
April 2010

EPL, 90 (2010) 18001 www.epljournal.org

doi: 10.1209/0295-5075/90/18001

Modularity measure of networks with overlapping communities
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Abstract – In this paper we introduce a non-fuzzy measure which has been designed to rank
the partitions of a network’s nodes into overlapping communities. Such a measure can be useful
for both quantifying clusters detected by various methods and during finding the overlapping
community structure by optimization methods. The theoretical problem referring to the separation
of overlapping modules is discussed, and an example for possible applications is given as well.
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Introduction. – Networks —in the sense they are
used throughout the present paper— are basically graphs
describing real-life complex systems taken from the most
different scientific areas, but primarily from biology, econ-
omy and sociology. According to recent discoveries, real-
life networks tend to have some interesting and rather
unexpected common properties, such as scale-free degree
distribution, strong disposition to form clusters (also
called as communities or modules) or having the so-called
“small-world” property [1–3].
Communities (groups of densely interconnected nodes)

within these graphs often refer to the functional units of
the corresponding complex systems, thus their exploration
has been a fundamental issue in the study of networks.
However, as an important result, these clusters turned out
not to be separate, but rather overlapping, sharing many
edges and nodes.
Because of the fundamental role clusters play in real-life
networks, many algorithms have been proposed with the
aim of uncovering the community structure of a variety
of networks. Earlier ones primarily detect disjoint clus-
ters [4,5], meanwhile some of the recent ones detect
overlapping modules as well [2,6–10]. In a very interesting
recent paper, the authors propose to interpret communi-
ties as groups of links instead of groups of nodes, since
edges often exist because of one dominant reason, even if
the nodes they connect belong to different communities [8].
Another neat solution has been introduced in [9], in which
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a practical method is suggested to define the overlap by
using synchronized oscillators. In this paper the authors
study the interfaces appearing in complex networks
between the clusters of phase oscillators. The algorithm
introduced in [7] uncovers the overlapping and hierarchical
properties of networks based on sets of maximal cliques.
Along with the development of the algorithms,
the demand also arose to define and measure somehow the
“suitability” of the different partitions provided by the
various methods. Moreover, the fact that the concept of
“cluster” is not specified enough (in the sense that it does
not have a widely accepted definition) makes this problem
even more ambiguous. However, although some of the
proposed measures have become widely accepted and
used (for example the so-called “Q-modularity” proposed
by Newman and Girvan in [4]), they are defined only for
non-overlapping community structures.
Here we would like to note that fuzzy measures have
been introduced with the same ambition (namely to
measure the “quality” of an overlapping community struc-
ture, {c1, . . . , cK}) [11,12] but they share a common
constraint: every i node has a “belonging factor” 0�
αi,cr � 1 which expresses how strongly node i belongs to
the r-th cluster cr. The requirement is that

K
∑

r=1

αi,cr = 1 (1)

for all i belonging to the graph, K denoting the number
of clusters.
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In other words, none of the nodes can belong to more
than one community “strongly” (and, primarily, not
“fully”). Recalling social networks, this means that if
a person belongs —let us say— to her/his family fully
(or “strongly”), then she/he cannot belong to other
communities, like working place, sport club, etc, only
very “weakly”, or nohow. We believe that this condition
is often unrealistic in real-life cases, so our goal has been
to define a measure without the above requirement.
In brief, the purpose of the present paper is to define
a simple but well-usable non-fuzzy measure which, on the
one hand, quantifies cluster structures found by various
methods on connected networks, and on the other hand,
can be used to detect (overlapping) communities as well
by directly optimizing it. For being well usable, we expect
the measure to take values between −1 and 1, where a
higher positive value corresponds to a better clustering.
We also expect our measure to give results near to zero
for random-like cluster partitions, that is, when clusters
are chosen randomly for an arbitrary network. To test
this expectation, we have defined 10000 random cluster
partitions for an arbitrary graph, which in this case has
been the one depicted in fig. 6(a). The process for defining
a random clustering has been the following: first we have
generated a random number taking values between 1 and
the number of nodes, using a function which generates an
integer value from the uniform distribution on the given
set: this value determined the number of clusters. Then,
for all of these clusters, the number of the nodes have been
defined using the very same function, that is, how many
nodes the several clusters should include. And finally, the
nodes have been chosen randomly as well, for all the
clusters. We have calculated the score of our measure for
all these cluster partitions and defined their average, which
has been of the order of magnitude 10−3, that is, near to
zero.

