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Preferential attachment of communities:
The same principle, but a higher level
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PACS. 89.75.Hc – Networks and genealogical trees.
PACS. 89.75.Fb – Structures and organization in complex systems.
PACS. 89.75.Da – Systems obeying scaling laws.

Abstract. – The graph of communities is a network emerging above the level of individual
nodes in the hierarchical organisation of a complex system. In this graph the nodes correspond
to communities (highly interconnected subgraphs, also called modules or clusters), and the links
refer to members shared by two communities. Our analysis indicates that the development of
this modular structure is driven by preferential attachment, in complete analogy with the
growth of the underlying network of nodes. We study how the links between communities are
born in a growing co-authorship network, and introduce a simple model for the dynamics of
overlapping communities.

Introduction. – A wide class of complex systems occurring from the level of cells to soci-
ety can be described in terms of networks capturing the intricate web of connections among the
units they are made of. Graphs corresponding to these real networks exhibit unexpected non-
trivial properties, e.g., new kinds of degree distributions, anomalous diameter, spreading phe-
nomena, clustering coefficient, and correlations [1–5]. In recent years, there has been a quickly
growing interest in the structural sub-units of complex networks, associated with more highly
interconnected parts [6–18]. These sets of nodes are usually called clusters, communities, co-
hesive groups, or modules, with no widely accepted, unique definition. Such building blocks
(functionally related proteins [19,20], industrial sectors [21], groups of people [14,22], coopera-
tive players [23,24], etc.) can play a crucial role in forming the structural and functional prop-
erties of the involved networks. On the other hand, the presence of communities in networks is
a relevant and informative signature of the hierarchical nature of complex systems [19,25,26].

Typically, the communities in a complex system are not isolated from each other; instead,
they have overlaps, e.g., a protein can be part of more than one functional unit [27], and
people can be members of different social groups at the same time [28]. This observation nat-
urally leads to the definition of the community graph: a network representing the connections
between the communities, with the nodes referring to communities and links corresponding
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to shared members between the communities. Accordingly, the community degree dcom of
a community is given by the number of other communities it overlaps with, and is equal to
the degree of the corresponding node in the community graph. The studies of the relevant
statistics describing the community graph (i.e., the degree distribution, clustering etc.) of real
networks have just begun [29]. So far, in the networks investigated, the community degree
distribution was shown to decay exponentially for low and as a power law for higher commu-
nity degree values. This means that fat tailed degree distributions appear at two levels in the
hierarchy of these systems: both at the level of nodes (the underlying networks are scale free),
and at the level of the communities as well.

Preferential attachment is a key concept in the field of scale-free networks. In a wide range
of graph models the basic mechanism behind the emerging power law degree distribution is
that the new nodes attach to the old ones with probability proportional to their degree [2–4].
Furthermore, in earlier works the occurrence of preferential attachment was directly demon-
strated in several real-world networks with scale-free degree distribution [30–32]. The observed
fat tails in the degree distribution of the community graphs indicate that the mechanism of
preferential attachment could be present at the level of communities as well. Our aim in the
present letter is to examine the attachment statistics of communities in order to clarify this
question. Our investigations focus on the development of the communities in the growing
co-authorship network of the Los Alamos cond-mat e-print archive [33], in which the nodes
correspond to authors, and two authors become linked if they publish an article together. By
studying the time evolution of this system,we investigate the dynamics of the new commu-
nity links. For example, when a previously unlinked community is attached to another one,
what are the size and community degree statistics of that other community? Another, closely
related issue addressed in this paper is the appearance of new members in the communities.
The size distribution of the communities was found to be a power law in the system to be
investigated [29]. Thus it is natural to address questions such as: What happens when a node
belonging to none of the communities suddenly joins a community? What are the size and
community degree statistics of the chosen community?

