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Clique Percolation in Random Networks
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The notion of k-clique percolation in random graphs is introduced, where k is the size of the complete
subgraphs whose large scale organizations are analytically and numerically investigated. For the Erdős-
Rényi graph of N vertices we obtain that the percolation transition of k-cliques takes place when the
probability of two vertices being connected by an edge reaches the threshold pc�k� � ��k� 1�N��1=�k�1�.
At the transition point the scaling of the giant component with N is highly nontrivial and depends on k. We
discuss why clique percolation is a novel and efficient approach to the identification of overlapping
communities in large real networks.
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FIG. 1. Sketches of two ER graphs of N � 20 vertices and
with edge probabilities p � 0:13 (left one) and p � 0:22 (right
one, generated by adding more random edges to the left one). In
both cases all the edges belong to a ‘‘giant’’ connected compo-
nent, because the edge probabilities are much larger than the
threshold (pc � 1=N � 0:05) for the classical ER percolation
transition. However, in the left one p is below the 3-clique
(triangle) percolation threshold, pc�3� � 0:16, calculated from
Eq. (1); therefore, only two small 3-clique percolation clusters
(distinguished by black and dark gray edges) can be observed. In
the right graph, on the other hand, p is above this threshold and,
as a consequence, most 3-cliques accumulate in a giant 3-clique
percolation cluster (black edges). This graph also exhibits an
overlap (half black, half dark gray vertex) between two 3-clique
percolation clusters (black and dark gray).
There has been a quickly growing interest in networks,
since they can represent the structure of a wide class of
complex systems occurring from the level of cells to
society. Data obtained on real networks show that the
corresponding graphs exhibit unexpected nontrivial prop-
erties, e.g., anomalous degree distributions, diameter,
spreading phenomena, clustering coefficient, and correla-
tions [1]. Very recently great attention has been paid to the
local structural units of networks. Small and well defined
subgraphs have been introduced as ‘‘motifs’’ [2]. Their
distribution and clustering properties [2,3] can be used to
interpret global features as well. Somewhat larger units,
made up of vertices that are more densely connected to
each other than to the rest of the network, are often referred
to as communities [4], and have been considered to be the
essential structural units of real networks. They have no
obvious definition, and most of the recent methods for their
identification rely on dividing the network into smaller
pieces. The biggest drawback of these methods is that
they do not allow for overlapping communities, although
overlaps are generally assumed to be crucial features of
communities. In this Letter we lay down the fundamentals
of a kind of percolation phenomenon on graphs, which can
also be used as an effective and deterministic method for
uniquely identifying overlapping communities in large real
networks [5].

Meanwhile, the various aspects of the classical Erdős-
Rényi (ER) uncorrelated random graph [6] remain still of
great interest since such a graph can serve both as a test bed
for checking all sorts of new ideas concerning complex
networks in general, and as a prototype to which all other
random graphs can be compared. Perhaps the most con-
spicuous early result on the ER graphs was related to the
percolation transition taking place at p � pc � 1=N,
where p is the probability that two vertices are connected
by an edge and N is the total number of vertices in the
graph. The appearance of a giant component, which is also
referred to as the percolating component, results in a
dramatic change in the overall topological features of the
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graph and has been in the center of interest for other
networks as well.

