullien and

k=1 k=2

Figure 2.16. Generating a disconnected self-affine fractal embedded
into two dimensions using elongated rectangles instead of squares dur-
ing its construction.
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Construction of a fractal measure defined on a non-

Figure 3.1.
uniform fractal support embedded into two dimensions. The multi-
fractal is obtained after infinitely many recursions.

Figure 3.2. The first steps of constructing a fractal measure on the

unit interval (Farmer 1982).




Figure 3.3. The g-dependence of the fractal dimension f; and the
___exponent g for the multifractal shown in Fig. 3.2 (Tél 1988).

15

Figu‘re 3.4. The f(a) spectrum of fractal dimensionalities for the
multifractal of Fig. 3.2. The straight line corresponds to f = o (Tél
1988). '

k=1

Figure 3.5. Fractal model for hierarchical networks of resistors. The
distribution of voltage drops exhibits multifractal scaling.
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Figure 4.4. Schematic log-log plot of the numerically determined num-
ber of particles N(R) belonging to a fractal and being within a sphere
of radius R. If R is smaller than the particle size or larger than the
linear size of the structure a trivial behaviour is observed. The fractal
dimension is obtained by fitting a straight line to the data in the scaling
region.

(a) (b)

Figure 5.1. Two possible configurations (clusters) consisting of the
same number of particles (black sites). The statistical weight of a
given cluster depends on its geometry. For example, the probability
associated with configuration (a) is larger for a growth process which
preferably produces compact clusters.




Figure 5.2. Result of a typical run of growing a percolation cluster
along a line for p = p.. The cluster is generated on a triangular lattice
by adding to it all of the growth sites at each time step. The growth
sites are denoted by heavy dots. (Grassberger 1985).
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Figure 5.5. Schematic picture of the backbone of a percolation cluster.
The bonds belonging to the backbone are drawn with heavy lines, while
the bonds leading to deadends are denoted by dashed lines.




Figure 5.7. Example for a short IGSAW on the square lattice. To
recognize whether the next step would lead to a trap it is enough to
know the local configuration and the direction of the old part.

Figure 5.8. Example for a short IGSAW on the hexagonal lattice. It
follows the perimeter of a site percolation cluster on the dual triangular
lattice.




Figure 5.9. External perimeter of a percolation cluster generated
by the ring-forming version of IGSAW on the square lattice. This
configuration contains 194 468 sites (Ziff 1986).

Figure 6.1. A relatively small DLA cluster consisting of 3000 particles.
To demonstrate the screening effect the first 1500 particles attached to
the aggregate are open circles, while the rest are dots (Witten and
Sander 1983).
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Figure 6.2. Double logarithmic plot of the density-density correlation
function ¢(r) (2.14) for a DLA cluster of 11260 particles generated on
the square lattice (Meakin 1983a). :
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Figure 6.3. A typical off-lattice DLA cluster of 50,000 particles. A
comparison with Fig. 6.1 showing a much smaller aggregate illustrates
the stochastic self-similarity of diffusion-limited aggregates (Meakin




Figure 6.5. Central part of an off-lattice DLA cluster. The tangential
correlations as a function of the angle 8 are determined in a layer of
width SR being at a distance R from the centre (Meakin and Vicsek

1985).
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Figure 6.6. Tangential correlations in off-lattice DLA clusters of
50,000 particles. The results were obtained by averaging over the in-
terval 6R = R + 0.05R, where for the curves A — D the radius R was
respectively equal to 75, 150, 225 and 300 (Meakin and Vicsek 1985).