The communities. – In the present work we study the dynamics of the communities in
the Los Alamos cond-mat e-print archive [33], in which an article with n authors contributes
with (n − 1)−1 to the weight of the links between every pairs of its authors. (The dataset
contains altogether 30739 nodes and 136065 links). The communities are extracted with the
Clique Percolation Method (CPM) [29, 34] at each time step, using the CFinder package
freely downloadable from [35]. (Each time step corresponds to one month, and the data set
contained 143 time steps from February 1992 to April 2004). The communities obtained
by the CPM correspond to k-clique percolation clusters in the network. The k-cliques are
complete subgraphs of size k (in which each node is connected to every other nodes). A
k-clique percolation cluster is a subgraph containing k-cliques that can all reach each other
through chains of k-clique adjacency, where two k-cliques are said to be adjacent if they share
k− 1 nodes. The k-clique percolation clusters can be best visualised with the help of k-clique
templates, that are objects isomorphic to a complete graph of k vertices. Such a template
can be placed onto any k-clique in the graph, and rolled to an adjacent k-clique by relocating
one of its vertices and keeping its other k − 1 vertices fixed. Thus, the k-clique percolation
clusters (k-clique communities) of a graph are all those subgraphs that can be fully explored
by rolling a k-clique template in them but cannot be left by this template.

The main advantages of this community definition are that it is not too restrictive, it is
local, it is based on the density of the links and it allows overlaps between the communities:
a node can be part of several k-clique percolation clusters at the same time. The number of
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communities a given node i belongs to shall be referred to as the membership number mi of
the node from now on.

When applied to weighted networks (such as the present co-authorship network), the CPM
method has two parameters: the k-clique size k, and a weight threshold ω∗ (links weaker than
ω∗ are ignored). The criterion used to fix these parameters is based on finding a community
structure as highly structured as possible. In the present paper we stick to the optimal
parameter values found in earlier studies of the same co-authorship network [29], given by
k = 6 and ω∗ = 0.1.

Determining attachment probabilities. – The method presented below can be applied in
general to any empirical study of an attachment process where the main goal is to decide
whether the attachment is uniform or preferential with respect to a certain property (e.g.,
degree, size, etc.) of the attached objects (e.g., nodes, communities etc.). If the process is
uniform with respect to a property ρ, then objects with a given ρ are chosen at a rate given
by the distribution of ρ amongst the available objects. However, if the attachment mechanism
prefers high (or low) ρ values, then objects with high (or low) ρ are chosen with a higher
rate compared to the ρ distribution of the available objects. To monitor this enhancement,
one can construct the cumulative ρ distribution Pt(ρ) of the available objects at each time
step t, together with the un-normalised cumulative ρ distribution of the objects chosen by the
process between t and t + 1, denoted by wt→t+1(ρ). The value of wt→t+1(ρ∗) at a given ρ∗

equals the number of objects chosen in the process between t and t + 1, that had a ρ value
larger than ρ∗ at t. To detect deviations from uniform attachment, it is best to accumulate
the ratio of wt→t+1(ρ) and Pt(ρ) during the time evolution to obtain

W (ρ) =
tmax−1∑

t=0

wt→t+1(ρ)
Pt(ρ)

. (1)

If the attachment is uniform with respect to ρ, then W (ρ) becomes a flat function. However, if
W (ρ) is an increasing function, then the objects with large ρ are favoured; if it is a decreasing
function, the objects with small ρ are favoured in the attachment process. The advantage of
this approach is that the rate-like variable wt→t+1(ρ) associated to the time step between t
and t+1 is always compared to the Pt(ρ) distribution at t. Therefore W (ρ) is able to indicate
preference (or the absence of preference) even when Pt(ρ) is slowly changing in time (as in
the case of the community degree in the co-authorship network under investigation).

We have tested the above method on simulated graphs grown with known attachment
mechanisms: i) uniform attachment (new nodes are attached to a randomly selected old
node), ii) linear preferential attachment (new nodes are attached to old ones with a probability
proportional to the degree), iii) and anti-preferential attachment (new nodes are attached to
the old ones with a probability proportional to exp[−d], where d is the degree). In these cases
the degree d of the individual nodes plays the role of the parameter ρ. For each time step,
we recorded the cumulative degree distribution of the nodes Pt(d), together with the number
of nodes gaining new links with a degree higher than a given d, labelled by wt→t+1(d). By
summing the ratio of these two functions along the time evolution of the system one gets
W (d) =

∑tmax−1
t=0 wt→t+1(d)/Pt(d). In fig. 1a we show the empirical results for W (d) obtained

for the simulated networks grown with the three different attachment rules. The curves reflect
the difference between the three cases very well: for the uniform attachment probability W (d)
is flat, for the preferential attachment W (d) is clearly increasing, and for the anti-preferential
attachment W (d) is decreasing. We have also calculated the attachment statistics of the nodes
in the studied co-authorship network. As can be seen in fig. 1b, the corresponding W (d) curve
is increasing, therefore preferential attachment is present at the level of nodes in the system.