In this Letter we address the general question of sub-
graph percolation in the ER model. We obtain analytic and
simulation results related to the appearance of a giant
component made of complete subgraphs of k vertices
(k-cliques). In particular, we provide an analytic expres-
sion for the threshold probability at which the percolation
transition of k-cliques takes place. The transition is con-
tinuous, characterized by nonuniversal critical exponents,
which depend on both k and the way the size of the giant
component is measured. Our analytic calculations are in
full agreement with the corresponding numerical
simulations.
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We start with outlining some basic definitions. k-cliques,
the central objects of our investigation, are defined as
complete (fully connected) subgraphs of k vertices [7].
As an illustration, in Fig. 1 all the 3-cliques (triangles)
are emphasized with either black or dark gray edges. We
also introduce a few new notions specific to our problem.
(i) k-clique adjacency: two k-cliques are adjacent if they
share k� 1 vertices, i.e., if they differ only in a single
vertex. (ii) k-clique chain: a subgraph, which is the union
of a sequence of adjacent k-cliques. (iii) k-clique connect-
edness: two k-cliques are k-clique-connected if they are
parts of a k-clique chain. (iv) k-clique percolation cluster
(or component): it is a maximal k-clique-connected sub-
graph; i.e., it is the union of all k-cliques that are k-clique-
connected to a particular k-clique. This is illustrated in
Fig. 1, where both graphs contain two 3-clique percolation
clusters (dark gray and black). We note that these objects
can be considered as interesting specific cases of the gen-
eral graph theoretic objects defined in Refs. [8,9] in very
different contexts.

A k-clique percolation cluster is very much like a regular
(edge) percolation cluster in the k-clique adjacency graph,
where the vertices represent the k-cliques of the original
graph, and there is an edge between two vertices if the
corresponding k-cliques are adjacent. Moving a particle
from one vertex of this adjacency graph to another one
along an edge is equivalent to rolling a k-clique template
from one k-clique of the original graph to an adjacent one.
A k-clique template can be thought of as an object that is
isomorphic to a complete graph of k vertices. Such a
template can be placed onto any k-clique of the original
graph, and rolled to an adjacent k-clique by relocating one
of its vertices and keeping its other k� 1 vertices fixed.
Thus, the k-clique percolation clusters of a graph are all
those subgraphs that can be fully explored but cannot be
left by rolling a k-clique template in them.

Now, we present a general result for the threshold
probability (critical point) of k-clique percolation using
heuristic arguments. We find that a giant k-clique compo-
nent appears in an ER graph (as illustrated for k � 3 in
Fig. 1) at p � pc�k�, where

pc�k� �
1

��k� 1�N�1=�k�1�
: (1)

Obviously, for k � 2 this result agrees with the classical
percolation threshold (pc � 1=N) for ER graphs, because
2-clique connectedness is equivalent to regular (edge)
connectedness. Expression (1) can be obtained by requir-
ing that after rolling a k-clique template from a k-clique to
an adjacent one (by relocating one of its vertices), the
expectation value of the number of adjacent k-cliques,
where the template can roll further (by relocating another
of its vertices), be equal to 1 at the percolation threshold.
The intuitive argument behind this criterion is that a
smaller expectation value would result in premature
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k-clique percolation clusters, because starting from any
k-clique, the rolling would quickly come to a halt and, as
a consequence, the size of the clusters would decay ex-
ponentially. A larger expectation value, on the other hand,
would allow an infinite series of bifurcations for the roll-
ing, ensuring that a giant cluster is present in the system.
The above expectation value can be estimated as �k� 1�	
�N � k� 1�pk�1, where the first term �k� 1� counts the
number of vertices of the template that can be selected for
the next relocation; the second term �N � k� 1� counts
the number of potential destinations for this relocation, out
of which only the fraction pk�1 is acceptable, because each
of the new k� 1 edges (associated with the relocation)
must exist in order to obtain a new k-clique. For large N,
our criterion simplifies to �k� 1�Npk�1

c � 1, from which
we get expression (1). The above heuristic approach is
similar in spirit to the one used in Ref. [10] in the context
of standard percolation on networks.

It is important to point out that this result can be made
stronger by a more detailed derivation which we shall
present elsewhere. In short, starting from the distribution
of the number of k-cliques adjacent to a randomly selected
one, and applying the so-called generating function for-
malism [11], one can derive the generating function of the
distribution of the number of k-cliques that can be visited
from a randomly selected one. This function diverges as p
approaches pc�k� from below, signaling the threshold for
percolation. Furthermore, our result for pc�k� is also in
perfect agreement with the numerical simulations (see
below).

