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1 Introduction  

 

This book is concerned with the various aspects of hierarchical collective behaviour which is 

manifested by most complex systems in nature. From the many of the possible topics, we plan to 

present a selection of those that we think are useful from the point of shedding light from very 

different directions onto our quite general subject. Our intention is to both present the essential 

contributions by the existing approaches as well as go significantly beyond the results obtained 

by traditional methods by applying a more quantitative approach then the common ones (there 

are many books on qualitative interpretations). In addition to considering hierarchy in systems 

made of similar kinds of units, we shall concentrate on problems involving either dominance 

relations or the process of collective decision-making from various viewpoints. 

 

1.1 General considerations 

 
Since hierarchy is abundant in nature and society, but many of its quantitative aspects are still 

unexplored, the main goal we intend to achieve is the systematic interpretation and 

documentation of new unifying principles and basic laws describing the most relevant aspects of 

hierarchy (being perhaps the most widespread organizing principle in the Universe). To do so we 

shall discuss recent experiments and models that are both simple and realistic enough to 

reproduce the observations and develop concepts for a better understanding of the complexity of 

systems consisting of many organisms. We shall cover systems ranging from flocks of birds to 

groups of people.  

The related research goes beyond being interdisciplinary and can be rather described as 

multidisciplinary, since it involves many kinds of systems (both living and non-living), various 

techniques and technologies typically used in different branches of science and engineering. The 

topics we address might look too diverse. However, one can always think of these research 

directions as facets of a single, to be explored idea. 

Although we shall concentrate on hierarchical collective behaviour in general, there will be 

two aspects of it which will pop up in the majority of cases: collective motion and dynamically 

changing partially directed networks (and the natural relation of the two). A few of the many 

possible examples are visualized in Fig. 1. In addition, we give a brief description of the most 

relevant concepts which hierarchy is related to. 

 

Organisms versus agents, entities or “particles” 

 

Throughout of this book we shall consider systems made of many (from a few dozens to several 

thousands) organisms, i.e., living entities. Of course, hierarchy is present in the non-living world 

as well; starting from elementary particles through the solar system up to the whole universe, but 

that is a beautiful and long story which is not the subject of the present work.  
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Fig. 1 a Axon arborisation (the end part of a major kind of neuronal cells) shows typical hierarchical tree-like 

structure in space. b The wiring of a human brain. Hierarchy is not obvious, but closer inspection and additional 

MRI images indicate hierarchical functional operation. c And this is a possible interpretation of how we think 

(thoughts being one of the end products of a functioning brain. d The visualization (of the by today 

commonplace) idea of the evolutionary tree. e The famous first drawing about the branching of the phylogenetic 

tree with the ―I think‖ note by Darwin. f This complex tree with its hundreds of branches shows the birth of new 

variants (associated with new plant species) of a single protein! g The well-known hierarchy of wolfs indicated 
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by who is licking who (subordinates do this with those above them). The same behaviour can be observed 

between a dog and her owner. h Perhaps the only hierarchy named after a person. This pyramid is called the 

―Maslov‘s hierarchy of needs‖. i Visualization of the connections (call relations) between the various parts of a 

C+ software system (containing many thousands of entities and relations: more closely related parts are colour 

coded and bundled). j The strength of the directional correlations between pairs of pigeons in a flock (individuals 

being denoted by A0,…,9. The asymmetric structure of the dominant part of the matrix (whole matrix minus its 

symmetric components) indicated strictly hierarchical leader-follower relations. k The picturesque representation 

of the two pyramids of medieval relations among the member s of a society: left corresponding to social, the 

right side corresponding to the religious organization. l And finally: we show a huge community of relatively 

simple animals. Where is here the hierarchy? Nowhere, the groups of many thousands of animals (large flocks of 

birds, schools of fish) typically do not display the signs of hierarchy (and, and, indeed, are assumed not to be 

hierarchically organized.) (All pictures are freely available from the internet except j which is from one of our 

papers)  

 

Hierarchy in life can be understood in several ways. For example, one may rank a quality as 

more important than another type of quality. However, in most of the cases hierarchy involves 

many ―units‖ which are related to each other in relatively simple ways. The stress is on ―many‖ 

and on ―simple‖. Perhaps the best way to demonstrate this point is to consider a group of people. 

The interactions (relations) among them can be extremely complicated (just think of two people 

being in love with each other). Instead of considering such interactions, we assume that two 

people, let us say, in a large organisation are either working in the same kind of unit or one of 

them has a job of a leader (of a group, a department, a division, etc.). In this case, we assume that 

there is a directed link between the two which is pointing from the leader to the regular member 

of the company. When accounting their relation, this will be the aspect we shall consider and all 

of the other, extremely complex features of the two persons (they are made of cells, they feel the 

smell of the other person, etc.) will be neglected.  

This is how ―particles‖ can be defined even for a system of people: particles are units whose 

interactions can be - in the given context (!) - assumed to be very simple. 

―Agents‖ are a bit more complicated than particles. Although their interactions are assumed 

to be also relatively simple, these units have a ―purpose‖. The purpose is usually also simple and 

can be interpreted as optimizing/maximizing some sort of advantageous quantity. In its most 

typical form this quantity is the difference between the ―benefit‖ and the ―cost‖ usually called 

fitness. Fitness can be defined for a whole group of agents as well.  

 

To summarize the above: hierarchy is typically defined for systems of agents and can be 

advantageous to a varying degree. One of the main messages of our text is that the main reason 

for the hierarchical structure of the relations among organism is that such a structure is more 

advantageous than a fully regular or a random or any other arrangement. 

 

Collective behaviour 

 

Collective behaviour applies to a great variety of phenomena in nature, which makes it an 

extremely useful notion in many contexts. Examples include collectively migrating bacteria, 

insects or birds; or phenomena where groups of organisms or non-living objects synchronize 

their signals — think of fireflies flashing in unison or people clapping in phase during rhythmic 

applause. The main features of collective behaviour are that an individual unit‘s action is 

dominated by the influence of its neighbours — the unit behaves differently from the way it 

would behave on its own. On one hand such systems show interesting ordering phenomena as the 
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units simultaneously change their behaviour to a common pattern (Camazine 2003, Sumpter 

2010) and on the other hand can form structures that are capable of exhibiting much more 

complex functions than a single unit (consider, e.g., a single neuron versus a complete brain). 

The world is made of many highly interconnected parts over many scales, whose 

interactions result in a complex behaviour needing separate interpretation for each level. This 

realization forces us to appreciate that new features emerge as one goes from one scale to 

another, so it follows that the science of complexity and the closely related hierarchy is about - 

following a classification based on major analogies - is expected to reveal the principles 

governing the ways by which these new properties appear. 

Over the past decades, one of the major successes of statistical physics has been the 

explanation of how certain patterns can arise through the interaction of a large number of similar 

units. Interestingly, the units themselves can be very complex entities, too, and their internal 

structure has little influence on the patterns they produce. It is much more the way they interact 

that determines the large-scale behaviour of the system. It has been found that not only 

interacting spins or atoms, but also assemblies of molecules or granular particles, and even large 

groups of complex biological structures (bacteria, ants, birds, etc.) can be examined by statistical 

physics models (Vicsek 2001).  It has been demonstrated that the collective behaviour of units 

has a number of features typical for many different systems. From the point of statistical physics 

these could be considered as ―universality classes‖ or major types of behavioural patterns.  

It is, however, very important to note that in the above context the hierarchical nature of 

interactions has been largely neglected, especially for the directed (or asymmetric) case (except a 

few network theory papers). Our basic assumption is that by observing and quantitatively 

interpreting the patterns of behaviour in hierarchically organized systems is likely to lead to a 

unified picture of hierarchical collective behaviour, and, in an ideal case, to the discovery of a 

number of basic relations or ―laws‖ describing them. 

 

Collective motion 

 

The actions of moving individual organisms add together creating patterns of motion, so 

complex that they seem to have been choreographed from ―above‖. Flocks and schools have a 

distinctive style of behaviour - with fluidity and a seeming intelligence that far transcends the 

abilities of their members. Vast congregations of birds, for example, are capable of turning 

sharply and suddenly en masse, always avoiding collisions within the flock. It has turned out 

over the two decades that computer models and sophisticated techniques to collect data about a 

large number of animals have been very useful for establishing a significantly better 

understanding of such systems than before (Vicsek and Zafeiris 2012).  

 

Networks 

 

When ―generating‖ life as we perceive it today, nature ―made use of‖ the existence of the above 

mentioned hierarchical levels by spontaneously separating them as molecules, macromolecules, 

cells, organisms, species and societies. The big question is whether there is a unified theory for 

the ways elements of a system organize themselves to produce such a highly hierarchical 

structure of behaviour typical for wide classes of systems. Interesting principles have been 

proposed, including self-organization, simultaneous existence of many degrees of freedom, self-

adaptation, rugged energy/fitness landscapes and scaling, etc. Physicists are learning how to 
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build relatively simple models producing complicated behaviour. At the same time researchers 

working on inherently very complex systems (biologists or economists, say) are uncovering the 

ways how their infinitely complicated subjects can be interpreted in terms of interacting, well-

defined (i.e., simpler) units (such as proteins) with the interactions corresponding to links (which 

can be directed and weighted) and the units to nodes (having attributes) in a complex network 

(Albert and Barabási 2002, Newman 2010, Barabási 2016).  

Most of the networks in life and technology are dynamically changing and are highly 

structured. For example, a dynamically changing network can be associated with a flock of 

collectively moving organisms or robots interacting as a function of their positions.  

 

1.2 Motivation  

 

It is widely accepted that we do not understand deeply enough the reasons behind the abundance 

of multi-level hierarches. However, there must be an advantage of such an organization, because 

of the permanent evolution of the corresponding systems preferring more efficient variants. But 

where is this advantage? Better adaptability? A more efficient, robust or stable structure? A faster 

spreading of relevant information? Or, perhaps, better controllability (think of, e.g., an army)? 

On a more abstract level: What are the conditions for a hierarchical organization to emerge? Are 

there any general (valid for many systems) necessary and/or sufficient condition for this 

emergence?  

These are challenging questions and if we can answer them it could bring us to designing 

and producing much more efficient devices or perhaps, more importantly, creating much better 

functioning industrial, educational or many more kinds of organizations. 

Motivated by the above reasons, in this book will be centered around topics and answers 

related to questions like: 

 

What is our subject? 

 

We shall consider primarily systems (structures, processes, phenomena) that are common in the 

living world. The related, practical questions are: what are the conditions under which hierarchy 

emerges? What kinds of mathematical tools are appropriate for describing the various aspects of 

hierarchy? 

 

Why do we study? 

 

We use a quantitative approach to interpreting realistic situations in life because most of the 

presently available experimental and theoretical treatments of hierarchical organization are 

predominantly qualitative so a need arises in presenting results involving numerics. On the other 

hand, the interest in the topic seems to be increasing quickly. Understanding leadership and 

further aspects of hierarchy are expected to be very useful from the point of optimizing 

economy-related structures. On a less applied level, getting a deeper insight into the collective 

behaviour of groups has also been attracting growing interest.   

  

How do we study? 
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As mentioned above (and explored here in a bit more detail) there can be several methods to treat 

the various quantitative aspects of hierarchy. First, it is possible – but far from being trivial – to 

design experiments for studying how a hierarchical set of leader-follower relationship emerges 

from an originally disordered set of living entities. Second, one can design models and study 

them either analytically or using computer simulations. The two major quantitative approaches 

have been: game theory and agent-based modelling. In this book we treat the second alternative, 

since the game theoretical works we know of allow a less straightforward comparison with 

actual, real life observations and experiments. A rare but important exception is the very recent 

book by Boix (2015) delivering an impressive mixture of calculations, facts and ideas to treat 

large scale (political) hierarchy. Our work, concerned with hierarchies on a smaller scale of 

groups or collectives can be looked at as complementing the book of Boix. 

 

1.3 Hierarchical structures in space and in networks 

 

There exist a few fields in sciences which are closely related to the general notion of hierarchy, 

but fall beyond the scope of our work (they represent the self-similar aspect of hierarchy). This is 

mainly so because these areas represent a research field of their own. In addition, in most of the 

present book we consider hierarchy as a set of related entities, such that the relation between two 

connected entities is directed (one is, in ways later to be specified, plays a role being 

superior/leading/embedding etc. considering the other entity). Thus, here we only briefly touch 

upon the topic of spatially hierarchical objects (called fractals) and undirected (symmetric 

relations) but still hierarchical networks (called scale free). For further details about such self-

similar aspects of hierarchy we suggest that the readers use as a source the following books 

(Falconer 2003, Feder 1988, Vicsek 1992 - about fractals, and Barábasi 2009, Newman 2010, 

Newman et al. 2006, Dorogovtsev and Mendez 2003, Pastor-Satorras and Vespignani 2007) – 

about networks and scale free networks). 

Fractals are objects for which the topological dimension (the number of independent 

directions one can move into from a given point of the fractal) is smaller than the dimension of 

the Euclidean space they can be embedded into. They also possess a self-similar geometry which 

means that a small part of a fractal has the same statistical features than the whole. Here by the 

expression ―same statistical features‖ we typically understand that the density correlations are the 

same. This is equivalent to saying that scaling up (blowing up) a small part of a fractal results in 

a structure which is statistically identical to the full fractal itself.  This is a non-trivial feature and 

involves the fact that the dimension of the fractals is a non-integer number as opposed to regular 

objects having dimensions 1, 2 or 3. 

Interestingly enough, a large variety of living systems involve fractal geometry in one way 

or another. As one proceeds from simpler to more complex manifestations of life, it is possible to 

encounter fractal bacteria colonies (Matsuyama and Matsushita 1993), ant trails (Jun et al. 2003) 

or the network of blood vessels in higher order organisms described by - among other important 

features - by the so called allometric scaling laws in biology in general (West et al. 1997) and, in 

particular, in mammalian metabolism (see, e.g., White and Seymour 2005). Perhaps on the 

largest scale built by organisms are the cities we live in display fractal-like features as well 

(Batty and Longley 1994). 

The so-called scale-free networks can also be considered as manifestations of a self-similar 

structure. Such a structure is not realized in space but shows up in the specific way the entities of 
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a system are connected to each other. Using the language of network theory, the degree of a node 

(entity) is the number of edges (connections) this node has leading to its neighbours in the 

network. The degrees may follow all sorts of distributions, but if this distribution is a power law 

then the degree distribution is invariant under scaling: a smaller part of the network will possess 

the same power law distribution as the whole network.  

The possible examples for systems which can be characterised in terms of scale-free 

networks are numerous. Most of these are not assumed to exist in real space. Going from smaller 

to larger scale, examples include networks corresponding to the interactions among proteins in a 

cell, then, with a large jump, many human made systems (internet, web pages, airlines, etc.) or 

the various networks of social interactions (friendships, collaborations, industrial relations, etc.). 