P. Pollner et al.: Preferential attachment of communities 481
( 

 )
W

5

5.

5.

5.
5.

5.

5.

5.
5.

( 
 )

W

a) b)

d

10

2 10

3 10

4 10

5 10

6 10

7 10

8 10

9 10

d

nodes
lin. pref.

const. pref.
anti pref.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 5  10  15  20  25  30
d

 0  10  20  30  40  50
d

0

Fig. 1 – a) The W (d) function for networks grown with known attachment rules: uniform probability
(squares), linear preferential attachment (open circles), and anti-preferential attachment (diamonds).
b) The W (d) function in the co-authorship network of the Los Alamos cond-mat archive.

Results. – In case of the communities of the investigated co-authorship network, the two
properties to be substituted in place of ρ are the community degree dcom and the commu-
nity size s, therefore, the cumulative community size distribution Pt(s) and the cumulative
community degree distribution Pt(dcom) were recorded at each time step t. To study the
establishment of the new community links, we constructed the un-normalised cumulative size
distribution wt→t+1(s) and the un-normalised cumulative degree distribution wt→t+1(dcom)
of the communities gaining new community links to previously unlinked communities. The
value of these distributions at a given s (or given dcom) is equal to the number of unlinked
communities at t that establish a community link between t and t+1 with a community larger
than s (or having larger degree than dcom) at t. By accumulating the ratio of the rate-like
variables and the corresponding distributions we obtain

W (s) =
tmax−1∑

t=0

wt→t+1(s)
Pt(s)

, W (dcom) =
tmax−1∑

t=0

wt→t+1(dcom)
Pt(dcom)

. (2)

For the investigation of the appearance of new members in the communities, we recorded
the un-normalised community size distribution ŵt→t+1(s) and the un-normalised community
degree distribution ŵt→t+1(dcom) of the communities gaining new members (belonging previ-
ously to none of the communities) between t and t + 1. The corresponding distributions that
can be used to detect deviations from the uniform attachment are

Ŵ (s) =
tmax−1∑

t=0

ŵt→t+1(s)
Pt(s)

, Ŵ (dcom) =
tmax−1∑

t=0

ŵt→t+1(dcom)
Pt(dcom)

. (3)

In fig. 2a we show the empirical W (s) and Ŵ (s) functions, whereas in fig. 2b the empirical
W (dcom) and Ŵ (dcom) are displayed. All four functions are clearly increasing, therefore we
can draw the following important conclusions:

– When a previously unlinked community establishes a new community link, communities
with large size and large degree are selected with enhanced probability from the available
other communities.
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Fig. 2 – a) The W (s) and Ŵ (s) functions for the communities of the co-authorship network of the

Los Alamos cond-mat e-print archive. b) The W (dcom) and Ŵ (dcom) functions of the same network.
The increasing nature of these functions indicates preferential attachment at the level of communities
in the system.

– When a node previously belonging to none of the communities joins a community, com-
munities with large size and large degree are selected with enhanced probability from
the available communities.

We note that the community size and the community degree are strongly correlated for
higher sizes and degrees: large communities have large community degree and vice versa.
Therefore, if one observes an attachment mechanism that is preferential with respect to either
the community size, or the community degree, than it must be preferential for both of them.

A toy model. – In this section we outline a simple model for the growth of overlapping
communities, in which the preferential attachment of the node to communities results in the
emergence of a community system with scaling community size and community degree dis-
tribution. We note that when using the well-known models based on preferential attachment
solely between the nodes [2–4], the resulting graph contains no communities at all at k = 6.