The proposed measure. – As mentioned above, the
notion of “cluster” is not well defined: there are many
approaches based on different “intuitive” characteristics
of a community, such as its denseness, the average path-
length among its nodes, the number of edges going in
and out of a given module, the betweenness among nodes
belonging to different communities, etc. [13–15]. Although
theoretically, measures could be constructed based on
any of the above characteristics, in practice, the most
commonly used ones exploit the expectation that a cluster
should be “dense” —or, as it is often formulated: modules
are expected to have relatively more connections within
themselves and than among each other [4,11,16]. Using the
above expectation (clusters should be dense) and allowing
overlapping community structure leads to the result that
separate edges will be returned as optimal community
structure —since these are the densest subgraphs, see
fig. 1(a). (This happens for example if one tries to apply
Newman’s Q-modularity directly onto structures where
overlapping is enabled.)

Fig. 1: (Colour on-line) (a) Measure based on the modules
density will be optimal if all the edges constitute a separate
cluster. (b) An overlapping node that belongs to both the c1
and c2 communities. It contributes with positive values for both
clusters. (c) The appearance of many similar or almost-the-
same overlapping communities.

According to our experiments, none of the “intuitive
approaches” is enough to create a suitable measure alone,
because they result in “degenerated structures” to be
optimal ones, similar to the one seen above. On the
other hand, combinations of approaches can handle this
phenomenon.
We have obtained good results by utilizing the following

expectations: 1) the edges of a given node should primarily
go inward its cluster(s) and should not go outward, and
2) clusters should be dense. The first criterion shows
how “justifiable” it is to assign the node i (∈ cr) to the
r-th cluster cr: it is the difference between the inward
going edges (

∑

j∈cr,i �=j
aij) and the outward going edges

(
∑

j /∈cr
aij), divided by the di degree of node i. Put it

together, we get that every i node contributes to the r-th
cluster to which it belongs to with the following value:

∑

j∈cr,i �=j

aij −
∑

j /∈cr

aij

di
, (2)

where aij denotes the proper element of the adjacency
matrix defining the network, interpreted as usually, that
is

aij =

{

1, if i and j are connected,

0, if not.
(3)

The more edges go inward and the less edges go outward
the cluster, the more the above ratio converges to 1. If
more edges go outward than inward, the expression is
negative, and if all of them go outward, the result is
−1. Since a node can contribute with positive values to
more than one clusters —due to the overlapping areas, see
fig. 1(b)— the whole network’s modularity value is higher
if a node like that belongs to both modules.
In order to prevent the appearance of many similar
or almost-the-same overlapping communities (as can be
seen on fig. 1(c)) the above expression is divided by the

18001-p2



Modularity measure of networks with overlapping communities

number of clusters i belongs to, denoted by si. Thus the
r-th cluster, cr will contribute to the final resultM

ov with

Movcr =
1

ncr

∑

i∈cr

∑

j∈cr,i �=j

aij −
∑

j /∈cr

aij

di · si
·
necr
(

ncr
2

) , (4)

where ncr is the number of nodes and n
e
cr is the number

of edges that the r-th cluster cr contains, respectively.
The density of a module —which was our “second

requirement”— is straightforward to be interpreted as
necr
(ncr
2
)
. This expression gives 1 if the r-th module cr (which

is a (sub)graph) contains all its possible edges, and 0 if it
does not have any of them. Since the first factor ranges
between −1 and 1, the second factor between 0 and 1, the
whole expression varies between −1 and 1.
This remains true for the final measure Mov as well,
which is the average of the Movcr module values:

Mov =
1

K

K
∑

r=1

Movcr ,

that is

Mov =
1

K

K
∑

r=1











∑

i∈cr

∑

j∈cr,i�=j

aij−
∑

j /∈cr

aij

di·si

ncr
·
necr
(

ncr
2

)











. (5)

Since the density of clusters containing one single node
(when ncr = 1) is not defined (because

(

1
2

)

is not defined),
we simply set theirMovcr modularity value to zero. (Isolated
nodes (when d= 0) cannot appear, since the network
assumed to be connected.)
To avoid community structures having only a few
communities with very high Movcr values, we add the
criterion that all nodes have to belong to at least one
module. (A trivial solution for that is to put all the left-out
nodes into a separate cluster at the end. We have obtained
our results like this too.)
On the other hand, handling the unclustered nodes

(nodes that do not belong to any of the modules) is
possible in many ways. We have chosen to put them into
a separate community, but some kind of weighting is also
conceivable, when the weight is in inverse proportion to
the number of the unclustered nodes (the more nodes are
clustered, the higher the final score is). Furthermore, one
can consider the weighting of the clusters according to
their sizes as well.