There are, however some spatial structures that can be best interpreted in terms of 

hierarchical networks. Louf et al. (2013) introduced a generic model for the growth of a spatial 

network based on a general concept of cost-benefit analysis. Their model leads to a wide variety 

of hierarchical spatial structures (trees) minimizing a conditions-dependent fitness function. The 

work by Daqing et al. (2011) connects the fractal and the network aspects of a structures by 

calculating the dimensions of spatially embedded networks. 
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2 Definitions and Basic Concepts  

 

As we indicated in the introduction, the notion of hierarchy applies to a great variety of topics 

and contexts, let it be the social structure of animal groups, human virtues, psychological needs 

or the structure of a computer program. Accordingly, it does not have a compact, precise, widely 

accepted definition that would be applicable for all cases. Available definitions usually by-pass 

the problem of clarification by using synonymous words – which are, unfortunately, similarly 

unclear. For example, according to the Cambridge dictionary, hierarchy is ―a system in which 

people or things are arranged according to their importance.‖ Here ―importance‖ is the keyword, 

but importance is highly subjective: something that is important in a given context might not be 

important at all from another point of view. Here we also find that hierarchy corresponds to ―the 

people in the upper levels of an organization who control it‖. So we learn that it is about control, 

but according to this definition, hierarchy is restricted to people in an organization – which is a 

very narrow interpretation. Checking a very popular cite, Wikipedia, we find that ―A hierarchy 

(from the Greek hierarchia, "rule of a high priest", from hierarches, "leader of sacred rites") is an 

arrangement of items (objects, names, values, categories, etc.) in which the items are represented 

as being "above," "below," or "at the same level as" one another‖. However, this interpretation 

does not inform us about the basic aspects of the arrangement, which represent, on the other 

hand, the heart of the problem. 

As we shall see, it turns out from more strict investigations that usually we talk about 

hierarchy if entities of a system can be classified into levels in a way that elements of a higher 

level determine or constrain the behaviour and/or characteristics of entities in a lower level. 

That is, in the heart of hierarchy we find control of behaviour.  

 

Definition: A system is hierarchical if it has elements (or subsystems) that are in dominant-

subordinate relation with each other. A unit is dominant over another unit to the extent of its 

ability to influence behaviour of the other. In this relation, the latter unit is called subordinate.  

 

 
Fig. 2.1 An example for flow hierarchy. The 

feeding-queuing hierarchical structure of a 

pigeon flock. Each square represents an 

individual. The edges point from the higher 

ranked bird towards the subordinate one with 

edge widths corresponding to the ability to 

influence the behaviour of the lower ranked 

individual. For the sake of better visibility, 

higher ranked notes are depicted higher on the 

picture. Reproduced from Nagy et al. (2013). 
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A typical hierarchical structure can be seen in Fig. 2.1 depicting the ranks within a pigeon 

flock. The inner structure of the group has been established by observing and measuring the 

feeding-queuing behaviour of its members (Nagy et al. 2013)  

Note that this definition does not tell how hierarchical the system is. Instead, it expresses 

whether its elements (or subsystems) are in hierarchical relation or not (manifesting itself in a 

dominant-subordinate relation). Furthermore, it tells the origin (reason) and extent of the 

dominant-subordinate relation. Consider for example the Rock–paper–scissors game. According 

to the rules,  

 

 The rock blunts the scissors (and hence ―disarms‖ it, beats it) 

 The scissors cut the paper, and 

 The paper covers the stone. 

 

Figure 2.2 shows how the elements overpower each other. Based on the above definition, the 

hierarchical (dominant-subordinate) relation among the units is clear, but the hierarchical nature 

of the whole system is not: is this network hierarchical at all? 

 

 
Fig. 2.2 The graph representation of the rock-

paper-scissors game. The dominant-subordinate 

relationship among the elements is clear, but the 

hierarchical nature of the entire system is not. 

 

 
 

In other words, from a graph-theoretical point of view, the above definition gives a lead 

regarding the arrows (where they should be and what is their deeper meaning) but it does not tell 

us how hierarchical the entire system is. At this point, we choose to keep it this way, mainly 

because the extent of hierarchy within a system has subjective aspects: for some, the rock-paper-

scissors game is ―fully‖ hierarchical, since its elements are clearly in hierarchical relation. For 

others it is not, because no source (leader) can be determined. 

Many approaches have been proposed to measure the hierarchy of a network, but none of 

them is ―universal‖, or accepted by everyone for all cases. Sect. 2.1.2 ―Measuring the level of 

hierarchy‖, gives an overview of these measures and algorithms. 

 

A few comments related to the definition: 

 

 During different group activities the influence of the members might vary. In other 

words, hierarchy is context/task sensitive, even in the same group! For example, as we 
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shall see it in Sect. 3.1.3, ―Leadership versus dominance‖, the members of the same 

pigeon flock arrange themselves into different hierarchies according to the actual activity: 

when they feed, the ranks are entirely different from the ones that can be observed during 

flight. This phenomenon is even more expressed in human groups. 

 

 Hierarchy might vary over time. As certain characteristics of the group members change 

over time (for example the physical strength of the individuals in a pack of wolves) so do 

their ranks.  

 

 This definition implies that the units behave somehow, or have some observable 

characteristics. In other words, entities without observable behaviour or characteristics 

cannot form a hierarchical structure. 

 

 The influence can be either forced by the higher ranked individual (e.g., when a higher 

ranked pigeon does not let a lower ranked one near to the food source), or it can be 

voluntary (for example leader-follower relationships during flight). 

 

 A higher ranked unit, by influencing the behaviour of other units more extensively, has a 

larger effect on the collective (emergent) group behaviour as well. 

 

 

Hierarchical systems can by classified into the following subtypes: 

 

1. Order hierarchy is basically an ordered set, in which a value is assigned to each element 

characterizing one of its arbitrarily chosen features. This assigned value defines the rank 

of the entity within the hierarchy. An example for this can be the ranking of artists, e.g. 

painters or sculptors, based on the average price of their artworks. In this example the 

―set‖ is composed by the artists, and the feature is the average price of their artwork. 

Another example can be a hierarchy of firms, ordered by, say, the number of employees. 

In this type, the network behind the system is neglected or it does not exist. More 

formally, this type of hierarchy is ―equivalent to an ordering induced by the values of a 

variable defined on some set of elements‖ (Lane 2006). 

 

2. Nested (or embedded, containment, inclusive) hierarchy is a structure in which entities 

are embedded into each other. Higher level entities consist of and contain lower level 

entities, or, as Wimberley (2009) has formulated it, ―larger and more complex systems 

consist of and are dependent upon simpler systems and essential system-component 

entities‖. (According to some categorizations, a nested hierarchy can contain only one 

entity at each lower level, a bit like in case of the Russian Matryoshka dolls, while a 

generalized nested hierarchy allows multiple objects.) Uncovering nested hierarchy 

structure within a system is closely related to community detection in graphs. 

Containment hierarchy has two sub types: 

 A subsumptive containment hierarchy (a.k.a. taxonomic hierarchy) is a structure 

in which items are classified from specific to general. For example domestic cats, 

lions, tigers and cheetahs (gepards) belong to the family of cats called ―Felidae‖, 

dogs, foxes and wolfs belong to the family of carnivorans a.k.a. ―Canidae‖, 
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Canidae and Felidae both belong to the order of Carnivora, etc (See Fig. 2.3 a). 

Entities are containers, containing other containers.  

Mathematically this arrangement can be formulated as:  

Foxes ⊂ Canidae ⊂ Carnivora (and Carnivora ⊂ Mammals ⊂ Animals, to go 

further on). Each entity in a lower level ―is an‖ entity of a higher level: a fox ―is 

a‖ Canidae, a Canidae ―is a‖ Carnivora, a fox ―is a‖ mammal, etc. It is assumed 

that entities on a lower level are proper (or strict) subsets of the entities on a 

higher level. 

 Compositional containment hierarchy (a.k.a. level hierarchy) describes how a 

system is composed of subsystems, which are also composed of subsystems, etc. 

The ―hierarchy of life‖ is the best example for this structure, describing how 

organisms are composed of organ systems, which are composed of organs, which 

are composed of tissues, which are composed of cells, etc., see Fig. 2.3 b. Two 

important features often (but not always) appear in this type of hierarchy: firstly, 

there is a ―scalar quality‖, meaning that entities on higher levels are often bigger 

than entities on lower levels (a cell is bigger than a molecule). Secondly, 

emergent properties – properties that are not present on lower levels, but due to 

interactions among the units, appear on higher levels – also often accompany this 

structure. For example consciousness appears on the level of the brain (which is 

an organ), but it originates from the interactions of the neuron cells. Emergent 

properties are of prime importance, since they are a fundamental characteristic of 

―complex systems‖. 

 

3. Flow (or control) hierarchy: ―intuitively‖ it is an acyclic, directed graph. The nodes are 

layered into levels in a way that nodes on higher levels influence nodes on lower levels, 

and the influence is represented by edges. Layers refer to power, that is, an entity on a 

higher level gives orders or passes on information to entities on lower levels. This is 

where the name is coming from: such a structure represents the flow of orders, or, 

equivalently, how entities control other entities. Armies, churches, schools, political 

parties and institutions are typically organized in this way. Downwards orders flow on the 

edges, upwards pointing edges correspond to requests or sending information. 

Technological systems are also often organized in this way. In this case a central unit 

controls devices which control lower level devices, etc. At the bottom-most level sensors 

do not control anything directly, but they send information upwards, which are used to 

refine the decision making process done by devices on higher levels. (See Fig. 2.1) 
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Fig. 2.3 The two types of containment hierarchies: ―taxonomic‖ and ―compositional‖. a In a taxonomic (or 

subsumptive) containment hierarchy entities are containers, containing other containers. b A compositional 

containment (or level) hierarchy describes how a system is composed of subsystems, which are also composed of 

subsystems, etc. The best known example for this type of hierarchy is the ―hierarchy of life‖. b is Reproduced from 

Mader (2010).  
 

 

Importantly, these hierarchy types are not independent of each other. On the one hand, many 

systems can be described by more than one type. For example, members of an army form control 

hierarchy in a way that people having higher rank give orders to lower-rank soldiers, but, at the 

same time, the very same army forms a compositional containment hierarchy as well.  This is so 

since an army is composed of various divisions (infantry divisions, motorized divisions, airborne 

divisions, etc.) which are also composed of smaller contingents, all the way down to the soldiers, 

who are the ―units‖ in this structure. 

 On the other hand, both order and nested hierarchies can be converted to flow hierarchy. 

In an order hierarchy, a directed edge can be assigned to each pair of adjacent members in the 

hierarchy and this produces a chain of directed edges. In a nested hierarchy, a virtual node is 
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assigned to every sub-graph, and if a sub-graph contains another, then the two corresponding 

virtual nodes are connected with a directed link, which produces a flow hierarchy on the network 

of virtual nodes. 

Thus, flow hierarchy is the most important variant and we shall mainly concentrate on its 

manifestations.  

 

2.1 Describing hierarchical structures  

 

In this chapter we shall briefly summarize the basic concepts related to graphs, the mathematical 

object most often used in relation to hierarchy. It is important to highlight that graphs and 

networks are only the models of the real-life systems, not the systems themselves. It is a 

mathematical representation of the system under investigation, used because they, using graph 

theoretical methods and algorithms described in subsequent chapters, can reveal many important 

characteristics. An important further comment is that – as it is done in the literature – we shall 

use the term graphs for abstract mathematical constructions, while the term networks will be 

associated with the underlying interactions within a real-life structure. Readers familiar with 

graphs may skip this chapter. 

 

2.1.1 Graphs and networks  

 

As mentioned above, the most commonly used mathematical tool for describing hierarchical 

systems are graphs. Primarily, but not exclusively, they are connected to systems embodying 

flow (or control) hierarchy. Such systems and their graph representations go so much hand in 

hand, that when trying to assign a ―hierarchy value‖ to a system (describing ―how hierarchical‖ 

the given structure is), usually it is the hierarchy level of the graph (representing the system) that 

is measured. 

The concept behind this representation is rather straightforward: the entities of the systems 

are the nodes of the graph, and if a pair of entities is in a subordinate-dominance relation, then 

there is a directed edge between them. 

In the followings, we give a short overview of the basic graph theoretical concepts. 

 

 A graph is a mathematical tool which is appropriate to handle a set of objects with 

connections among them. The objects are represented by nodes and the connections 

between them by edges. Formally, G = {V, E} with a function f : E → V × V . The 

elements of V are the nodes (or vertices, or points), and the elements of E are the edges of 

the graph. The nodes are usually denoted by small Latin letters (e.g. i, j, k) or by Arabic 

numbers (1, 2, ..., N). Formally, f sends edges to pairs of vertices (which are the 

―endpoints‖ of the edge), but in practice we usually forget about the function f and simply 

think of E (the set of edges) as a subset of V × V . Accordingly, edges are usually given 

by the starting and nodes, such as e = (i, j), for any e ∈ E. The word network is often 

used as synonym for graph in the case it stands for actually observed data. 
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 A graph can be either directed or undirected. In case of a directed graph (or digraph) the 

relation has a special direction as well. For example, in case of a hierarchy network, the 

direction can show which element dominates which other. In contrast, in an undirected 

graph the connections do not have special directions, like in the network representing the 

flight connections among cities. Informally speaking, in case of an undirected graph the 

edges are just ―lines‖, and in case of digraphs, they are ―arrows‖. 

 

 A simple loop is an edge that connects a node to itself. (An edge whose starting and 

endpoint is the same vertex.) 

 

 A path in a graph is a sequence of connected vertices. (Most definitions specify that the 

nodes within a path have to be distinct from each other.) 

 

 A cycle is a closed path, that is, a path whose beginning and endpoint is the same vertex. 

Many times cycles are also referred to as loops. 

 

 A tree is a graph in which there are no loops, cycles or multiple edges. In other words, it 

is a graph in which any two nodes are connected by exactly one path. There are two 

special kinds of vertices: (i) the root node, which does not have parents, and the leaves 

(or end-nodes), which do not have children. Accordingly, in a tree, nodes can be layered 

into levels. 

 

 A cluster (a.k.a. module, community or cohesive group) is a part of the graph in which the 

units are more densely connected to each other than to the rest of the graph. We will use 

this elastic description, since the concept does not have a well-defined, widely accepted 

definition. Importantly, in real-life networks, the presence of such modules is a signature 

of the hierarchical nature of the structure (see, e.g., Vicsek 2002, Ravasz et al. 2002, Palla 

et al. 2005). 

 

 A directed community is simply a community in a directed graph. Here the nodes can be 

related to each other based on the number of their incoming and outgoing links 

connecting them to other nodes within the same module. A node having more outgoing 

edges towards other members of the module is more like a ―source‖-node, whereas a 

node with mostly incoming links from these members is more like a ―drain‖. (Palla et al. 

