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Abstract. In this paper we introduce a non-fuzzy measure which has
been designed to rank the partitions of a network’s nodes into overlap-
ping communities. Such a measure can be useful for both quantifying
clusters detected by various methods and during finding the overlapping
community-structure by optimization methods. The theoretical problem
referring to the separation of overlapping modules is discussed, and an
example for possible applications is given as well.

1 Introduction

Networks – in the sense they are used throughout the present paper – are ba-
sically graphs describing various real-life complex systems. According to recent
discoveries, they tend to have some interesting and rather unexpected common
properties, such as scale-free degree distribution [1], strong disposition to form
clusters (also called as communities or modules) or [2] exhibiting “small-world”
property [3].

Since communities (groups of densely interconnected nodes) within these
graphs often refer to the functional units of the corresponding complex systems,
their exploration has been a fundamental issue. However, as an important result,
these clusters turned out not to be separate, but rather overlapping, sharing
many edges and nodes.

Because of the fundamental role clusters play in real-life networks, many algo-
rithms have been proposed with the aim of uncovering the community-structure
of a variety of networks. Earlier ones primarily detect disjoint clusters [9] [10],
meanwhile some of the recent ones detect overlapping modules as well [2] [4] [5]
[6] [7] [8].

At the same time, along with the development of the algorithms, the demand
arose to define and measure somehow the “suitability” of the different partitions
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provided by the various methods. Moreover, the fact that the concept of “clus-
ter” is not specified enough (in the sense that it does not have a widely accepted
definition) makes this problem even more ambiguous. However, although some
of the proposed measures have become widely accepted and used (for example
the so called “Q-modularity” proposed by Newman and Girvan in [9]), they are
defined only for non-overlapping community structures.

Here we would like to note that fuzzy measures have been introduced to
measure the “quality” of an overlapping community-structure, {c1, . . . , cK}) [12]
[13], but they share a common constraint: every i node has a “belonging factor”
0 ≤ αi,cr

≤ 1 which expresses how strongly node i belongs to the rth cluster cr.
The requirement is that

∑K
r=1 αi,cr = 1 for all i node belonging to the graph, K

denoting the number of clusters.
In other words, none of the nodes can belong to more than one community
“strongly” (and, primarily, not “fully”). Recalling social networks, this means
that if a person belongs – let’s say – to her/his family fully (or “strongly”), then
she/he can not belong to other communities, like working place, sport club, etc,
only very “weakly”, or nohow. We believe that this condition is often un-realistic
in real-life cases, so our goal has been to define a measure without the above
requirement.

In brief, the purpose of the present paper is to define a simple but well-usable
non-fuzzy measure which, on the one hand, quantifies cluster-structures found
by various methods on connected networks, and on the other hand, can be used
to detect (overlapping) communities as well by directly optimizing it. For being
well-usable, we expect from the measure to take values between -1 and and 1,
where a higher positive value corresponds to a better clustering. The zero value
expresses random-like network-clustering, that is, when the clusters are created
randomly.

2 The proposed measure

Since the notion of “cluster” is not well-defined, many different measures can
be conceived, according to the different “intuitive” characteristics: average path-
length among nodes, betweenness, etc. However, the most commonly used ones
exploit the expectation that a cluster should be “dense” – or, as it is often
formulated: modules are expected to have relatively more connections within
themselves than among each other [9] [11] [12]. Using the above expectation
(denseness) and allowing overlapping community-structure leads to the result
that separate edges will be returned as optimal community-structure – since
these are the most dense subgraphs, see fig. 1 a. (This happens for example
if one tries to apply Newman’s Q-modularity directly onto structures where
overlapping is enabled.)

According to our experiments, none of the “intuitive approaches” is enough
to create a suitable measure alone, because they result in “degenerated struc-



Fig. 1. a) Measure based on the modules density will be optimal if all the edges
constitute a separate cluster. b)-d): The question when to handle a (sub)graph as
one community and when as more, is non-trivial, because “intuition” gives different
answers to different people. At the same time, most of us would agree on separating
two 5-cliques overlapping in one single node (b), but handling them as one community,
if they share 4 nodes (d). Cases between (c) are a matter of “taste”.

tures” to be optimal ones, similar to the one seen above. On the other hand,
combinations of approaches can handle this phenomenon.
We have obtained good results by utilizing the following expectations: (1) the
edges of a given node should primarily go inward its cluster(s) and should not
go outward, and (2): clusters should be dense. The first criterion shows how
“justifiable” it is to assign the node i(∈ cr) to the rth cluster cr: it is the dif-
ference between the inward going edges (

∑
j∈cr,i6=j aij) and the outward going

edges (
∑

j /∈cr
aij), divided by the di degree of node i. Put it together, we get

that every i node contributes to the rth cluster to which it belongs to with the
following value: ∑

j∈cr,i6=j

aij −
∑

j /∈cr

aij

di
(1)

where ai,j denotes the proper element of the adjacency matrix defining the
network, interpreted as usually, that is,

aij =
{

1 if i and j are connected,
0 if not (2)

The more edges go inward and the less edges go outward the cluster, the
more the above ratio converges to 1. If more edges go outward than inward, the
expression is negative, and if all of them go outward, the result is -1. Due to the
overlapping areas, a node can contribute with positive values to more than one
clusters.