Figure 6.7. A representative DLA cluster grown using anisotropic
sticking probability (Ball et al 1985).
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Figure 6.8. Envelope of a very large DLA cluster (consisting of 4 x 108
particles) generated on the square lattice. The effect of the lattice

anisotropy is shown by plotting the last 2 x 10° particles attached to
the cluster (Meakin et al 1987).

cluster -

Figure 6.9. Modelling the region around the tips of DLA clusters with
a cone of exterior half angle ¢.
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Figure 6.15. Forest of clusters grown on the square lattice along a
300 lattice unit long straight substrate. Because of screening, diffusion-
limited deposition leads to a power law distribution of tree sizes (Meakin
1983b).
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Figure 6.16. (a) Density correlations c(x) in the lateral (z) direction
within a layer of a two-dimensional deposit being at a distance h from
the substrate. (b) The data for various h are shown to collapse into a
single curve using the scaling form 6.41 (Meakin et al 1988).
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Figure 6.17. Deterministic fractal model ‘for diffusion-limited deposi-
tion (Vicsek 1983).

Figure 7.1. This Eden cluster consisting of 3000 particles was grown
from a single seed by occupying randomly selected perimeter sites (ver-
sion A).

a c

Figure 7.2. Eden deposits of 25000 particles generated on a substrate
of width L = 160 using the noise reduction algorithm with m =1,2,4
(a—c). Figure 7.2d shows the time evolution of a cluster for which at
N = 10000 noise reduction with m = 16 was switched on (following a
growth with m = 1) (Kertész and Wolf 1988).
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Figure 7.3. Scaling plot for d = 2 (lower curve, L = 60 (o), 120 (M),
and 240 (), for d = 3 (middle curve, L1 x Lz = 10x 10 (o), 30 x 32 ()
and 120 x 128 (b)), and for d = 4 (upper curve, L1 x Lz X L3 =
4x4x4 (0), 9x10x 10 (M), and 30 x 32 x 32 (>)). The noise-reduction
parameter is m = 8 for all data (Wolf and Kertész 1987b).
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Figure 7.4. Off-lattice ballistic aggregates. (a) This cluster consist-
ing of 180,000 particles was generated by simulating randomly oriented
trajectories (Meakin 1985b). (b) Randomly positioned vertical trajec-
tories lead to a fan-like structure when a single seed particle is used
(Ramanlal and Sander 1985).




Figure 7.7. Schematic picture showing the increment of h as the

growth locally occurs along the normal to the interface.
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Figure 9.1. Schematic illustration of the Mullins-Sekerka instability.
The function u (e.g., the temperature) is the same along the lines drawn

close to the interface.

w(k)

Figure 9.2. Schematic representation of the dispersion relation (9.5).
Deformations with a characteristic wave number k for which w > 0
grow in an unstable manner, while the region w < 0 corresponds to a
stable regime.
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Figure 9.3. Schematic pictures of the major types of patterns which
typically occur during unstable interfacial growth.

Figure 9.6. Various stages in the growth of an off-lattice cluster gen-
erated using a curvature-dependent sticking probability. This figure
illustrates the crossover from a compact to a fractal structure as the
aggregate grows larger (Meakin et al 1987).

Figure 9.7. Clusters consisting of 400 particles generated on the
square lattice using the noise-reduced diffusion-limited aggregation al-
gorithm. (a) m=2, random fractal; (b) m=20, dendritic growth, and
(c) =400, noisy needle crystal (Kertész an%
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Figure 9.8. Noise-reduced diffusion-limited aggregate (m=2, N=

50,000) generated on the square lattice (Kertész et al 1986).
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Figure 9.11. Three examples for patterns generated by the determin-
istic growth model on a triangular lattice. (b) and (c) were obtained by
changing the parameters a and b of equation (9.13) randomly during the
growth (Family et al 1987). The inset shows a few typical snowflakes
reproduced from Bentley and Humpreys (1962).
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Figure 12.1. Schematic plots of the height correlation functions ¢(r, 0)

and ¢(0, ).
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Figure 12.2. The time (average height) dependence of the width in
the restricted solid-on-solid model for surfaces grown in d = 2 to 5
dimensions (Kim and Kosterlitz 1989). Estimates for the exponent 8
can be obtained from the slopes of the straight lines fitted to these
data.
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Figure B.1. Schematic picture of a radial Hele-Shaw cell. Its cross-