2007) 

 

 Vertices can be characterised by the number of links they have, reflecting how ―strongly‖ 

they are connected to other nodes. Accordingly, the degree of a node in an undirected 

graph is simply the number of its edges. In a directed graph vertices can be characterised 

by their in-degree and out-degree values: the in-degree value refers to the number of 

links pointing towards the given node, whereas the out-degree value refers the number of 

links going outwards from the vertex. 
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2.1.2 Measuring the level of hierarchy  

 

In this section we shall focus on measures for flow hierarchies. More precisely, we consider 

measures for graphs representing flow hierarchy. We have two main reasons to do so: (i) 

observations and experiments, as well as results of computer simulations are likely to return flow 

hierarchy, (ii) all other hierarchy types can be transformed into flow hierarchy in a rather straight 

forward way. For example, considering a containment hierarchy, its clusters can be identified 

with the nodes of a graph in which the directed edges will indicate the containment relation. That 

is, in the graph there will be an edge pointing from node A to node B, if cluster B fully contains 

cluster A in the original structure (Nepusz 2013). 

Most of the proposed measures take values on the [0, 1] interval, returning nearly 0 for a 

completely hierarchy-less structure, like a full graph or a circle, and returning a value close to 1 

for ‖completely hierarchical‖ structures, like a directed tree. Values for transient structures are 

up to ―intuitions‖, and intuitions differ from person to person. This is one of the main reasons 

why there is no ―most appropriate‖ measure serving all needs. The measures reviewed in the 

present book have values on the [0, 1] interval, with higher values representing higher degree of 

hierarchy. 

This section of the book is relatively extensive for two reasons: (i) it is about an obviously 

central quantitative characteristic of a hierarchical structure, (ii) in spite of its essential 

importance there is no unique definition of the level of hierarchy of a system.  

This latter situation is analogous to that of the definition of a community in a network. The 

notion itself is so complex that, depending on the aspect that we are interested in, a suitable 

definition should be chosen. For example, a community (cluster) in a network can be defined as a 

sub-network of nodes that have relatively more connections among them than with the other 

nodes. However, we can require this ―relatively more‖ in various ways. Directed, weighted and  

connections specified according to further criteria make the problem of defining clusters in a 

network an open problem even more .  

To introduce this aspect of the problem of finding the best measure of hierarchy, the reader 

is asked to consider the following question: please decide which structure is more hierarchical. A 

set of nodes arranged into layers connected by directed edges all directing from an upper to a 

lower layer or a ―star‖ consisting of a central node from which a number of directed edges lead 

to the other nodes of the network? To us, the right answer is: it depends on the context, on the 

function, etc. Next we account for a number of relevant possible angles from which such a 

question can be approached. 

 

Global Reaching Centrality  

The central idea of this approach is to give a rank to each node by measuring its ―impact‖ on 

other nodes. Impact is defined by the ratio of vertices that can be reached from the focal node i. 

Local reaching centrality, CR(i) defines exactly this quantity: in a directed, un-weighted graph, 

CR(i) is the maximum number of vertices that can be reached from node i, divided by N − 1. 

Then, the level of hierarchy is inferred from the distribution of the local reaching centralities: the 

more heterogeneous the distribution is, the more hierarchical the corresponding graph/network 

is. In order to demonstrate this statement (namely, that the distributions of the local reaching 

centralities reveal the hierarchical nature of a network), three different graph types are compared 

in Fig. 2.4: an Erdős-Rényi (random) graph (which is not hierarchical), a tree (which is highly 
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hierarchical), and a scale free graph (which is ―moderately‖ hierarchical). The most 

homogeneous CR(i) distribution belongs to the Erdős-Rényi (ER) graph: the CR(i) values are 

either 0 or close to 1, marked by the two narrow spikes at these values with a solid black line. In 

contrast, we find all kinds of CR(i) values in a tree, as it is indicated by the red line in Fig. 2.4 

(note the log-log scale). 

This distribution follows a power law that is distorted due to the random branching numbers. 

The blue dashed line belongs to the ―moderately hierarchical‖ scale free graph, marking a 

―moderately heterogeneous‖ distribution. 

These curves represent distributions, while for a measure we expect a number. The 

definition proposed by Mones et al. (2012) grasps the heterogeneity of the CR(i) distribution as 

follows: Let CR
max

 denote the highest local reaching centrality in a graph G = (V,E). Then, the 

Global Reaching Centrality, GRC, is defined as: 

 

 
    

∑ [  
𝑚     ( )]   

   
 

(2.1) 

 

where V is the set of nodes, and N is the number of nodes in G. The GRC values for our three 

example graphs (Tree, Scale-free and Erdős-Rényi), are the following: 

 

 Tree: 0.997 ± 0.001, which is the highest. 

 Scale-free: 0.127 ± 0.008, that is, SF networks are slightly hierarchical, 

 Erdős-Rényi: 0.058 ± 0.005, that is, these are not hierarchical at all. 

 

These values, the means and variances, are calculated for an ensemble of 1000 graphs, and 

they demonstrate that the returned values are close to our ―intuitions‖. Eq. (2.1) applies to 

directed, un-weighted graphs. Its generalized version is suitable for analysing weighted and/or 

undirected graphs by an appropriate modified definition of the local reaching centrality (Mones 

et al. 2012). 
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Fig. 2.4 Distributions of the local reaching centralities for three kinds of directed networks: Tree, Erdős-Rényi 

(ER) and scale-free (SF). All the curves are averages of 1000 graphs with N=2000, of the appropriate graph type. 

Reproduced from Mones et al. (2012). 

 

 

Random Walk Measure  

 

The main motivation of this approach is the claim that – in contrast to the assumptions behind 

most of the proposed methods – it is not correct to treat all directed acyclic graphs as already 

maximally hierarchical, independently of their inner structure. This observation is based on 

the common intuition that a hierarchical structure often corresponds to a multi -level pyramid 

in which the levels become more and more wide as one descends from the higher levels 

towards the lower ones. 

The measure proposed by Czégel and Palla (2015) is based on properties of random walks 

within the graph, and, in accordance to the above mentioned claim, directed trees 

corresponding to multi-level pyramidal structures obtain higher hierarchy values than directed 

stars or chains.  

Intuitively, the method is based on the assumption that there is information flow coming 

from the high-ranking nodes towards to ones at the bottom, similarly as in the case of an army 

or company, where the leaders send instructions downwards the links. In order to track the 

sources of the instructions/information, etc., random walkers are dropped onto the nodes who 

then move backwards on the links. Once a steady state is reached, the density of such random 

walkers (the number of them visiting a given node) can be interpreted as being proportional to 

the rank of this node: high random walker density indicates that the vertex is a source of 

information, low density indicates the vertex is more likely to be just a ―receiver‖ of orders – 

that is, low in rank. The hierarchical nature of the network is then estimated based on the 
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distribution of these random walker densities: if the distribution is homogeneous, the source 

of information/order cannot be pinpointed, thus, the network is not hierarchical. In contrast, 

inhomogeneous distribution indicates clear information sources: the network is hierarchical. 

This homogeneity/inhomogeneity is measured with a value called H, with higher values 

reflecting more hierarchical structures (bigger inhomogeneity), and lower values less 

hierarchical networks. 

 

 

 
 

Fig. 2.5 Hierarchy scores as a function of the network size. The different symbols correspond to different 

networks. The x axis marks the size of the network (N, number of nodes) on a logarithmic scale, whereas the 

y coordinate shows the hierarchy value (H) of the graph. Reproduced from Czégel and Palla (2015) 

 

 

The largest H values belong to regulatory networks, electric circuits and food webs, whereas 

the lowest ones belong to the informal networks of acquaintances in different organizations 

(Fig. 2.5). Moderately hierarchical are the Internet, various citation-, metabolic- language and 

trust networks, which results are in good accordance to our intuitive expectations.  

An even clearer picture regarding the hierarchical nature of a network can be obtained by 

―normalizing‖ the hierarchy measure H against the hierarchy measure of the same network, but 

under the assumption of random connections. This is the ―z-score‖, defined as: 

 

 
  

  ⟨ ⟩

 ( )
 

(2.2) 

 

where H is the hierarchy score,  <H> is the expected H value of the randomized graph, and 

σ(H) is the standard deviation of H in the randomized ensemble. 

 

 An overview of further useful measures 
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In the rest of the section we shall give an overview of some further measures, focusing on the 

main ideas behind them. Here our aim is not to give detailed description of the techniques but 

rather to flip through the type of concepts that have been proposed so far regarding the problem 

of measuring the hierarchy level of a graph.  

 

A measure for undirected networks 

 

The measure proposed by Trusina et al. (2004) quantifies the flow hierarchy of undirected 

networks. It is based on the assumption that every vertex already has a rank associated with it by 

denoting its place in the global hierarchy. This estimate for the rank can be the degree of the 

node (originally proposed by the authors) but can be other conceivable measures as well, such as 

betweenness centrality or eigenvector centrality. With these assumptions, the hierarchy measure 

is given by the fraction of directed shortest paths going strictly upwards in the hierarchy.  

More precisely, this method assumes that the shortest paths in the network consist of a part 

going upward the hierarchy (towards more important nodes), followed by a part going downward 

the hierarchy (towards less important nodes). Either part may be empty of course, but one should 

not turn back upwards after the downward part again. Paths of this type are said to be 

hierarchical, and the measure simply calculates the fraction of vertex pairs that are connected by 

a hierarchical shortest path. 

 

Determining the levels of organizations 

 

One of the first methods was proposed by Krackhardt (1994), whose main motivation was to 

measure the levels of hierarchy of organizations. He defined four measures that can be used 

together as an estimate to the extent of flow hierarchy in networks. These measures are: 

 

 Hierarchy: The fraction of unordered vertex pairs (i, j) such that vertex i is reachable from 

vertex j but vertex j is not reachable from vertex i, or vice versa. It works on directed graphs 

only.  

 Connectedness: The fraction of unordered vertex pairs (i, j) such that vertex j is reachable 

from vertex i via a directed path or vertex i is reachable from vertex j.  

 Efficiency: One minus the proportion of possible ―extra‖ edges that are not needed to 

maintain connectedness of the components. It is assumed that each component should be an 

out-tree (as an archetype of perfect hierarchy) and thus a component of size N must have at 

most N-1 links; any more than that is a violation of efficiency. This measure obviously 

penalizes cases when there are two separate paths leading upwards the hierarchy from a node 

A to its superior B; one of the paths is not required to maintain connectedness, hence the 

structure is inefficient.  

 LUBness: For each unordered pair of vertices (i, j), the lowest upper bound (LUB) is a vertex 

k such that both i and j are reachable from k. LUBness is the fraction of pairs having a LUB. 

This definition can be explained by Krackhardt's assumption of an out-tree being the perfect 

hierarchy one can achieve. 

 

Each of these metrics may take values from zero to one, and each metric measures some 

kind of a ―deviation‖ from the perfect hierarchy Krackhardt assumed, i.e., a directed out-tree. (It 

also applies for in-trees if we reverse the edge directions in the definition of LUBness). 
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However, these measures (with the exception of efficiency) can be calculated only for directed 

networks. 

 

Concept for containment hierarchies 

 

Unlike the measures presented so far, the concept of Ravasz and Barabási (2003) addresses the 

notion of containment hierarchies. They observed that log k and log C are correlated in many 

real-world networks (where k is the vertex degree and C is the local clustering coefficient).  

They argue that this is due to a containment hierarchy in the network (although they have 

not used the word ―containment‖). In order to determinate this, they proposed a simple recursive 

generation process that creates graphs with a power-law degree distribution, a linear dependence 

between log k and log C and multiple levels of hierarchies contained within each other. The 

bottom line of their argument is that hierarchy in undirected networks can be quantified by 

looking at the log k vs. log C plot and fitting a straight line to the data; the larger the slope of the 

line is, the more hierarchical the network is. 

 

Layout-motivated measure 

 

Carmel et al. (2002) proposed a layout-based metric for measuring the amount of hierarchy in a 

directed graph. They have conceived a layout algorithm that places the nodes of the graph in 2D 

space such that a set of constrains related to the target level differences are taken into account as 

much as possible. More formally, this means the following. For each i-j edge, we assign a 

measure that describes the desired difference between the y coordinates of vertex i and vertex j. 

The graph is then laid out using their algorithm, and the difference between the maximal (maxY) 

and minimal y coordinates (minY) is compared to the diameter of the graph. A strictly 

hierarchical graph with no cycles can be laid out in a way that the distance between levels is 1, 

thus the difference between maxY and minY is equal to the diameter, while a cycle (i.e. a 

perfectly un-hierarchical graph) would be laid out with equal y coordinates, yielding a hierarchy 

measure of zero. 

 

The disadvantages of this method are twofold: 

 

 In the general case, it is not possible to assign desired target level differences to the 

edges. We could simply say that the desired difference is 1 for all the edges, but this 

would work only if none of the edges span more than one layer. Edges skipping layers 

but otherwise pointing to the right direction would skew the layout and decrease the 

hierarchy measure 

 This measure is not applicable to undirected graphs. 

 

.  

Measures for structures “from down to top” 

 

Next in contrast to the way we assumed above, we shall consider the edges of directed networks 

to be oriented upwards (i.e. from lower to higher levels), like on a who-reports-to-whom 

organization diagram. We do so in order to follow the terminology of the related literature. It is 
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usually straightforward to apply the definitions to directed networks that use the opposite 

convention. 

Sometimes we will talk about layers or levels (sets of nodes with the same rank). Layers are 

indexed from 1 upwards, and a lower layer index corresponds to a higher rank. 

Some of these measures will work on networks where the ranks of individual nodes are not 

known in advance; others are defined for a network and a corresponding ranking of nodes, and 

therefore must be optimized by some optimization procedure when the ranks are unknown. 

 

Fraction of edges participating in cycles 

 

Here the main idea is to reveal somehow the possible asymmetry between nodes by assuming 

some sort of flow on the links, and then check if these flows exhibit any kind of overall 

directionality or not. One way to do so is to find all of the elementary cycles in the network, 

count the edges participating in them, and divide this number by the total number of edges. This 

approach works for undirected and directed graphs as well; in directed graphs, only directed 

cycles matter. (A cycle is elementary if no vertex appears in it twice). 

All the elementary cycles in a directed graph can be found simply using Johnson‘s algorithm 

(Johnson 1975), which is O((N+E)(c+1)) where N is the number of nodes, E is the number of 

edges and c is the number of elementary cycles. The case of undirected graphs is a bit more 

tricky as the union of two elementary cycles with at least one shared edge is also an elementary 

cycle (after removing the shared edges from the union), thus we can expect a lot more cycles 

than for directed graphs where this condition does not hold. It is therefore common to search for 

a cycle base instead, i.e., a set of cycles such that every other cycle can be reproduced from 

selected base cycles by taking their disjoint unions. Since every edge that participates in a cycle 

must also participate in one of the base cycles, finding a cycle base is enough for our purposes. 