In our model the underlying network between the nodes is left unspecified, the focus is on
the content of the communities. During the time evolution, similarly to the models published
in [36–38], new members may join the already existing communities, and new communities may
emerge as well. The new nodes introduced to the system choose their community preferentially
with the community size, therefore the size distribution of the communities is expected to
develop into a power law. The appearance of the new community links originates in new nodes
joining several communities at the same time. The detailed rules of the model are the following:

– The initial state of the model is a small set of communities with random size.

– The new nodes are added to the system separately. For each new node i, a membership
mi is drawn from a Poissonean distribution with an expectation value of λ.

– If mi ≥ 1, communities are succeedingly chosen with probabilities proportional to their
sizes, until mi is reached, and the node i joins the chosen communities simultaneously.

– If mi = 0, the node i joins the group of unclassified vertices.
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Fig. 3 – a) The cumulative community size distribution P (s) (squares) in our model at λ = 0.6
follows a power law with an exponent of −1.4 (straight line). b) The cumulative community degree
distribution P (dcom) (circles) in our model at the same λ. The tail of this distribution follows the
same power law as the community size distribution (straight line), similarly to the communities found
in the co-authorship network [29].

– When the ratio r of the group of unclassified nodes compared to the total number of
nodes N exceeds a certain limit r∗, a number of q vertices from the group establish a
new community. (Obviously, q must be smaller than Nr even in the inital state.)

To be able to compare the results of the model with the community structure of the co-
authorship network, the runs were stopped when the number of nodes in the model reached
the size of the co-authorship network.

Our experience showed that the model is quite insensitive to changes in r or q, and λ is
the only important parameter. For small values (λ < 0.3) the resulting community degree
distribution is truncated, whereas when λ is too large (λ > 1), a giant community with
abnormally large community degree appears. For intermediate λ values (0.3 < λ < 1), the
community size and community degree distributions become fat tailed, similarly to the co-
authorship network. In fig. 3 we show the cumulative community size distribution P (s) and
the cumulative community degree distribution P (dcom) of the communities obtained in our
model at λ = 0.6. (Changes in the parameters r and q only shifts these curves, their shape
remains unchanged.) Our model grasps the relevant statistical properties of the community
structure in the co-authorship network [29] quite well: the community size distribution and
the tail of the community degree distribution follow a power law with the same exponent.

Conclusions. – We studied the evolution of the community graph in a growing co-
authorship network. We found that similar processes control the growth of the system at
different levels in the hierarchy, as the growth of the communities, the development of the
community graph and the growth of the underlying network are all driven by preferential
attachment. Inspired by these results, we introduced a simple model for the dynamics of
overlapping communities leading to scaling size and community degree distribution.

∗ ∗ ∗

This work has been supported in part by the Hungarian Science Foundation (OTKA),
grant Nos. F047203 and T034995. We thank A.-L. Barabási for useful discussions.



484 EUROPHYSICS LETTERS

REFERENCES

[1] Watts D. J. and Strogatz S. H., Nature, 393 (1998) 440.
[2] Barabási A.-L. and Albert R., Science, 286 (1999) 509.
[3] Albert R. and Barabási A.-L., Rev. Mod. Phys., 74 (2002) 47.
[4] Mendes J. F. F. and Dorogovtsev S. N., Evolution of Networks: From Biological Nets to

the Internet and WWW (Oxford University Press, Oxford) 2003.
[5] Barrat A., Barthelemy M. and Vespignani A., Phys. Rev. Lett., 92 (2004) 228701.
[6] Blatt M., Wiseman S. and Domany E., Phys. Rev. Lett., 76 (1996) 3251.
[7] Girvan M. and Newman M. E. J., Proc. Natl. Acad. Sci. U.S.A., 99 (2002) 7821.
[8] Zhou H., Phys. Rev. E, 67 (2003) 061901.
[9] Newman M. E. J., Phys. Rev. E, 69 (2004) 066133.

[10] Radicchi F., Castellano C., Cecconi F., Loreto V. and Parisi D., Proc. Natl. Acad. Sci.
U.S.A., 101 (2004) 2658.
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