section is also indicated. The distance between the plates is denoted
by b.
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Figure 4.1: Random deposition model. Particles A and B are dropped from random
positions above the surface and are deposited on the top of the column under them.
In contrast to BD, in RD the height of the interface in a given point does not depend

on the height of the neighboring columns.
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Figure 4.2: A typical interface generated by the random deposition model after
depositing 16,000 particles on a substrate of size L = 100. The shading code reflects
the arrival time of the particles: after the deposition of each set of 4000 particles,
the shading changes. Note the rapid increase in the roughness and the uncorrelated

nature of the surface, in contrast to the case of ballistic deposition (Fig. 2.2).




Figure 5.1: Random deposition with surface relaxation. The freshly-deposited atoms
do not stick irreversibly to the site they fall on, but rather they can “relax” to a

B nearest neighbor if it has a lower height.

Figure 5.2: The interface at 10 successive times for a simulation of random deposition
with surface relaxation, obtained by depositing 35,000 particles on a substrate of size
L = 100. The shading reflects the arrival time of the particles: after the deposition of
each set of 3500 particles, the shading changes. Note that the interface is smoother
than that shown in Fig. 4.2 for the RD model.
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Figure 5.3: Schematicillustration of a typical one-dimensional interface h(z,t) driven
by an external force F, where F = 0 corresponds to the case of an equilibrium
interface studied in this chapter. The interfaceis single-valued (no overhangs allowed)

and has a well-defined orientation (dashed line).

of the surface.
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Figure 5.4: The effect of the surface tension » in (5.6) on the morphology of the
interface. Suppose that at time ¢ the interface has a height fluctuation or “bump,” as
shown in (a). In (b) we show that the ¥V2A term, which is negative at the maximum
of h(z,t). At time t 4 6t, the height becomes, h(z,t + 6t) ~ h(z,t) + 6t x v V2h(z,1)
[shown as a continuous line on (c)], where 6t — 0 and we neglect the effect of the
noise 7(z,t). For comparison, we replot as a dashed line the original function A(z, ).
The surface tension reduces the height of the original “bump” by redistributing the
surface height: material is taken from the highest point and “redistributed” on the
two sides. As a result the average height of the interface remains unchanged. Note
that (c) shows roughly what occurs in random deposition with surface relaxation in

that the newly-arriving matter that created the bump is redistributed to other parts
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Figure 6.1: The origin of the nonlinear term in the KPZ equation (6.4). Growth

occurs along the local normal v.

h(x,t)

Figure 9.2: Schematic representation of an interface in random environment. The
shaded circles represent randomly distributed pinning centers, whose position and

pinning strength is independent of time (quenched).
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Figure 9.3: The velocity of the driven interface as a function of the driving force F.
We can distinguish the three main regimes (a)-(c) on the figure. (a) For F' < F. the
interface velocity is zero, being pinned by the quenched randomness. (b) Near the
depinning transition, for F' > F, the velocity varies according to (9.3). (c) Finally,
for very large driving forces, F' 3> Fi, the velocity of the interface is proportional to

the driving force. (The velocity and force units are arbitrary).




Figure 9.4: Schematic illustration of pinning of an interface portion of size £. The
local impurities (small arrows) oppose the motion of the interface, acting against the

external driving force F' and the elastic forces generated by the local curvature of

the interface.

Figure 10.2: The DPD (directed percolation depinning) model for interface growth
with erosion of overhangs. “Wet” cells are shaded, while dry cells are randomly
blocked with probability p (indicated by O) or unblocked with probability (1 — p)
(indicated by |). The interface between wet and dry cells are shown by a heavy line.
(a)t=0,(b)t=1,(c)t=2and (d) t =3. (After [50)).




Figure 10.3: Shown as a bold line is a spanning path formed by connected nearest-
neighbor and next-nearest-neighbor blocked cells which pin the interface. Note that
various nonspanning clusters of blocked cells (found inside the wet region) are not

sufficient to pin the interface. (After [50]).