One cluster or more clusters? When to sepa-

rate? – This question is highly non-trivial, because it is
—up to a great extent— simply a matter of “intuition”
or taste, being different from person to person. For
example most of us would agree on separating two 5-
cliques overlapping in one single node, but handling them
as one community, if they share 4 nodes (see fig. 2). But
what is the case, if they share two or three nodes?

Fig. 2: (Colour on-line) The question when to handle a
(sub)graph as one community and when as more, is non-trivial,
because “intuition” gives different answers to different people.
At the same time, most of us would agree on separating two
5-cliques overlapping in one single node (a), but handling them
as one community, if they share 4 nodes (c). Cases between (b)
are a matter of “taste”.

Fig. 3: (Colour on-line) Given a complete graph with n2 = 50
nodes and a smaller one with n1 nodes (n1 ∈ {1 . . . 50}, also
complete graph; n1 is shown on the horizontal axis). These two
graphs overlap in o nodes (vertical axis), where o∈ {1 . . . n1}.
The n1-o parameter pairs generate two dissevering regions: the
upper one is where the introduced measure, Mov gives higher
score if the two graphs are handled as one module, while the
lower one covers those n1-o pairs, which give higher score if the
graphs make up separate communities.

Figure 3 describes how the introduced measure, Mov

behaves with respect to the above question. Given a
complete graph with n2 = 50 nodes and a smaller one with
n1 nodes (n1 ∈ {1, . . . , 50}, also complete graph), these
two graphs overlap in o nodes, where o∈ {1, . . . , n1}. The
horizontal axis shows the size of the smaller graph, n1,
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while the vertical axis shows the number of the overlapping
nodes (o) between the two graphs. Two regions show
up: the lower region covers the o-n1 parameter pairs
by which Mov gives a higher score if the two graphs
are handled as separate communities, while the upper
one covers those n1-o pairs, which give higher score, if
the overlapping graphs are handled as one module. One
extreme is when the overlap is 0 (the two graphs do not
share any nodes, horizontal axis) —which obviously falls in
the lower, “separate” region. The other end-value is when
they share all the n1 nodes, that is, the smaller graph
(the n1-clique) is a real sub-graph, a part of the bigger
complete graph —this case is represented by the diagonal
line starting from the pole.
As the overlap between the two complete cliques grows,

assuming a single community gives better Mov scores.
The border line between these two areas depends on
the formulation of the function used for scoring the
community structure. Judging whether the border line
resulting from a given definition is good or bad is, of
course, highly subjective. It is quite reasonable to assume
that above a certain overlap size, the single-community
structure should get a higher score, while below that
two communities should be optimal. One feature of the
plot that can be objectively judged is the fact that such
a transition occurs for even small n1, i.e. our proposed
method prefers a small clique to be a separate community
(provided that the overlap between them is not too large),
even if there is a large size difference between the two
cliques.

An application. – CFinder, an algorithm designed
to uncover the overlapping community structure of net-
works [2], has a “tuning-parameter” (k) which determines
the cohesiveness of the revealed modules: the higher the
parameter k, the smaller, the more disintegrated, but
at the same time the more cohesive are the detected
communities. This is a result of the method, which exploits
the observation, that a typical community consists of
several complete subgraphs that tend to share many of
their nodes. The algorithm uncovers those modules which
form so-called “k-clique communities”, that is, unions of
k-cliques that can be reached from each other through a
series of adjacent k-cliques.
Theoretically k can be any positive integer starting from

3, but in practice it is usually smaller than ten. (If k= 2,
CFinder detects the connected subgraphs, that is, those
modules which are unions of 2-cliques (which are edges)
and can be reached from each other through a series of
adjacent edges.) The proper value of k depends on the net-
work. In the following we define the most proper k for some
real-life networks using the introduced measure, Mov.
Figure 4 depicts the Mov scores as a function of the k-
parameter for three real-life networks: 1) word association,
2) protein interaction, and 3) cond-mat publication.
The nodes of the first graph, “word association”,
are words which are linked if the people in a survey
associated them with each other [17]. (Originally it is a

Fig. 4: (Colour on-line) The Mov scores as a function of the
k “tuning-parameter” belonging to the CFinder algorithm,
for three real-life networks: 1) cond-mat publication (topmost
curve) 2) protein interaction and 3) word association (bottom-
most curve). The suggested k-values are those where the curves
reach their maximum.