There are two plausible choices to measure the size of
the largest k-clique percolation cluster. The most natural
one, which we denote by N
, is the number of vertices
belonging to this cluster. We can also define an order
parameter associated with this choice as the relative size
of that cluster:

� � N
=N: (2)

The other choice is the number N 
 of k-cliques of the
largest k-clique percolation cluster. The associated order
parameter is again the relative size of this cluster:

	 � N 
=N ; (3)

where N denotes the total number of k-cliques in the
graph. N can be estimated as

N �
N
k

� �
pk�k�1�=2 �

Nk

k!
pk�k�1�=2; (4)

because k different vertices can be selected in N
k

� �
different

ways, and any such selection makes a k-clique only if all
the k�k� 1�=2 edges between these k vertices exist, each
with probability p. Note that in the classical ER edge
percolation (k � 2) the usual order parameter is equivalent
to 	. Also note that in general the size of the largest cluster
could be measured as the number of its l-cliques, N 


�l�, for
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1 � l � k. However, we restrict ourselves to the two limit-
ing cases (N
 � N 


�1� and N 
 � N 

�k�) defined above.

Our computer simulations indicate that the two order
parameters behave differently near the threshold probabil-
ity. To illustrate this, in Figs. 2(a) and 3(a) we plotted �
and 	, respectively, as a function of p=pc�k� for k � 4 and
for various system sizes (N), averaged over several runs.

The order parameter � for k � 3 converges to a step
function as N ! 1. The fact that the step is located at
p=pc�k� � 1 is actually the numerical proof of the validity
of our theoretical prediction (1) for pc�k�. The width of the
steps follows a power law, �N��, with some exponent �.
Plotting � as a function of �p=pc�k� � 1�N�, the data
collapse onto a single curve. This is shown for k � 3, 4,
and 5 in Fig. 2(b). The exponent � seems to be around 0.5
for k � 3 (with a slight deviation for k � 3 that we cannot
distinguish from a possible logarithmic correction).

The order parameter 	 for k � 2, on the other hand,
similarly to the classical ER transition, converges to a limit
function, which is 0 for p=pc�k�< 1 and grows continu-
ously from 0 to 1 if we increase p=pc�k� from 1 to 1.

One of the most fundamental results in random graph
theory concerns the behavior of the largest component at
the percolation threshold, where it becomes a giant (infi-
nitely large) component in the N ! 1 limit. Erdős and
Rényi showed [6] that for the random graphs they intro-
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FIG. 2. Simulation results for the order parameter � averaged
over several runs (the statistical error is smaller than the symbol
size). (a) The convergence of � as a function of p=pc�k� to a step
function in the N ! 1 limit is illustrated for k � 4. (b) The
width of the steps follows a power law, �N��, as the steps
collapse onto a single curve if we stretch them out by N�

horizontally. The data for k � 4 and 5 are shifted upward by
0.4 and 0.8, respectively, for clarity.
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duced, the size of the largest component N 
 (measured as
the number of its edges) at p � pc � 1=N diverges with
the system size as N2=3, or equivalently, the order parame-
ter 	 scales as N�1=3. Since the giant component at the
threshold has a treelike structure, its number of vertices,
N
, also diverges as N2=3. We shall show that similar
scaling behavior can be obtained for k-clique percolation
at the threshold probability pc�k�.

If we assume that the k-clique adjacency graph is like an
ER graph (which is an approximation since the adjacency
graph is weakly assortative), then at the threshold the size
of its giant component N 


c scales as N 2=3
c . The subscript

‘‘c’’ throughout this Letter indicates that the system is at
the percolation threshold (or critical point). Plugging p �
pc from Expression (1) into Eq. (4) and omitting the
N-independent factors we get the scaling

Nc � Nk=2 (5)

for the total number of k-cliques. Thus, the size of the giant
component N 


c is expected to scale as N 2=3
c � Nk=3 and

the order parameter 	c as N 2=3
c =N c � N�k=6.