Luo and Magee (2011) proposed the opposite of this measure (i.e., the fraction of edges not 

participating in cycles) as a hierarchy measure for directed networks. A big advantage of this 

approach is its simplicity.  

 

Minimum fraction of edges to be removed to make the graph cycle-free 

 

This approach is slightly different from the one called ―fraction of edges participating in cycles‖. 

For instance, consider a graph consisting of two interlocking directed links sharing an edge. In 

this graph, all the edges participate in cycles (hence the previous measure would be 1.0), but 

removing the shared edge would make the graph entirely cycle-free. We call a set of edges 

whose removal makes the graph cycle-free feedback arc set. 
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Fig. 2.6 Illustration of the difference between ―the fraction of edges participating in cycles‖ and the ―fraction of 

edges to be removed to make the graph cycle-free‖. Subfigure a shows a graph where all the edges participate in 

cycles. However, as it can be seen in b, it is enough to remove a single edge (from J to A) to break both cycles 

and obtain a perfect hierarchy. 

 

Note that although Fig. 2.6 shows a directed graph, this measure works just as well for 

undirected graphs– but the number of edges to be removed may be different! For instance, the 

graph with the two rings on the left of Fig. 2.6 becomes cycle-free by removing one single edge 

if the edges are directed, but one has to remove two edges to make it cycle-free in the undirected 

case. 

This measure is very easy to calculate for connected undirected simple graphs. Since the 

graph is connected, the minimum number of edges required to connect N vertices is N-1. Adding 

any extra edge on top of these N-1 edges necessarily creates a cycle, thus the number of edges 

one has to remove from an undirected simple connected graph with N vertices and M edges is M-

N+1, and the fraction of such edges is therefore 1-(N-1)/M. 

For directed graphs, finding a minimum feedback arc set is an NP-hard problem (Healy and 

Nikolov 2013), but heuristic procedures exist to find an approximation. One such procedure is 

the greedy cycle removal algorithm by Eades et al. (1993) Namely: 

 

1. Create an empty ―deque‖ (double-ended queue).  

2. If the graph is empty, we are done.  

3. While there are sink vertices in the graph, remove them one by one and add them to the 

beginning of the deque. 

4. While there are source vertices in the graph, remove them one by one and append them to 

the deque (add them to the end of the deque).  

5. If no sinks and sources remain, find a vertex where the difference between the out-degree 

and the in-degree is as large as possible, remove it from the graph, append it to the deque 

and return to step 2.  

 

At the end of the algorithm, the deque contains a possible ordering of vertices where 

ordinary edges point ―forward‖ in the ordering and feedback arcs point ―backward‖. The 
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cardinality of the feedback arc set found by this heuristic is at most M/2-N/6 where M is the 

number of edges and N is the number of vertices. 

Another heuristic is as follows. Scan each edge of the graph one by one and maintain two 

sets, S and T. In each step, check whether edge e forms a cycle with the edges already in S. If not, 

add e to S, otherwise add e to T. In the end, both S and T are acyclic and the smaller of the two 

sets gives a feedback arc set with at most half of all the edges. More sophisticated 

approximations are to be found in (Even et al. 1995) and (Saab 2001).  

 

For graphs up to a couple of hundred nodes, one can use the following strategy as well: 

 

1. If the graph is undirected, break it down into components, and calculate the sum of M-N+1 

for each component, where M is the number of edges in the component and N is the number 

of vertices. This is the total number of edges to be removed to make the graph cycle-free; the 

fraction follows by a straightforward division. 

2. If the graph is directed, break it down into weakly connected components and estimate the 

number of edges to be removed from each of the components as follows: 

 If the component is acyclic (i.e., it has a topological ordering), no edges have to be removed 

at all.  

 If the component has less than 20 edges, use a brute-force search to find the minimum 

number of edges to be removed to make it cycle-free.  

 Otherwise, find a minimum cut of the component, add the edges of the cut to the feedback 

edge set and proceed recursively with each side of the cut. 

 

Fraction of hierarchy-violating edges 

A hierarchy-violating edge is one that originates in a higher level and terminates in a lower level, 

meaning that someone up in the hierarchy ―reports to‖ someone on the lower level. This is a 

clear violation. Naturally, this measure requires the ranks to be known in advance as it is 

otherwise impossible to decide which edges violate the hierarchy. 

Another, more strict definition of a hierarchy-violating edge is that it is an edge where 

subtracting the rank of the origin from the rank of the target yields a result that is not zero and 

not one. This definition penalizes not only the edges that go ―the wrong way‖ in a hierarchy but 

also the edges that skip levels. 

In the absence of ranks, one has to find the ranking that minimizes the fraction of hierarchy-

violating edges, which leads to a problem that may be familiar from community detection. A 

trivial way to minimize the number of hierarchy-violating edges is to use the same rank for every 

node, assuming that edges between peers (i.e. nodes with the same rank) are allowed. A possible 

solution is to disallow edges between peers, which effectively reproduces the feedback arc set 

problem, since a directed graph minus a minimum feedback arc set is a directed acyclic graph 

which can then be decomposed into layers. Each feedback arc is then a hierarchy-violating edge.  

 

Average expected downstream path length 

 

This measure is based on random walks. More precisely, the expected length of a path a random 

walker is allowed to take on the graph with the following constraints: 
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1. The walker is only allowed to step downstream in the graph, i.e. towards lower layers. A 

path that goes downward in a layered hierarchy is called a downstream path (-hence the 

name of the measure).  

2. The transition matrix of the random walk is a usual right-stochastic matrix derived from 

the weighted adjacency matrix of the graph (loop edges are not allowed).  

3. The random walk terminates as soon as the walker ends up in a sink node or in a node 

that has neighbours in higher layers only.  

 

The measure also requires an a priori layer assignment, and it is an open problem to find the 

optimal assignment given the graph only. When the layers are known, the measure can be 

calculated very easily: one has to proceed recursively from the lowermost layer towards the 

uppermost layer and make use of the following two equations: 

 

1. If a vertex v is a sink, then the expected length of downstream paths from v is zero.  

2. If v is not a sink, the expected length is one more than the expected length of downstream 

paths from its lower-level neighbours, weighted by the probabilities of reaching those 

neighbours from v in a single step. Note that only the expected length of downstream 

paths for vertices in layers lower than v has to be known, therefore, a single sweep from 

lower layers to the uppermost layer is enough.  

 

To make graphs with different numbers of layers comparable, it is advised to normalize this 

measure as follows.  

Suppose that vertex v is at layer l(v) and there are k layers. The maximal value of the 

expected downstream path length originating from v (denoted by h(v)) is then k - l(v). The 

normalized variant of the measure takes the average of h(v)/(k - l(v)) for all non-sink vertices, 

assuming that 0/0 is 0. 

The above overview of the ―further hierarchy measures‖ was composed using the working 

paper by T. Nepusz (2013). 

 

 

2.1.3 Classification of hierarchical networks 

 

The methods overviewed in the previous Sect. (2.1.2) assign a value for each graph, reflecting 

the extent to which the input network is hierarchical. Now we shall reverse the direction, and 

show an algorithm that creates a graph based on an input parameter p (taking values on the [0, 1] 

interval) indicating how hierarchical the output graph should be. p=0 refers to non-hierarchical 

and p close to 1 refers to strongly hierarchical structures. The method was proposed by Mones et 

al. (2012). 

The construction of the graph with tunable levels of hierarchy goes as follows (Fig. 2.7 a): 

 

 A level-value (ℓ) is assigned to every node in a directed tree in the following way: 

o The nodes at the ―bottom-level‖ (that is, the leaves) are assigned ℓ=1. 

o The level-value of the root node is equal to the number of hierarchical levels in 

the tree. (for example ℓ=5 in Fig 2.7a of the root node) 

o All children of a node with level-value ℓ will have ℓ-1 as level-value. 
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 Next a given number of random directed edges are added to the tree according to the 

following rules: 

o 1-p proportion of these edges are added completely randomly by choosing their 

starting point (A) and end-node (B) with probability 1/N (N is the number of nodes 

in the graph). In case there is no directed edge pointing from A to B, such an edge 

is added to the graph.  

o Regarding the rest of the edges (accounting for the p proportion of the ―extra‖ 

edges) they are added only if ℓA> ℓB.  

 

Figure 2.7 b depicts the GRC values (see Sect. 2.1.2) for hierarchical graphs created with the 

above algorithm, for p=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. 

 

 
 

 

Fig. 2.7 a The different types of edges while constructing a hierarchical graph based on an input parameter p. 

Solid blue edges belong to the original tree used as the backbone of the output graph. Edges pointing downwards 

(green) conserve the hierarchy, horizontal edges (orange) have a slight influence and finally the ones directed 

upwards (marked with red) make strong change in the structure. 

b Distribution of the local reaching centrality (see Sect. 2.1.2) values for adjustable hierarchical networks with 

various p values. Each curve is an average of 1000 networks with N=2000 nodes for <k>=3. Note that from the 

highly random (p=0) to the highly hierarchical (p=1) state the distribution changes continuously and 

monotonously with p. Reproduced from Mones et al. (2012). 
 

Similarly to the problem of measuring hierarchy, the problem of classification of 

hierarchical structures is not trivial either. Next we shall overview a method proposed by 
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Corominas-Murtra et al. (2013) which is based on three expectations towards hierarchical 

systems. These are (i) treeness (ii) feed-forwardness, and (iii) orderability. (See later in more 

details.) 

Using the above three features, a 3D morphospace (―phenotype-space‖) can be defined in 

which the three axes are the tree quantifiable features. Placing real-life hierarchical and random 

null-models into such a coordinate system, fundamental characteristics can be revealed. As it 

turns out, networks do not occupy the entire morphospace, instead they accumulate in four major 

clusters within the large voids, which most probably results from the constraints under which 

they evolve. 

Let‘s define the proper position of a network G(V,E) within the morphospace.  

First, G(V,E)=G is transformed into its corresponding node-weighted condensed graph 

GC(VC, EC)=GC which is an acyclic feed-forward structure where the cyclic modules (strongly 

connected components) of G are replaced by single nodes. Accordingly, in a node-weighted 

condensed graph GC, each node has a weight αi indicating the number of nodes it includes from 

G, the original graph. For example, in Fig. 2.8, subfigure h depicts the node-weighted condensed 

graph GC corresponding to G, the one depicted on subfigure d. In this, node S2 includes 3 nodes 

from G and S1 includes 2. (This method, the localization of strongly connected components, is an 

often used approach to identify subsystems within a graph.) 

Then we calculate the three values using both G and GC. 

 

1. ―Treeness‖, T, taking values on the [-1, 1] interval, captures how unambiguous the ―chain 

of command‖ is within GC. In hierarchical networks, like the one in Fig. 2.8 a and on its 

corresponding node-weighted graph depicted on e, the chain-of-command is unequivocal, 

characterized by positive T values. In case the chain of command is ambiguous, the 

structure is said to be anti-hierarchical, marked by negative T values (Fig. 2.8 b and f). 

Intuitively, this feature is calculated by comparing the diversity of choices one can make 

top-down vs. the uncertainty on the way bottom-up, captured by the concepts forward 

and backward entropies.  

 

2. ―Feed-forwardness‖, F: Since the paths within cyclic modules (like S1 and S2 in Fig. 2.8 

h) violate the downstream order within the graph, they are penalized according to their 

size and position: larger modules closer to the top of G influence more the overall 

structure of G than smaller ones close to the bottom. Accordingly, they introduce larger 

penalty. F is defined on the [0, 1] interval.  

 

3. ―Orderabiliy‖, O, is defined as the fraction of nodes that do not belong to any cycle. 

These nodes are orderable, accordingly, bigger ratio results higher orderability value. O 

takes values from [0, 1].  
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Fig. 2.8 A Visualization of the tree concepts characterizing hierarchical networks: treeness (T), feed-forwardness 

(F) and orderability (O). Based on these tree features, a morphospace can be defined in which the similarities 

and differences (resulting from evolutionary constraints) can be analysed. a A perfectly hierarchical graph is 

tree-like (or pyramidal, T=1) with feed-forward edges (F=1) and orderable nodes (O=1). b In anti-hierarchical 

networks (characterized by negative T values and head downwards pyramidal structures) the chain of command 

is ambiguous. c is non-hierarchical (T=0) and d is a graph with cyclic modules, violating the orderability of the 

nodes. (e-h): the corresponding node-weighted condensed graphs of the networks in the first row, with paths top-

down and bottom-up. (i-l) : the icon representation of the graphs in the first row, along with their TFO values. 

Reproduced from Corominas-Murtra et al. (2013) 
 

Figure 2.9 depicts the location of random null models (white circles) and 125 real networks 

within the morphospace. Since random networks are being built without any selection pressure, 

they are neither hierarchical nor anti-hierarchical, accordingly, they occupy the T≈0 segment.  

The main observation is that the vast majority of real networks fall into four clusters:  

 

i. Gene regulatory networks (plus a protein kinase NW) occupy the first cluster at the top of 

the coordinate system (Fig. 2.9), marked as ―GRN‖. These systems are characterized by 

very high orderabiliy values (O) with variable F values. The broad range of F (feed-

forwardness) is caused by various sized modules near to the top of the networks, 

corresponding to a small fraction of genes, (transcription factors) participating in cycles. 

ii. Electronic circuits and software graphs are strictly feed-forward (F≈1) with orderable 

nodes (O≈1), biased slightly towards negative T values. This cluster (marked as ―TECH‖ 

in Fig. 2.9) is located on the top right edge of the morphospace. 

iii. (ECO) The third cluster is defined by the ecological flow graphs, marked as ―ECO‖ in the 

Fig. 2.9. Their positions within the morphospace reveal a certain degree of pyramidal 
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structure combined with the important role played by loops. This special, separated 

position is consistent with the trophic pyramid mingled with recycling.  

iv. And finally, the fourth cluster is composed of metabolic, neural, linguistic, and some 

social networks (―LANG, MET, NEU‖), embedded within the cloud of random graphs. 

These networks display a large central cycle, much larger than their randomized 

counterparts, which feature is most probably due to the advantage of reusing/recycling 

molecules. 

 

 
 

Fig 2.9 The position of 125 real networks and various random null models within the morphospace defined by 

the coordinates T (treeness), F (feed-forwardness) and O (Orderabiliy). The random networks are white, while 

the real networks are colour coded according to their types listed in the key. The size of the circles is 

proportional to number of nodes the corresponding graph includes. Reproduced from Corominas-Murtra et al. 

(2013)  
 

Two of these clusters (LANG/MET/NEU and TECH) overlap with random networks with 

similar connectivity, suggesting that non-adaptive factors shape the topological nature of these 

graphs. In contrast, the position of the ECO and GRN clusters indicate that the topological 

features of the ecological and gene networks are the resultant of functional constraints. 