weighted, directed graph, where the weight of an edge
indicates the frequency that the people associated the
end point of the link with its start point, but here we
have used a simplified —undirected, unweighted— form
of it.) The “protein interaction” network describes the
protein-protein interactions in S. cerevisiae (see details
in [18]), and finally, the “cond-mat publication” network
describes co-authorships among mathematicians, obtained
from the Los Alamos cond-mat archive [19]. (Originally
this is a weighted graph as well, where the weights are
proportional to the number of common works, but, here
too, we have used a simplified, unweighted version of the
graph, in which the edges have been eliminated under a
certain threshold-weight. See more details in [20].)
As can be seen in fig. 4, in the case of the protein-
interaction network and the cond-mat publication, both
curves reach their maximum at k= 7, which is their
optimum value for k.
At the same time, randomizing these networks by
randomly distributing the edges results in Mov scores
much lower than for the corresponding real network:
−0.06, −0.3 and −0.57 at k= 3 for the co-publication,
protein interaction and word association networks respec-
tively, with no communities found for higher values of k.
The word association network displays a very interesting
behavior: the whole curve is in the negative region.
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Fig. 5: (Colour on-line) The densely interconnected, frequent
associations of the word “bright”. This sub-graph is a typical
segment of the “word association network” [17] which has
been used to provide the bottommost curve in fig. 4 (“word
association curve”) which exhibits an interesting behavior by
being entirely in the negative region.

This is most probably due to the fact that this graph
contains many words with several meanings, e.g., the
word “bright”, which —according to the survey— is
often associated with words having alternative meanings,
like “smart”, “light”, “dark”, “sun”, etc. (see fig. 5)
Accordingly, in a graph like this, if slightly overlapping
modules arise around the different meanings of a word, and
if between the nodes of these otherwise separate modules
there are relatively many edges (associations) a negative
numerator in Mov results.
Figure 5 illustrates the densely interconnected, frequent
associations of the word “bright”. This sub-graph is a
typical segment of the “word association network” which
has been used to provide the bottommost curve in fig. 4
(“word association curve”) by identifying the communities
with the “CFinder” algorithm using several k values. As
it can be seen in fig. 5, this graph has a special feature,
namely that —apart from containing nodes with similar
meanings— it has nodes with opposite meanings as well,
which are often connected: for example “bright” has a
link to “dark”. Thus nodes belonging to contradictory
categories (clusters) can be easily connected.
We have investigated the behavior of this network with
a recent, neat algorithm as well —namely with the Link
Clustering (LC) Method [8]— and have found that the

Fig. 6: (Colour on-line) (a) The network we have used for
comparing the Mov values belonging to different partition-
ings: the densely interconnected parts of the co-authorship
relations of G. Parisi based on the Los Alamos Condensed
Matter archive [19]. (b) The clustering revealed by the
CFinder algorithm;Mov

CFinder = 0.42455. (c) Cluster partitions
determined by the Link Clustering Method; Mov

LC = 0.06372.
(d) Partitioning obtained by using the “hybrid” method, for
which Mov

Hybrid = 0.36774.

Mov values belonging to the cluster partitions revealed
by the LC algorithm, are negative as well. Since LC
detects reasonable clusterings in general (with positive
Mov values), it is well-founded to assume that it is indeed
a feature of the network that calls forth negative Mov

values.

Cluster partitions and Mov values —a compari-

son. – In order to compare the Mov values belonging to
various partitionings on the same network, we have deter-
mined the cluster partitions using two different methods
and a “hybrid” one, and calculated the correspondingMov

values for each of them, respectively. The graph we have
used is a small, real-life network showing the densely inter-
connected parts of the co-authorship relations of G. Parisi,
based on the database [19] (see fig. 6(a)).
The clustering methods we have used are the following:

– CFinder [2];

– Link Clustering (LC) Method [8];

– a “hybrid” method which refers to the following
process: for determining the optimal partitioning,
the previous method (that is the Link Clustering
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algorithm) builds a dendrogram during its run, and
defines the optimal clustering by using a function
called “Partition Density”: the dendrogram is cut
where this function is maximal. In our compari-
son experiments, instead of cutting this dendrogram
where the Partition Density function has been maxi-
mal, we have cut it where the Mov was maximal.

Figure 6(b) depicts the clustering revealed by the
CFinder algorithm. The corresponding Mov value is
MovCFinder = 0.42455. Figure 6(c) shows the cluster-
partitions returned by the Link Clustering Method; the
corresponding Mov value is MovLC = 0.06372. Finally,
fig. 6(d) depicts the cluster partitions determined by the
“hybrid” method, for which MovHybrid = 0.36774.
In our example network (fig. 6(a)) some of the overlap-
ping nodes are those which are at the same time central to
their clusters as well (for example the node representing
G. Parisi). These kinds of cluster structures are a special
challenge for the algorithms detecting cluster partitions.
Figure 6 exemplifies that those clusterings possess higher
Mov scores, which appear to be better in an “intuitive”
way.
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