This is valid, however, only if k � 3. The reason for the
breakdown of the above scaling is that for k > 3 it predicts
that the number of k-cliques of the giant k-clique percola-
tion cluster, i.e., the number of vertices of the giant com-
ponent in the k-clique adjacency graph, N 2=3

c � Nk=3,
grows faster than N. On the other hand, in analogy with
the structure of the giant component of the classical ER
problem, we expect that the giant component in the adja-
cency graph also has a treelike structure at the threshold
with very few loops. As a consequence, almost every
vertex of the adjacency graph corresponds to a vertex of
the original graph. Thus, in the adjacency graph the giant
component should not grow faster than N at the threshold.
Therefore, for k > 3 we expect that N 


c � N, and using
Eq. (5), 	c � N 


c=N c � N1�k=2. In summary:

	c �

�
N�k=6 for k � 3
N1�k=2 for k � 3

: (6)

Our numerical simulations [Fig. 3(b)] are in good agree-
ment with the above heuristic arguments.

Finally, we discuss the relevance of our approach to
community finding [4]. A k-clique percolation cluster can
be considered as a community, because of its many (at least
k� 1) internal links. The links are organized into complete
subgraphs (k-cliques), which is also a characteristic of
most communities (just think of human relations). With
different values of k we can identify communities of differ-
ent strength (or cohesiveness). Our k-clique percolation
clusters also satisfy a number of basic requirements (local,
density based, not too restrictive, have no cut-node, allow
overlaps) that are expected from a community definition,
but are not satisfied simultaneously by any other existing
definition in the literature [8,12]. Although using k-cliques
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FIG. 3. The order parameter 	 for the same simulations as in
Fig. 2. (a) As illustrated for k � 4, 	 as a function of p=pc�k�
converges to a limit function (which is 0 for p=pc�k�< 1 and
grows continuously to 1 above p=pc�k� � 1) in the N ! 1
limit. (b) The order parameter at the threshold, 	c, scales as a
negative power of N, in good agreement with expression (6).
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might seem to be a very strict constraint on the community
definition, we note that relaxing this constraint (e.g., by
allowing incomplete k-cliques) is practically equivalent to
lowering the value of k.

The sharp percolation transition (step in �) of the ER
graphs provides the theoretical basis for the applicability of
our community definition to real networks. This is because
if the network was completely random, only very few and
small clusters would be expected for any k at which the
network is below the transition point. However, if large
clusters do appear, they must correspond to locally dense
structures, i.e., real communities. Moreover, since these
communities are locally above the percolation threshold,
their identification is immune to random removal of edges
as long as their edge density remains above the threshold.

The most important aspect of such a method is that
naturally, a single vertex can be part of several commun-
ities [5], as illustrated in Fig. 1 (right) by the half black,
half dark gray vertex. In terms of a person, he or she can
belong to a number of groups (of highly connected people)
in such a way that no two groups share a (k� 1)-clique. In
turn, each community can have a large number of contacts
with other communities, just as it happens in most realistic
situations (see, e.g., Ref. [13]). This is very much in con-
trast with the divisive and agglomerative methods, which
force each vertex to belong to only one community and be
separated from the others, leading to the loss of many of the
communities of the network.
16020
The approach presented in this Letter allows a number
of generalizations (e.g., k-cliques connected through
(k� l)-cliques, k-cliques with weighted edges, etc.) and
opens new directions in the study of network structures
made of highly interconnected parts including commun-
ities overlapping in various nontrivial ways. As an impor-
tant biological example, we have successfully applied our
method to the identification of protein communities in the
protein-protein interaction network of yeast, which has
allowed us to make predictions for the yet unknown func-
tion of some proteins [5].
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