 

 

2.2 Visualization techniques  

2.2.1 A general overview  

 

The aim of the various visualization techniques is the same: to illustrate the entire network as a 

single figure in an easily perceptible way, revealing as much information of its hierarchical 

nature / inner structure as possible. Since (real) hierarchical systems are often complex with 

many characteristics, the level to which a visualization technique reflects the main features of a 

network is limited. Different visualization tools highlight different characteristics and different 
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hierarchy types require different visualization tools. There exists no ―best method‖, the 

appropriate technique depends on the specific characteristics we would like to highlight. 

The most simple – and widespread – visualization technique is the pyramid, in which each 

entity is represented by a layer and the higher an entity is in the hierarchy, the higher it is in the 

diagram. Often (for example in case of social pyramids), but not always (e.g., Maslow‘s 

hierarchy), the width of the layer reflects the size of the represented layer. The drawback of this 

technique is that it can reflect only a linear order (a sequence) of the layers, and – in some cases 

– their approximate sizes. In other words, this technique reveals only an order hierarchy of the 

layers, without giving any description about the inner structure of the given system. 

In contrast, graphs are applicable to describe not only order hierarchy, but other hierarchy 

types as well, most importantly flow hierarchy, meanwhile allowing a much more detailed 

visualization of the inner structure of the system as well. Due to these reasons, visualization of 

flow hierarchy is the most commonly used technique to represent hierarchical systems.  

Because of the lack of loops and cycles, the representation of a ―pure‖ hierarchical system 

would be a tree. However, in real-life cases, such systems occur only very rarely. Accordingly, 

trees often correspond to the ideal and/or theoretical case, while graphs that are more complex 

(have cycles, undirected edges, etc.) are better suitable for representing real-life cases. 

This representation is closely connected to the concept of control (or flow) hierarchy, in 

which the entities (which are represented by nodes in the corresponding graph) are organized 

into a system of subordinate-superordinate relations, which correspond to the edges of the graph. 

Accordingly, orders or information flow on the edges (hence the name) from the superior unit(s) 

towards the inferior element(s), while requests and information flow in the opposite direction. 

Typical examples are the ranks in armies, various state and church organizations, corporations, 

etc. 

2.2.2 Techniques reflecting the overall hierarchy level 

 

Let‘ have a graph, representing a (real life or artificial) system. The graph can be large, having 

many communities and sub-communities, therefore difficult to be drawn in a way that is 

reasonably accessible to overview. However, we would like to know how hierarchical the 

original system is, preferably in a visual form. 

The most widely accepted method for visualizing the hierarchical nature of small networks 

is the one proposed by Sugiyama et al. (1981). For such graphs, this technique provides an 

informative and clear hierarchical layout by layering the vertices into horizontal rows in a way 

that the edges are directed downwards. This method is often referred to as ―Layered graph 

drawing‖ or ―hierarchical graph drawing‖ method. 

The main steps are the following (Fig. 2.10): 

(i) Cycle removal (a pre-processing step). If the directed input graph is not acyclic, a 

minimal set of ―reversal edges‖ has to be identified and reversed in order to obtain an 

acyclic digraph. (Identifying such a minimal edge-set is an NP-complete problem.) 

(These reversed edges, as well as other changes within the graph will be restored in a 

later step into their original state.) 

(ii) Layer assignment. Partitioning the vertex set of the graph into layers in a way that each 

edge is directed from a higher level towards a lower one, with the following properties: 

a. the number of layers is kept small 

b. as few edges span large number of layers as possible 



34 

 

c. the assignment of nodes into layers is balanced. 

(iii) Insertion of “dummy vertices”.  ―Long‖ edges (edges spanning multiple layers) are 

chopped up into a series of shorter ones by inserting so called ―dummy vertices‖ into the 

graph. After this step each edge will connect nodes on adjacent layers. 

(iv) Edge concentration (optional step): The aim of this step is to reduce the number of edge 

crossings and the edge density between adjacent levels. It might reduce the number of 

dummy vertices as well, but, as important drawbacks, it may increase the number of 

layers and it also modifies the graph.  

(v) Vertex ordering (or ―crossing minimization‖ or ―crossing reduction‖ step). The nodes 

within the layers are permuted in a way that the numbers of edge-crossings are minimized 

between the adjacent layers. 

(vi) x-Coordinate assignment: The aim of this step is to position the nodes (that is, assigning 

them an x coordinate) within each layer in a way that the edges become as straight as 

possible, and the nodes are centred with respect to their neighbours. This positioning 

should be consistent with the permutation applied in the previous step.  

(vii) Final step: Changes that have been introduced to the graph in previous steps are reversed 

so that the edges return into their original state:  

a. edges reversed in the ―cycle removal‖ (first) step are returned into their original 

direction 

b. dummy vertices that have been inserted in step (iii) are removed from the graph and 

the corresponding ―long‖ edges are drawn back in a way that avoids intersections and 

crossings. This might be done by drawing the edges as polygonal chains or spline 

curves.  

 

For a detailed analysis and description of this method see also (Healy and Nikolov 2013). 

Although this method is very popular for small networks, it has some serious drawbacks as well, 

which become especially important for large graphs:  

 

• for bigger networks (graphs with more than a few hundred nodes) the generated layout 

becomes difficult to overview/interpret;  

• the steps are NP-complete or NP-hard, which makes the usage of several different 

heuristics necessary and thus the results become less well-defined. 

• independently of the hierarchical nature of the given network, the method provides a 

hierarchical layout which is often misleading;  

• the meaning of the levels is not defined; 
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Fig. 2.10 The main steps of the Sugiyama algorithm. It is hard to see the hierarchical structure of the input graph a, 

whereas it is clearly visible on the output graph e. This method is appropriate for relative small graphs (up to a few 

hundred nodes). Reproduced from Healy and Nikolov (2013) 

 

Next, we discuss a method proposed by Mones et al. (2012) that solves the above problems 

and is easily applicable even for complex large networks (See Fig. 2.11). 

The algorithm of the proposed method is as follows:  

 

1. Rank the nodes according to their local reaching centrality value, CR(i), where CR(i) is 

the ratio of nodes that can be reached from the focal node i, reflecting ―impact‖ of i on 
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other nodes (see also Sect. 2.1.3). (Importantly, from the viewpoint of the algorithm, 

instead of CR(i) , other local quantities can be used as well.)  

 

2. Start to add nodes to the first, bottom-most level of the layout in an increasing order 

regarding their CR(i) values, until L <  G. Here L is the standard deviation of the CR(i) 

values within the actual level, whereas G is that within the entire graph.  is an 

adjustable parameter, defining the ―resolution‖ of the levels.) 

 

3. Once L   G, start a new level. 

 

4. Repeat 2
nd 

 and 3
rd

 steps until every node is put in levels. (Step 2 ensures that nodes with 

similar CR(i) values will be on the same level.) 

 

5. In order to get a nice horizontal arrangement, align the centre of mass of each level above 

one other, that is, to the same vertical line. 

 

6. The levels are arranged vertically in a way that the distances between adjacent levels are 

proportional to the logarithm of the differences of the averages inside the certain levels: 

(Yℓ+1-Yℓ)  ln [CRℓ+1 - CRℓ]. (Yℓ is the vertical position of level ℓ whereas CRℓ is the 

average of the CR(i)  values within level ℓ.) 

Next, set the vertical distances of the levels in a way that they become proportional to the 

differences between their average xi values. Set the smallest distance to the same value as 

the horizontal distance between two adjacent nodes. Finally, set the distances to be 

proportional to the logarithm of the original differences in a way that the height of the 

graph is kept unchanged. 

 

For large graphs,  tunes the vertical extension of the layout  
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Fig 2.11 The main steps of the visualization process. Firstly the layout is computed, based on the local reaching 

centrality, CR(i), values (top right). Next, the levels are separated with a logarithmic ratio and then each layout is 

scaled into the unit square (bottom left). Finally, the rescaled layouts are plotted in the unit square with the 

obtained node-density (bottom right, see also the colour bar as well). In the heat maps, the colour scale shows 

log(log((x,y)+1)+1), where (x,y) is the average density of the ensemble. Reproduced from Mones et al. 

(2012). 

 

Figure 2.12 shows the resultant of this method for (a) Erdős-Rényi, (b) scale-free, and (c) 

directed tree type of graphs.  

 

 

 

 

Fig 2.12 Visualization of the three network types studied in Sect. 2.1.3, based on their local reaching centrality 

values. a An Erdős–Rényi (ER) graph, b a scale-free (SF) network, and c a directed tree with random branching 

number between 1 and 5. For all three graphs N=1000 with the parameter ε set to 2/N. In case of the ER and the 

SF graphs <k>=3. Reproduced from Mones et al. (2012) 
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3 Observations and measurements  

3.1 Animal groups 

3.1.1 Dominance  

 

From the viewpoint of an individual, both solitary and social life style has advantages and 

disadvantages too, mainly defined by the access to resources, such as food or mates. A solitary 

animal does not have to share anything with others, but such an individual is constantly exposed 

to a much higher level of danger regarding predators and also faces difficulties in finding mates 

for reproduction. Living in groups is safer with respect to predator avoidance, ensures the 

possibility of reproduction and creates an environment in which decision-making is more optimal 

because of the information transmission among the members. At the same time, it raises 

competition among the members for the resources and increases the probability of disease and 

parasite transmissions. 

If, on the whole, for a given species the ratio of advantages/disadvantages is higher in case 

of living in groups than in case of a solitary life style (that is, ensures a higher chance for 

survival for the individuals), the animals will knit into groups. In such case, effective regulating 

mechanisms are needed in order to reduce the level of aggression among the members triggered 

by the competition. 

The evolutionary solution for this problem is the emergence of dominance hierarchy, a 

mechanism whose main purpose is to regulate the access to resources. The mechanism is simple: 

higher ranked individuals have primacy compared to their lower level mates. As one advances in 

the evolutionary tree, the structure of the dominance hierarchy gets more and more pronounced 

and complex, accompanied by more and more sophisticated strategies by which individuals try to 

get higher and higher ranks. When it comes to chimpanzees, Pan troglodytes, our closest living 

relatives, we find that they use such elaborated methods in their everyday fights for positions, 

which, even just a few decades ago, was believed to be practised only by humans. Such tools, 

among others include coalition formation, manipulation, and exchange of social favours or 

adaptation of rational strategies (de Waal 2007). 

No surprise that – being embedded into such an evolutionary process – humans are very 

sensitive for hierarchical positions as well. The unappeasable longing for getting higher and 

higher in the hierarchy is a basic human characteristic as well (Weisfeld and Beresford 1982). 

From a physiological point of view, the mechanisms determining the rank of an individual are 

very similar in primates and humans (Sapolsky 2005) – and in mammals in general: for example 

the level of testosterone in the blood, the principal male sex hormone, is found to be related to 

the rank: in case of various monkey species, higher testosterone level was measured in higher 

ranked individuals than in lower level animals (Eibl-Eibesfeldt 1990). Similar correspondence 

was found in humans as well: in an experiment, the testosterone level of young male tennis 

players found to be rising in case of victory, but falling in case of defeat, whereas no change was 

detectable during training. In another experiment, the testosterone level of medical students was 

measured, before and after exam. For those who passed the exam successfully, the level of the 

hormone arose, but for those who failed, it fell (Mazur and Lamb 1980). The level of the 

testosterone hormone and the inclination of behaving dominantly form a positive feedback loop 

as one intensifies the other. 
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The other hormone that constantly pops up in relation with dominance rank – primarily in 

connection with primates – is the glucocorticoid steroid hormone, also known as stress hormone. 

During the last decades many attempts have been made to study their relation, but the picture is 

still not clear (at least in stratified mammal societies) since various studies report contradictory 

findings. According to the original view, subordinate individuals must be exposed to a much 

higher level of stress than their higher-ranking mates, and thus their stress hormone level is 

higher as well. However, measurements revealed that they are exactly the higher ranking 

individuals who have higher cortisol level in their blood (Muller and Wrangham 2004). Other 

studies found support to the original assumption, namely that the glucocorticoid secretion is 

stronger in lower ranking individuals in general, from which the only exception is the alpha male 

in the very top of the hierarchy, whose cortisol level is the highest in the whole group (Gesquiere 

et al. 2011). Furthermore, the correlation between the level of stress hormone and high rank 

found to be the strongest during periods of social instability, which is no surprise since during 

transitions in the hierarchical structure it is the highest ranking individuals who are exposed to 

the highest level of aggression (Sapolsky 1983). The observed differences might be due to the 

variations of the social organizations in different species and populations (Sapolsky 2005).  As 

such, Creel (2001) identifies the decisive factor determining the relation in the way group 

members help each other in breeding the offsprings: in those species, among which cooperatively 

breeding is common, the rank and the hormone level is in direct proportion, while in other 

species it is in inverse proportion, see Fig.3.1. (Cooperative breeding means that offsprings are 

taken care of not only by their parents, but also by other group members.) 

 

 

 
 

Fig. 3.1 Relation between the level of stress hormone and rank. Among species with cooperative breeding 

(purple bars on the left) the level of basal glucocorticoid (GC) is significantly higher in dominant individuals 

than in subordinates (D>S) in contrast with other species (yellow bars on the right), where the relation is vice 

versa. Reproduced from Creel (2001) 

 

 

Notably, permanently being exposed to high stress hormone levels has a serious (negative) 

effect on the individual‘s health too, especially on the cardiovascular, adrenocortical, 

reproductive and immune systems (which complaints are often referred to as ―stress-related 
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diseases‖). For a review on the relation between rank and health in primate societies see 

(Sapolsky 2005). 

In humans, the phenomenon that there is a strong correlation between the socioeconomic 

status and the appearance of various stress-related diseases has been known for a long time and 

was well documented (Adler et al. 1994). Although the socioeconomic status (among humans) 

does not cover exactly the concept of rank in the dominance hierarchy, it is still a good 

approximation to it (Sapolsky 2004), and, more importantly, easier to measure – which explains 

why human studies use mostly this concept. 

These findings refer to the relationship between the physiological state of an individual and 

its rank in the dominance hierarchy. As we shall see in the upcoming chapters, in human 

societies, besides the dominance hierarchy, another type of hierarchical structure emerges as 

well, what we shall call ―cultural hierarchy‖. 

 

Measuring dominance 

 

Probably the best known hierarchy type is dominance hierarchy according to which individuals 

belonging to the same group regulate their access to natural resources such as food, mating 

partners, nesting locations or a safe lair. While establishing the ranking system, members of the 

group interact, often aggressively, in the form of repeated fights and threats. The result of each 

encounter is remembered by both parties and in case of many species by other group members as 

well. But after the order is set, subordinates will give way to their superiors without further fights 

or threats. The fundamental advantage of this arrangement is that it minimizes the aggression 

within the group since individuals do not engage in fights continually, only when creating or 

altering the dominance structure. In order to maintain such a structure, the individuals have to 

recognise each other and they also have to remember their mates along with the outcomes of the 

fights. In other words, they have to be able to create and maintain a mental model of the social 

structure within their group. Most probably this is the reason why it appears only at certain point 

of evolution, which is, according to our present knowledge, is at the point when fishes appear 

(Unfortunately the scope of the present book cannot cover the amazing organizational 

mechanisms driving the societies of social insects (Hölldobler and Wilson 2008); hence, in the 

followings we shall focus mainly on the dominance structures determining the social lives of the 

most various vertebrate species.) 