To avoid community-structures having only a few communities with very
high Mov

cr
values, we add the criterion that all nodes have to belong to at least

one module. (A trivial solution for that is, to put all the left-out nodes into a
separate cluster at the end. We have obtained our results like this too.) Also, the
appearance of many almost, or entirely overlapping communities is avoidable by



dividing the above expression by the number of clusters i belongs to, denoted
by si. Thus the rth cluster, cr will contribute to the final result Mov with:

Mov
cr

=
1
ncr

∑
i∈cr

∑
j∈cr,i6=j

aij −
∑

j /∈cr

aij

di · si
·
ne

cr(
ncr
2

) (3)

where ncr
is the number of nodes and ne

cr
is the number of edges that the

rth cluster cr contains, respectively.

The density of a module – which was our “second requirement” – is straight-
forward to interpret as

ne
cr

(ncr
2 ) . This expression gives 1 if the rth module cr (which

is a (sub)graph) contains all its possible edges, and 0 if it does not have any of
them. Since the first factor ranges between -1 and 1, the second factor between
0 and 1, the whole expression varies between -1 and 1.

This remains true for the final measure Mov as well, which is the average of
the Mov

cr
module-values:

Mov = 1
K

K∑
r=1

Mov
cr

, that is,

Mov =
1
K

K∑
r=1


∑

i∈cr

∑
j∈cr,i 6=j

aij−
∑

j /∈cr

aij

di·si

ncr

·
ne

cr(
ncr
2

)
 (4)

Since the density of clusters containing one single node (when ncr
= 1) is

not defined (because
(
1
2

)
is not defined), we simply set their Mov

cr
modularity

value to zero. (Isolated nodes (when d = 0) can not appear, since the network
assumed to be connected.)

Here we would like to note that handling the unclustered nodes (nodes that
do not belong to any of the modules) is possible in many ways. We have chosen to
put them into a separate community, but some kind of weighting is also conceiv-
able, when the weight is in inverse proportion to the number of the unclustered
nodes (the more nodes are clustered, the higher the final score is). Furthermore,
one can consider the weighting of the clusters according to their sizes as well.

3 One cluster or more clusters? – When to separate?

This question is highly non-trivial, because it is – up to a great extent – simply a
matter of “intuition” or taste, being different from person to person. For example
most of us would agree on separating two 5-cliques overlapping in one single node,
but handling them as one community, if they share 4 nodes (see fig. 1). But what
is the case, if they share two or three nodes?



Figure 2 a) and b) describes how the introduced measure, Mov behaves with
respect to the above question. Given a complete-graph with n2 = 50 nodes and
a smaller one with n1 nodes (n1 ∈ {1 . . . 50}, also complete-graph). These two
graphs overlap in o nodes, where o ∈ {1 . . . n1} (Fig. 2 b)). On sub-picture a),
the horizontal axis shows the size of the smaller graph, n1, while the vertical axis
shows the number of the overlapping nodes (o) between the two graphs. Two
regions show up: the lower region covers the o−n1 parameter-pairs by which Mov

gives higher score if the two graphs are handled as separate communities, while
the upper one covers those n1-o pairs, which give higher score, if the overlapping
graphs are handled as one module. One extreme is when the overlap is 0 (the
two graphs do not share any nodes, horizontal axis) – which obviously falls in
the lower, “separate”-region. The other end-value is when they share all the n1

nodes, that is, the smaller graph (the n1-clique) is a real sub-graph, a part of
the bigger complete-graph – this case is represented by the diagonal line starting
from the pole.

Fig. 2. a)-b) Given a complete-graph with n2 = 50 nodes and a smaller one with
n1 nodes (n1 ∈ {1 . . . 50}, also complete-graph; n1 is shown on the horizontal axis).
These two graphs overlap in o nodes (vertical axis), where o ∈ {1 . . . n1}. The n1 − o
parameter-pairs generate two dissevering regions: the upper one is where the introduced
measure, Mov gives higher score if the two graphs are handled as one module, while
the lower one covers those n1 − o pairs, which give higher score if the graphs make up
separate communities. c) The Mov scores as a function of the k “tuning-parameter”
belonging to the CFinder algorithm, for the protein-protein interaction network. The
suggested k-value is where the curve reaches its maximum, that is, at k = 7.

4 An application

CFinder, an algorithm designed to uncover the overlapping community-structure
of networks [2], has a “tuning-parameter” (k) which determines the cohesiveness
of the revealed modules: the higher the parameter k, the smaller, the more disin-
tegrated, but at the same time the more cohesive are the detected communities.
Theoretically k can be any positive integer starting from 3, but in practice it is



usually smaller than ten. (If k = 2, CFinder detects the connected subgraphs.)
The proper value of k depends on the network. In the following we define the
most proper k for a real-life network using the introduced measure, Mov.
Figure 2 c) depicts the Mov scores as a function of the k parameter for a network
describing the protein-protein interactions in S. cerevisiae (see details in [17]).
As it can be seen, the curve reaches its maximum at k = 7, that is, using the
CFinder algorithm, the best (overlapping) community structure is revealed by
setting the k tuning parameter to 7.

We would also like to highlight, that the best possible Mov score very strongly
depends on the network itself.
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