The most simple dominance structure is called despotism. In such an order one individual 

rules over all the others who, on the other hand, have no rank distinctions among each other. For 

example bumblebees maintain such a structure, as it was recognised and described by Swiss 

entomologist Pierre Huber in 1802 in a study which is now considered to be the first modern 

research on the field of dominance hierarchy (Huber 1802). However, real interest started to 

show only more than a century later when Thorleif Schjelderup-Ebbe described the dominance 

structure (which he called the ―pecking order‖) of hens (Gallus domesticus) in his PhD 

dissertation of 1922. Later this expression, ―pecking order‖ was extended to the dominance 

relations of other kinds of birds too, while by now it is often used in a general sense as a 

synonym for dominance hierarchy. 

Since then this topic has yield a lot of attention from biologists, and by now it has a vast 

literature. However, in the past decades scholars from other fields have also become interested in 

the formation of dominance hierarchies, most prominently economists, computer scientists, 

theoretical biologists and physicists whose aim has been twofold: (i) to give an account of the 
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self-organizational process that is behind the formation of dominance hierarchies (in animal and 

human groups as well), and (ii) to develop techniques allowing the hierarchical relations among 

group members to be measured.  

When trying to come up with such techniques, one immediately runs into the following 

problem: how should dominance be quantified, ―measured‖? A traditional way to overcome this 

problem is to sit for a long time in a (preferably hidden) observation point and watch the social 

life of the observed group, meanwhile making as precise record of their inter-individual 

interactions as possible. With this approach many fascinating results have been reached, among 

which the best known ones are probably the ones related to the observations of primate societies, 

most notably chimpanzee groups (de Waal 2007). Probably the biggest benefit of this approach 

is that any kind of interaction can be recorded (who eats first, who sleeps where, who ―beats up‖ 

whom, how the conflicts are being solved, etc.). However, this technique also requires an 

enormous amount of time, special conditions (ensuring continuous observation of the group in its 

natural environment, or in an environment in which the human impact is as limited as possible), 

and the ability to recognize all the individuals with high confidence within the observed group. 

These are requirements that are not easy to fulfil.  

Most recent techniques aim to automate somehow the observations: to take video records 

and analyse the results later with various computer programs (Ballerini et al. 2008, Pérez-

Escudero et al. 2014), to put small GPS devices on the individuals and record their motion with 

these equipment (Ákos et al. 2014, Nagy et al. 2010, Nagy et al. 2013, see Fig. 3.2), or an even 

more recent technology is to combine the data recorded with various sensors (Gerencsér et al. 

2013).  

The biggest disadvantage of the video records is that the individuals within the group has to 

be identified later (at least if the inter-individual interactions are to be analysed). This problem 

turns out to be extremely difficult, primarily on videos recording animals in their natural 

environment. For example Ballerini et al. (2008) recorded the free flight of starling flocks 

(counting 2,600 individuals) and restored the 3D positions of the birds using stereometric and 

computer vision techniques within the framework of the ―Starflag‖ project, lasting from 2005 to 

2007.  

A way to overcome the problem of individual recognition on video records is to put some 

kind of identification marks on the individuals. However, this method can be used only in groups 

counting top most a few dozens of individuals. For example Nagy et al. (2013) marked pigeons 

with a colour-bar (a unique combination of three, well-distinguishable colours on the back of 

each bird) and recorded their activity from above (see Fig. 3.2). In such a way, ―only‖ the colour 

bar recognition had to be solved in an automated way. (Which also turned out to be a highly non-

trivial task, since colours faded on the back of the animals, the birds covered each other from 

time to time, the efficiency of the recognition depended strongly on the actual lighting 

conditions, etc. However, even with such difficulties, by using the ―colour-bar technique‖, the 

problem of individual recognition is still easier to solve than without any crutch.) 
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Fig. 3.2 The ―colour bar technique‖. A snapshot of the processed video sequence. The original video records the 

feeding-queuing activity of a group of homing pigeons. Each bird is marked with a unique combination of three 

colours (a ―colour bar‖) serving as an individual code for a computer program designed to identify the individuals 

automatically, and process their behaviour. Circles divide the different activity regions: birds marked with red colour 

in the central circle identified as the ones feeding, individuals marked with blue identified as the ones queuing, and 

pigeons out of the external circle are identified as ‖not interested‖. Reproduced from Nagy et al. (2013). 

 

Pérez-Escudero et al. (2014) introduced a method which is based on individual recognition 

as well, but instead of putting an artificial mark on the individuals, an algorithm (called 

idTracker) was designed to extract a characteristic fingerprint from each animal which are then 

used to identify the individuals throughout the video. This technology prevents propagation of 

errors, and the correct identities can be maintained basically indefinitely. The algorithm has been 

tested on fish, flies, ants and mice, and was able to distinguish animals even when humans could 

not. 

 

 

3.1.2 Leadership in motion  

 

As mentioned in Chap. 2, hierarchy is context dependent, that is, the same group often organizes 

itself into different structures depending on the actual task. In the context of animals leadership 

the hierarchical structure emerges during collective motion. It differs from dominance hierarchy 

at least in two fundamental ways: (i) followers follow the leader in an unprompted manner, and 

(ii) in case there is a target, the emerging hierarchy can be related to the way in which the 

information flows within a group.  

Due to the recent technological developments, data on a larger scale and with increasing 

precision have been gathered within this field of research giving the topic a special importance. 

The relation describing ―who leads whom‖ in a group defines a stand-alone, quite well 

measurable hierarchical structure (assuming that the one who is leading is the ―dominant‖ one 

and the one being led is the subordinate individual). This is called the leadership network, which 

is not directly related to dominance hierarchy (Nagy et al. 2010). Rather, it is probably an 
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interaction among dominance, kinship, the inner state of the individuals (like hunger or fear) and 

some outer conditions. In this section we shall overview some quantitative results on leadership.  

From the viewpoint of leadership (and hierarchy, in general) a group whose members are 

able to identify each other on an individual level differs fundamentally from groups in which the 

members are basically identical, that is, they cannot recognize each other. In the latter case, the 

group might reach a collective decision regarding, for example, the direction of motion either 

with or without a leader. In case when there is no leader, the decision can be made based on 

some very simple mechanism such as direction alignment or mean value calculation, whereas in 

case when there is a leader, (but still no individual recognition) leadership is still not a well-

defined stable structure, but rather a temporal, continually changing network: it is based on 

temporal differences such as actual level of hunger, fear, spawning inducement, etc. or some 

pertinent information regarding predator or food location. 

The first case (no individual recognition and no leader) can be described accurately with a 

model proposed by Vicsek et al. (1995). In this approach self-propelled particles move with a 

fixed velocity on a 2D surface while aligning their direction of motion to that of others being 

within a given distance.  

When leadership emerges from differences in the inner states of the members (and there is 

still no individual recognition) can be described with a model suggested by Couzin et al. (2005). 

In this paper they have shown how a few informed individuals can lead the entire group in which 

the individuals do not know which of them (if any) has information. According to the model, 

even if the portion of the informed individuals is small, the group as a whole can achieve high 

accuracy regarding the proper direction towards the food location. In fact, the larger the group is, 

the smaller the portion of informed individuals is needed.  

Entirely different is the case when group members are able to identify each other on an 

individual level. Most mammals (and some birds, like pigeons) are like this, enabling the 

emergence of more stable hierarchical leadership structures. According to the biological 

observations, leadership still depends strongly on the actual inner state of the animals (Fischhoff 

et al. 2007), but, at the same time, from the point of the motion of the group, dominance 

hierarchy may play a fundamental role as well. 

To study this question, Sárová et al. (2010) GPS devices recorded the motion of 15 cows 

belonging to the same herd for a period of three weeks. According to their findings, foraging 

motions and short-distance travels are not lead by a particular individual, but rather they are 

influenced in a graded manner: the higher position is occupied by an individual in the herd‘s 

hierarchy, the bigger influence it exerted on the collective motion. Other observations revealed 

that Rhesus macaques prefer to join either related or high-ranking individuals, whereas Tonkean 

macaques exhibited no specific order at departure (Sueur and Petit 2008). In their review paper 

on this topic Petit and Bon (2010) proposed that the process of collective decision making 

(regarding the collective motion of a group) can be interpreted as a combination of two kinds of 

rules: (i) an ―individual-based‖, covering the differences in the inner states of the animals, such 

as hunger, physiology, energetic state, knowledge, spatial position within the group, position in 

the group‘s affiliation network, hierarchical rank, etc. and (ii) ―self-organization‖, referring to the 

inter-individual interactions among group members.  

In order to yield a detailed insight into the leader-follower relationships in a network of a 

flock of homing pigeons, Nagy et al. (2010) equipped ultra-light GPS devices on members of a 

flock of 10 birds. In such a way they obtained high precision data of the trajectories which then 

were analysed using a variety of correlation functions inspired by approaches commonly used in 
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the field of statistical physics. In particular, they analysed the pairwise interactions on the basis 

of the characteristic delay times between the direction changes (―turns‖) of the birds. Using this 

method they have revealed a dynamically changing, but well-defined hierarchy (leadership 

network) within the flock (Fig. 3.3). According to this study, the average spatial position of a 

bird within the flock correlates with its hierarchical rank.  

 

 

Fig. 3.3 The analysis of the flight of a flock of homing pigeon, recorded with ultra-light GPS devices. a A 2-

minute segment from a free flight restored from the GPS data log. Dots and triangles mark every 1s and 5s, 

respectively. Triangles point in the direction of motion. Different letters and colours refer to different pigeons. b 

The leadership network reflecting a single flock flight shown in a. The arrows point from the leader towards the 

follower. The values on edges mark the time delay (in seconds) in the two birds‘ motion. Reproduced from 

(Nagy et al. 2010) 

 

 

The relationship between the spatial position of an individual within a moving group and its 

effect on the movement of others is highlighted by Schaerf et al. (2016) as well. By studying 

moving pairs of fish they found that those being in the front have greater mean changes in their 

speed and are less likely to move towards their partner than vice versa. Furthermore, the pair 

moves faster when the front position is occupied by the one who usually leads the pair.  

Furthermore, many animal species live in ―multilevel modular societies‖ in which smaller 

groups of closely related individuals form more coherent communities which are connected in a 

more loosely connected way creating aggregations on a given level. Among others, primates, 

elephants, whales and horses live in such ―embedded‖ societies (For the embedded hierarchical 

structure present in human societies see Sect. 3.2.3). Ozogány and Vicsek (2015) studied the 

collective motion of a herd of Przewalski horses consisting of many harems (see Fig. 3.4) and 

found that this group structure has an effect on the collective motion of the herd as well, since 

the leadership network itself is modular and hierarchical: there is a leadership hierarchy within 

the dense sub-groups (or harems, in case of horses), and there is a hierarchy among the harems.  
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Fig. 3.4 The motion of a herd of Przewalski horses (n≈150): hierarchy in hierarchy. Different harems, identified 

by the cohesive motion of its members, are marked by different colours. The white arrows indicate the leadership 

relations among harems: they point from the leader towards the follower sub-group. Reproduced from Ozogany 

and Vicsek (2015). 

 

However, these studies do not shed light on the following fundamental question: the so 

called ―individual-based‖ traits, such as navigational ability or spatial position within the group 

are a cause or a consequence of leading? In other words: do they govern the self-organizing 

processes or are they the consequence of leadership, arising through another mechanism? 

In order to address such question, Pettit et al. (2015) conducted measurements aiming to 

understand how individual differences structure a flock and affect the information transfer among 

the birds, and, importantly, how the leader/follower role affects the learning of navigational 

skills. In the experiment, the homing flights of groups of adding up to 40 homing pigeons were 

tracked using GPS devices with a log rate of 10 Hz. The ―level of the leadership‖ for each bird 

was defined based on the directional correlation delay time, the method introduced by Nagy et al. 

(2010).  

According to the study, leadership hierarchies can arise from differences in the birds‘ typical 

speeds. They also found that leaders learn faster and become better navigators, even if leadership 

initially did not originate from navigational ability. In other words, individual differences which 

originally concerned purely physical abilities (speed) with time turned into individual differences 

regarding cognitive capacities (navigational skills). Figure 3.5 depicts this phenomenon: Speed 

did not correlate with homing efficiency before the group flight, but faster individuals did tend to 

gradually become leaders during the collective flight. After the flight these fast pigeons become 

more efficient as well (their navigational skills improved). This was the first time such a 

mechanism was reported. 

The study also suggests that leadership might be an inevitable consequence of 

heterogeneous characteristics among individuals within a self-organized group. Furthermore, the 

role that an individual assumes during collective motion might have a far-reaching effect on the 

development of its abilities regarding how it learns about the environment and uses social 

information. 
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Fig. 3.5 Solo homing efficiency and speed compared to leadership. Each dot represents the mean value 

belonging to a bird, with different symbols for the different groups. Fit lines correspond to linear mixed models 

with group as a random factor. The estimated regression for the fixed effect, if it is significant, is black, or grey if 

it is not significant, as judged from a likelihood-ratio test against a model without that fixed effect. Dashed 

coloured lines show the random effects of the groups on slope and intercept. Reproduced from Pettit et al. (2015)  

 

 

In an ingenious study, Boos et al. (2014) conducted an experiment to test that (i) whether in 

case of humans, collective motion and coordination can emerge from applying merely simple 

local rules, as it is believed to be the case in animal groups, (ii) whether an informed minority 

can lead an uninformed majority to the minority's target, and if so, (iii) how the minority exerts 

its influence? 

In order to hinder all sorts of communications (conscious and unconscious), except for the 

reading of the movement of others, subjects were playing via their avatars in a multi-client 

computer game. In order to activate to two basic local rules, ―cohesion‖ and ―alignment‖ without 

direct instructions, a minority of the players were rewarded higher in case of reaching a pre-

defined target, while the players belonging to the uninformed majority were rewarded lower, but 

equally. (―Cohesion‖ was one of the local rules expressing that the individuals are attracted 

towards their neighbours‘ positions within a local range, and ―alignment‖ was the other, 

expressing that the individuals align their speed and direction within this range to that of their 

neighbours.) They found that (i) directed group motion can emerge from simple local rules in 

case of humans as well, just as in case of animal groups, (ii) within this context, an informed 

minority is able to lead the group to its target, and (iii) a minority can lead the group effectively 

if their members are among the first to make a move, with similar initial directions. 

 

3.1.3 Leadership versus dominance 

 

The assumption that dominant individuals are the ones who at the same time lead the group, is 

very persuasive and intuitive. However, as mentioned in the previous section (Sect. 3.1.2), 

leadership hierarchy and dominance hierarchy are not related to each other in such a 

straightforward manner. Rather, these hierarchies seem to coexist within the same group without 

creating any kind of conflict: when it comes to collective travel those will lead the group who 

have better navigation skills (Nagy et al. 2010) or better information (Couzin et al. 2005), and 
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when it comes to feeding, mating, etc., relations defined by the dominance hierarchy will prevail 

(Nagy et al. 2013). 

The dominance hierarchy and the leadership hierarchy were compared in a more systematic 

way in a flock of homing pigeons, consisting of ten individuals, by Nagy et al. (2013). The two 

hierarchies were found to be different from each other (See Fig. 3.6 b and c and Fig. 3.7). 

Dominance (pecking order, depicted on subfigure 3.6 b) is known to be correlated to aggression 

and access to food, based on some individual features such as physical strength, in order to 

strangulate the violence to a low level within the flock. At the same time, the appearance of the 

stable leadership network during flights is likely to be due to a different set of individual 

competences. 

 

 

 
 

Fig. 3.6 The comparison of the (b) dominance and the (c) leadership networks in a flock of homing pigeons. a 

Releasing the pre-trained homing pigeons from their loft. The small white bag on the back of the bird holds the 

ultra-light, high-precision GPS device (Courtesy of Zs. Ákos). b The pecking order (dominance hierarchy) and c 

the leadership network. Directed edges point from the leader towards the follower. The width of the arrow 

corresponds to the strength of the interaction. Nodes are ordered vertically according to the rank in the hierarchy, 

with the dominant ones on the top. The two hierarchies are different fundamentally. Reproduced from Nagy et 

al. (2013). 
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Fig. 3.7 Adjacency matrices of the mixed graph representation containing both undirected and directed edges for 

each interaction type (FQ in A, AA in B, PO in C, and GFL in D). The 10 × 10 matrices on the left side of each 

panel show the data for the groups A, B, and C (from Top to Bottom, respectively), and the 30 × 30 matrix contains 

data for the group of 30. Colour indicates the type of the edge: red: directed edge pointing from dominant/leader (in 

the row) to the subordinate/follower (in the column); blue: directed edge, reverse direction of a red edge; green: 

undirected edge for mutual interaction; white: no edge. In each matrix the individuals were ordered according to the 

NormDS scores of that interaction. Reproduced from Nagy et al. (2013). 

 

Using similar techniques, namely the pairwise directional correlation analysis of high-

resolution spatio-temporal GPS trajectory data, Ákos et al. (2014) studied the collective motion 

of six dogs belonging to the same household during more than a dozen of 30 to 40 minutes 

unleashed walks, accompanied by their owner (see Fig. 3.8). During the walks, dogs adjust their 

trajectory to that of the owner, but they time to time run away and then turn back to her in a loop. 

On a shorter time scale, the leader-follower roles in a given pair were changing significantly, 

whereas on a longer timescale a consistent leadership structure was manifested. 

The network constructed from these leader-follower relations is hierarchical, in which the 

position of a given dog correlates with the rank (dominance), age, trainability, controllability, 

and aggression. (These values were derived from personality questionnaires.) According to these 

measures, there are some personality traits which tend to characterize the leader (dominant) 

dogs: they were found to be more controllable, trainable, aggressive, and also to be the older 

ones.  
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Fig. 3.8 The collective motion of dogs (belonging to the same household) is influenced by the underlying social 

structure and by differences in the personalities. a The unleashed walks of six dogs belonging to the same 

household, accompanied by their owner. During these walks high-resolution spatio-temporal GPS trajectory data 

were collected and then analysed pairwise. b The basis of the analysis was the directional delay time, shown on 

the arrows. The directed links point from the direction of the leader towards the follower. On the lines, the upper 

values belong to the time delays in seconds whereas the lower values indicate the portion that the leader of that 

pair was actually leading. All the dogs were ‗Vizsla‘, except for the one marked with ―M‖, which was a mixed-

breed. This dog did not participate in the ―vizsla-network‖. c Dominance network of the dogs, derived from a 

questionnaire. The arrows point from the direction of the dominant individual towards the subordinate one. The 

colours represent the context of the dominance: red: barking, orange: licking the mouth, green: eating and blue: 

fighting. Reproduced f rom Ákos et al. (2014) 

 

 

 

3.1.4 Collective decision-making  

 

Animals living in groups continually face problems that require collective decision making, such 

as when and where to rest or to forage, how to defend themselves from predators, how to 

navigate towards a distant target, etc. The personal notion of the group members depends on 

many factors, like information, experience or inner state, such as hunger or exhaustion. Many 

theoretical studies focus on the cost/benefit ratio from the viewpoint of the group members, since 

if the individuals differ in their preferred outcome (and usually they do defer), some individuals 

will have to pay higher ―consensus cost‖ than others. (―Consensus cost‖ is the cost paid by the 

animal by foregoing its preferred behaviour in order to defer to the common decision (King et al. 

2008)).  

The first studies addressing the problem of collective decision making mainly focussed on 

two basic types, both from theoretical and from an experimental point of view. In a despotic 

situation one or a few individuals make the decision, while in an egalitarian (or democratic) 

situation the members contribute to the final outcome to about the same degree. In nature, both 

types have been observed. On one hand, both theoretical and experimental studies show that the 

egalitarian decision-making process has a smaller average consensus cost than the despotic one 
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(Conradt and Roper 2003), on the other hand, despotic decision-making approach can increase 

the efficiency of a group (Couzin et al. 2011). 

More recently, along with the technical developments applied by the researchers in order to 

study the collective decision-making techniques, there have been some interesting observations 

in which egalitarian and despotic methods were alternating according to the circumstances. 

Using high-precision GPS data on pairs of pigeons, Bíró et al. (2006) studied the behaviour of 

the birds in case of conflict in the preferred flight direction. If the difference was small (smaller 

than a certain critical threshold) then the birds averaged their directions (egalitarian decision 

making), but if the difference rose above the threshold, either one of them became the leader or 

the pair split (despotic case). 

Strandburg-Peshkin et al. (2015) identified similar decision-making methods among wild 

baboons. They also recorded the movement of the group members with high precision GPS 

devices over the course of the troop‘s daily activity. Baboons too, do not follow dominant 

individuals, rather the majority of the initiators (those starting off in a certain direction). When 

two groups of initiators (with similar size) heading in different directions, the followings depend 

on the angle between the motions: in case the angle is small (less than around 90°), the animals 

compromise (choose a direction in between), but in case the angle is large, they choose one 

direction over the other, randomly. 

Importantly, these animal species live in highly hierarchical social structures, yet – 

according to the above studies – their collective decisions emerge via shared ―democratic‖ 

process using simple rules. 

In an interesting experiment Couzin et al. (2011) studied the role of uninformed individuals 

(individuals without any preferences regarding the direction) when two groups of initiators with 

different preferred directions were influencing the group motion. Their main question was that 

under what conditions – if any – a strongly opinionated and self-interested minority can exert its 

influence on the entire group. In the experiments they used a fish species, golden shiner, whose 

individuals‘ motion can be predicted with high accuracy by a model using some simple rules: (a) 

avoidance of collision, (b) attraction and (c) alignment (Couzin et al. 2005). The first rule, 

avoidance, has the higher priority. In case others are not detected within a certain region, the 

individual will tend to become attracted towards and aligned with its nearest neighbours within a 

local interaction range. Using the experimental set-up depicted in Fig. 3.9, the trajectories of the 

individual fish can be recorded precisely.  

Some of the fish were trained to be attracted towards the blue target, some to be attracted 

towards the yellow target (to which the shiners exhibited a pre-existing bias), and some 

individuals did not have direction preference at all. Among the trained fish, the strength of the 

preferences was also manipulated. When all the individuals were trained to be attracted towards 

either the blue or the yellow target, the results were in accordance to the expectations: if the 

strength of the majority preference was at least as big as the minority preference then the group 

reached the majority-preferred target with a higher probability. By increasing the strength of the 

preference in the minority group above the preference-strength of the majority group, the 

minority was gaining control over the group behaviour. 
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Fig. 3.9 The experiment conducted by Couzin et al. (2011). a An image from an experimental video with 6 and 5 

trained, and 10 untrained individuals. b The model describing the trajectories of the group members predicts a 

sharp transition from a minority- to a majority-controlled outcome as the density of uninformed individuals is 

increased. These simulations are in qualitative agreement with the observed behaviour. Reproduced from Couzin 

et al. (2011). 

 

The most interesting results were obtained by introducing uninformed individuals into the 

above setup, namely, when the group was under the influence of a strongly opinionated minority 

adding the uninformed individuals to the group returned the control to the numerical majority. 

As their number increased, this effect reached a maximum and then slowly began to diminish. 

This study provided interesting new data for the often observed and widely believed argument 

that groups with members who are poorly informed or do not have any preferences about the 

decision to be made are particularly vulnerable to manipulations of determined and self-

interested minorities (the latter being on the top of the knowledge-based hierarchy).  

Most of the studies analyse the process of collective decision-making from an informational 

point of view, in which individuals make decisions based on their (personal or social) data 

merely. As Miller et al. (2013) points out, during this process the effort to maintain group 

cohesion plays a fundamental role as well. Another basic factor in collective decision making – 

apart from the knowledge, influence and group cohesion – is the structure of the communication 

network defining the way information is spread among the members. A communication network 

is considered to be effective if it ensures that information can spread among the entire group via 

a minimum number of connections.  

By comparing data gathered from 24 species, Pasquaretta et al. (2014) found correlation 

between the neocortex ratio and the efficiency of the communication network. Both modularity 

(showing how strongly the group is clustered) and centralization (the ratio of central individuals) 

found to be inversely related to the efficiency of the network, from which they concluded that 

those species which are more ―tolerant‖ have more efficient networks. 

As it turns out, leadership, and the way members of various social animal species achieve 

collective decisions is based on many factors, such as information, actual physiological state, 
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dominance, navigational competence, etc. The resulting leadership network is a complex, 

multiple level hierarchical structure. 

Motivated by the above findings, a computational model was created to identify the optimal 

competence‖ and pliancy distributions within groups facing problems that had to be solved 

collectively (Zafeiris and Vicsek 2013). In the following part we shall discuss this model along 

with the results. In our interpretation, ―competence‖ is the ability needed to solve the given task 

(for example navigational skill in case of collective flight), and ―pliancy‖ expresses the extent to 

which an individual relies on personal versus social information (learning through the 

observation of others).  

 

Order hierarchy for making optimal decisions 

 

When a group faces a problem, some members have more clues, some others have less idea 

regarding the solution. Some individuals tend to follow others, while some prefer to rely on their 

own information. But what are the proper ratios in an optimally performing group, and how these 

characteristics relate to each other? In the present subsection, optimal performance is associated 

with finding an accurate solution using the smallest amount of ―cost‖, where the most important 

cost is competence, since acquiring it requires knowledge, experience, learning, etc. Other 

aspects can also appear as cost, most importantly the time factor.  

In order to address the above question, four estimation problems were considered: 

 

i. The simplest: an external parameter that can be either -1 or 1 (yes or no, black or white, 

to follow or not to follow some initiators, etc.). This can be called the ―voting model‖, or 

―voting GPMM‖, where GPMM stands for ―group performance maximization model‖, 

ii. A general and abstract, which is at the same time simple and thus widely applicable: 

Sequence-guessing (SG) GPMM, in which a sequence of values had to be estimated,  

iii. A case study: The direction finding GPMM, where a pre-defined direction had to be 

found. 

iv. The ―Flocking GPMM‖ in which a group of agents has to reach a pre-defined target by 

moving on a two dimensional surface. This one is a special case compared to the others 

because here the communication structure (network) of the agents is not fixed, but 

changing continuously according to the individuals‘ actual position. 

 

In order to elicit the possible effects of the communication structure, the first three games 

(models/GPMMs) are played on different types of fixed communication networks: 

 

a. Small-world network (SW) 

b. Erdős–Rényi (ER) network 

c. And a real-life social network describing the friendship relations in a school (referred to 

as ―Friendship‖ or ―Frnd‖ network).  

 

Rather counter-intuitively, it was found that the optimal ability and pliancy distributions 

were quite independent of the type of the networks used. 

The relevance of the fourth (―Flocking‖) GPMM originates from the fact that among 

animals, the most often studied collective decision-making scenario is the one during which the 

group has to navigate collectively towards a(n often pre-defined) target. (See also Sect. 3.1.2) 
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Accordingly, simulations were designed in which a group had to reach a target in the shortest 

possible way. In contrast with the other games, the communication network was not fixed, but 

varied continually as a function of the agents‘ location: each individual ―saw‖, and thus 

interacted with others within a given range of interaction, ―ROI‖.  

In all cases, the collective decision was achieved via iterative rounds of interactions. In each 

round, each agent made a guess (decision) in which he/she incorporated his/her own estimate 

(individual knowledge) with that of his/her neighbours (public information) to a varying extent. 

We call this disposition to follow others ―pliancy‖, denoted by λ in (3.1).  

Precisely, the behaviour of agent i is defined by the following equation: 

 

 Bei
(t+1)

=(1-λi)f(Coi) + λi<Be
t
j>jϵR, (3.1) 

 

where, t is the time (number of iterations), Bei is the (observable) behaviour of agent i, for 

example its direction, Coi is the competence level (between 0 and 1, with higher values denoting 

better abilities). The estimation of agent i regarding the correct solution is a function of his/her 

competence: f(Coi). The (observable) average behaviour of the neighbours of member i at time 

step t is <Be
t
j>jϵR, where j(ϵR) denotes the neighbours. λi, the weight parameter, takes on values 

from the [0, 1] interval. 

The optimization was done with genetic algorithm, with the competence and pliancy values 

evolving. The fitness function depended on the group performance Pe and on the average 

competition level <Co>, according to (3.2) 

 

 F = Pe – K<Co> (3.2) 

 

where K is a parameter reflecting the ―cost of learning‖.  

The best group characteristics were then approached by varying the distribution of the 

competence and pliancy values of the members. The process of problem solving is stopped after 

some simple criteria are satisfied, e.g., a given number of steps were reached, the guesses 

converged or they achieved a pre-defined accuracy. The optimal distribution was associated with 

the average distribution of the pliancy and competence values belonging to the 500 best 

performing (most optimal, having the largest F) groups. 

Because of the simplicity of the model, many real-life cases can be mapped on it. The 

performance of the group, Pe, is quantifiable and characterized by a parameter taking values on 

the [0, 1] interval. Higher Pe values mean better performance. The contribution of member i
 
to 

the collective problem solving depends on its competence level Coi which also takes values on 

the [0, 1] interval. Here too, larger values correspond to better abilities. Some noise, explicitly or 

implicitly, was also incorporated into the models. 

In the present subsection we focus on the first three models in which the interactions were 

defined according to pre-defined networks. 

In the Voting GPMM – having some analogy with the widely used Ising model - , the group 

had to find the correct answer by choosing from two options (yes/no, -1/1, etc.). This minimal 

model consists of two steps only:  

 

 

1. First, all actors make a guess being correct with the probability proportional to their 

competences.  
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2. Then the agents count the guesses of their neighbours, based on which the group casts a 

vote.  

 

The second step is done according to (3.1). Figure 3.10 c shows the result for the optimal 

competence distribution when all λi=1, that is, when the choices of the neighbours determine 

entirely the vote of an individual. This distribution ensures the highest rate of correct votes, and 

thus, the highest group performance as well. 

 

 

Fig. 3.10 The Voting GPMM model. a ―Friendship graph‖, the pre-defined communication network which was a 

real-life social network reflecting the amity relations in a high school among 204 students (after Harris et al. 2009). 

b An enlarged part of the network showing the relations of a randomly selected node coloured yellow. c The optimal 

competence distribution: a highly skewed function with a fat tail. Reproduced from Zafeiris and Vicsek (2013) 

The optimal competence distributions presented in Fig. 3.10 c and 3.11 d are typical in the 

sense that in all cases (that is, in all models with any parameter set and network type) the optimal 

values form a hierarchically ordered distribution, with progressively fewer members having high 

competence values than low. The only difference is that in the case of the Direction finding 

GPMM and Sequence guessing GPMM, the fat tails are structured, having a smooth ―hump‖ on 

them, while the tail belonging to the Voting GPMM is ―smooth‖ (Fig. 3.10 c). Furthermore - 

somewhat counter-intuitively - the particular structure of the underlying communication network 

does not have a relevant effect on the optimal distribution. For more details see (Zafeiris and 

Vicsek 2013). 
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Fig. 3.11 Results for the Direction finding model on the Friendship graph. K=2, the parameter describing the cost of 

knowledge. a The course of the optimization with the relevant values: pliancy, competence and fitness. b the 

competence and pliancy values depicted on a unit square. Each dot represents an individual: c the same as b but here 

axis z depicts the density of the points. Considerably more agents have low competence values coupled to high level 

of pliancy than vice versa. d Optimal competence distribution. e Optimal pliancy distribution. f comparison of the 

group efficiencies Pe after 20 steps of iteration for the one identified as optimal and a selection of commonly 

assumed distributions. From left to right: Optimized/continuous, two valued (allowed competence values were 0.1 

and 0.9), uniform, Gaussian, and constant. In order to emphasize the effect of the distribution of the competence 

values, the pliancy values were set to be antagonistic for all five cases according to λi=(1-Coi)+ξ, where ξ is noise. 

The average competence level is identical in all cases. Reproduced from Zafeiris and Vicsek (2013). 

During the optimization process, the pliancy values (λ) and the competence values (Co) were 

evolved simultaneously and independently from each other. The first and foremost conspicuous 

result was that the pliancy values – in analogy with the competence values – form a highly 

skewed distribution as well. However, in this case agents with high pliancy values made up the 

majority (Fig. 3.11 e).  

Figure 3.11 b and c grants a deep insight to the relationship between the competence and 

pliancy values in an optimized group, and sheds light onto the origin of the ―hump‖ as well. The 

location of each point in Fig. 3.11 b is defined by the corresponding individuals‘ competences (x 

axis) and pliancy (y axis) values. Two kinds of agents appear: one kind clusters in the top left 

corner, corresponding to small competence and high pliancy values (these actors have ―sheep 

mentality‖, and significantly outnumber the rest of the group), while the others have 

considerably higher competence values mostly coupled with small pliancy. The hump – 

observable in most of the competence histograms – is due to the second kind of agents. It can be 

concluded that the simultaneous choice of both the competence and the pliancy values are 

essential, and the optimal choice results in a strong improvement of the efficiency of the group. 
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Continuous vs. bimodal competence distributions 

 

We believe that the reason behind the finding that continuous competence distribution eventuates 

higher group performance than the ―bimodal‖ distribution (in which the competence values can 

be either 0 or 1) is due to a phenomenon that we call ―information spreading or mixing‖, which 

can be summarized as follows:  

 

Multi-level hierarchical interactions make the spreading (mixing) of the information between the 

individuals much more efficient than in a “two-level” system. 

 

This conceptual statement is based on the following assumptions: (i) the individuals do not 

know the competence level of the others, (ii) the pliancy values are approximately proportional 

to the inverse of the competence values (which is the general assumption in two-level systems), 

and finally, (iii) not all members interact with all others, but according to an underlying network 

– which is a natural assumption for groups beyond a certain size. Given these conditions, the 

two-level competence distribution can often result in temporarily or even permanently 

segregated groups maintaining different ―opinions‖ or estimates, while the continuous 

distribution performs better.  

The reason behind this possibility of segregation is that uninformed individuals have a 

strong tendency to follow the others (since they have high pliancy values). Sub-groups of the 

whole group can thus easily come to a conclusion corresponding to a wrong estimate or solution 

which they will maintain until a better estimate ―diffuses‖ to their community from other groups 

having highly competent agents.  

These results provide a framework for a wide selection of phenomena including several 

recent observations, such as: how a few well-informed individual is able to lead a group 

efficiently (Whallon et al. 2011, Conradt and List 2009, King and Cowlishaw 2009, Reebs 

2000), the surprising observation made by company managers that a group of skilled workers do 

not outperform a group with diverse abilities (Surowiecki 2005, Hamilton et al. 2003) and the 

results of models optimizing the strategies of individuals performing a specific task as part of a 

collective. These findings emerge from the interaction dynamics within the collective. 

 

3.2 Hierarchy in Humans  

3.2.1 Our biological and social heritage 

 

In the previous sections of this chapter we presented results regarding dominance hierarchy 

which seems to be ubiquitous in the animal world. Since humans can be regarded as a particular 

representative of the animal kingdom, the above mechanisms apply to us as well, although 

accompanied by some new features. Anatomically modern humans – with whom our bodies are 

indistinguishable – appeared around 200,000 years ago. About 70,000 years ago an even more 

important event happened, what anthropologists and historians often call ―Cognitive revolution‖ 

(Harari 2013) – a shift that launched human culture. These changes had fundamental impact on 

the self-organizational processes of human groups as well, and, accordingly, on the way 

hierarchies were formed.  
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The most important elements of this new ability are that (i) humans have become able to 

create formal roles (such as chieftain, king, pharaoh, colonel, etc.) which are independent of an 

actual individual, and (ii) among these formal roles, any kind of network of relations – that is, 

e.g., hierarchy – is conceivable, starting with complete egalitarianism up to the strictest 

dictatorship. Importantly, only the ability enabling the creation of such roles and their relations is 

coded genetically, meanwhile the specific nature of the hierarchy is not. This latter one is coded 

culturally, and thus, in order to distinguish it from the dominance hierarchy, we shall call it 

cultural hierarchy. Table 3.1 shows a comparison regarding the most important features of the 

two types of hierarchies. Furthermore, cultural hierarchy is in close relation to our affinity 

towards rules and towards following these rules and punishing those who do not follow them 

appropriately.  

In human groups both the dominance and the cultural hierarchies are present, and, although 

their origins and functioning are rather independent, they interact in a unique way with each 

other and this interaction, from time to time, can create conflict within (or among) the group(s). 

 

 
Table 3.1 Comparison of the two types of hierarchies present in human groups: Dominance hierarchy and cultural 

hierarchy. 

 

Dominance hierarchy 

 

 Genetically coded  

→ restricted variability: the basic 

features are the same within one 

species. 

 Controlled mainly by hormones 

(testosterone, stress hormones, etc.) 

→mostly instinctive 

 Its main purpose is to minimise the 

inner-group aggression by determining 

the access to the common resources 

 

Cultural hierarchy 

 

 Culturally coded 

→can take any form from strict 

dictatorship to complete 

 egalitarianism 

 Controlled mainly by the Neocortex 

→mostly conscious 

 

 Its main purpose is to harmonize the 

behaviour of the group members via 

political power. 

 

Distinguishing these two hierarchy types also resolves the ―mystery‖ surrounding the ―lost 

hierarchy‖ of hunter-gatherer groups. According to this view, the (mostly) egalitarian nature of 

hunter-gatherer groups is very difficult to explain, since from the animal world we have inherited 

a strong tendency towards hierarchical group organization, and after the settlement (around 10-

15,000 years ago) hierarchies appeared again. So where did it disappear in between (Dubreuil 

2010)? A likable answer is that it did not disappear anywhere; dominance hierarchy has been 

continually present throughout human history in all human groups, although often oppressed by 

culturally coded norms manifesting themselves – among others –  in cultural hierarchy. In 

hunter-gatherer societies the cultural hierarchy is most often week (but not always), and is close 

to an egalitarian organization. 

In the following, when we refer to human hierarchies, we mean cultural hierarchy, if not 

stated otherwise. 
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3.2.2 Large-scale hierarchies in societies  

 

During the vast majority of the circa 200 thousand years of human history people lived in small-

scale, mostly egalitarian hunter-gatherer communities comprising around 30-50, or at most a few 

hundred individuals. The beginning of the transition to larger scale and more complex societies 

happened only 10 to 12 thousand years ago, when humans firstly settled and engaged in 

agriculture and animal domestication. The first large, state level societies appeared around 5 

thousand years ago (in Egypt and Mesopotamia) and the scale of the societies has been 

increasing ever since. 

The deep reasons for these transitions – primarily the first one, marking the transition from 

hunter-gatherer life style to settled communities – are quite blurry. Although many theories have 

been proposed, none of them seems to be completely satisfactory or clinching. Furthermore, in 

accordance with the general nature of historical and anthropological interpretations, they are 

mostly descriptive, making it difficult to make predictions allowing testing against measured 

data. However, in recent years, there has been a gratifying increase in formal (mostly, but not 

exclusively agent based) models regarding historical and anthropological issues (Barceló and 

Castillo (eds) 2016, Grinin and Korotayev (eds) 2014, Pumain and Reuillon 2017). Agent based 

models combined with game theoretical approach have also been proposed (Boix 2015, Greif 

2006). The book of Turchin (2003) has a relevant analytical treatment of the problem. 

In the present subsection we shall overview two formal approaches describing large scale 

hierarchies in human societies. One approach, the work of Turchin et al., will be reviewed in 

more details while the work of Boix (2015) will be described only briefly. Although many 

important related works exist, here we selected those two of them which offer a quantitative 

theory with predictions which make testing against real-life data possible.  

In the search for the main driving forces behind historical patterns, Turchin and Gavrilets 

identifies warfare and multilevel selection as the two main causes leading to complex, 

hierarchical societies (Turchin and Gavrilets 2009, Gavrilets et al. 2010). Their (here somewhat 

simplified) train of thought is the following:  

 

 Throughout most of human history people lived in small-scale, mostly egalitarian 

societies. 

 These tribes often engaged in warfare with each other, over various resources. 

 Although selfish behaviour can be beneficial for the individuals within a group, when 

groups intensively compete with each other (for example during warfare) those groups 

have the advantage which have more cooperative and less selfish members. Thus, human 

societies are subject to multilevel selection.  

 On the one hand, warfare has the following effects on social evolution: 

o Groups become internally more cohesive 

o It drives technological progress, including military and organizational 

applications 

o It triggers the enlargement of group sizes, since ―God always favours the big 

battalions‖ – as formulated by either Napoleon or Turenne.  

 On the other hand, the capacity of the human brain has its limits as it cannot handle the 

social relations in detail among more than around 150 people (known as the ―Dunbar 

number‖ after Barton and Dunbar (1997)). In other words, there is a limit on the size of 

egalitarian, face-to-face human groups. 
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Given the above, there exists a pressure on the group size to grow while this enlargement 

has biologically rooted barriers. According to Turchin and Gavrilets, the evolutionary response 

to this dilemma was the appearance of 

 

1. the ability to demarcate group membership based on cultural traits (language, dialect, 

clothing, etc.) 

2. hierarchical organization, allowing groups sizes to grow basically ad infinitum, since 

each element within a given level of a strictly hierarchical system needs to have at most 

n+1 connections: n is the ―span of control‖, and the +1 accounts for its superior. 

 

If this hypothesis holds, more intense warfare results in bigger polities (political entities) 

with more hierarchical levels. In order to test this hypothesis they conducted numerical 

experiments by constructing the following agent-based model: The modelled area is divided into 

hexagonal cells (each representing a village) as shown in Fig. 3.12. Each of these autonomous 

local communities are characterised by  

 

 a base-line resource level, accounting for the heterogeneous environment, defining the 

productive/demographic potential of the region (a ―tunable‖ parameter.) 

 actual resource level: the base-line resource level minus the costs of the various actions in 

which the given community participates 

 

 
 

Fig. 3.12 An example of the model's realizations. This system consist of 37 communities organising themselves into 

four polities The numbers in the hexagons mark the chief communities. a Spatial view. b The hierarchical structure 

being tree-like as in most of the agent based models of community formations. Reproduced from Gavrilets et al. 

(2010). 

 

Each polity is organised in a hierarchical way (consisting of one or more 

villages/communities). Each subordinate community pays a fixed portion of its total resource to 

its chief village as tribute. Accordingly, the total resource level of a community is its base 

resource level minus the tribute it pays for its superior community plus the tribute it receives 

from its subordinates. 
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According to their estimated chances, polities may rebel or engage in warfare (conquest or 

being attacked) due to which their size permanently grows or decreases. A polity will attack its 

weakest neighbour if (i) it estimates that the attack will be successful, (ii) it is ready to pay the 

corresponding costs and (iii) it is not too devastated from previous wars. Quantitatively, the 

probability of an attack is: 

 

 
               

  

    
 

(3.3) 

 

where the terms are the following: 

The first term, Pij , which is the probability of the attack by community i on community j to 

be successful, increases the probability of the attack. The probability of success is 

 

 
    

  
 

  
    

  
(3.4) 

 

where Fi is the power of polity i and „a‟ is the ‗success probability exponent‘.  

The second term,       , accounting for the cost of warfare cij , decreases the probability of 

the attack. β is a parameter and Fi,0 is the maximum possible power of polity i.  

Each time step is considered to be a year. Each year the chief community of a polity decides 

whether to launch an attack on its weakest neighbour or not. If it decides to go on war then first it 

attempts to conquer the bordering communities, followed by a series of ―battles‖ until it either 

suffers a defeat or the chief community of the victim polity falls.  Annexing the conquered 

communities may require restructuring the hierarchical organization of the winner polity since 

the number of subordinates of any community has constraints (a parameter varying between 4 

and 10).  

When launching an attack, the direct subordinates of the aggressor chief community might 

decide to secede if they estimate that the attack will be unsuccessful. In this case the chief polity 

attempts to supress the rebellion, which, if successful, leads to spatial separation from the master 

state. All the subordinate communities of the rebelling village will secede too.  

 

 
 

Fig. 3.13 The size (a) and the hierarchical complexity (b) of the polities under low and high pressure of war. 

According to the predictions of the model, intense warfare results in larger and more complex polities. Reproduced 

from Turchin and Gavrilets (2009). 
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This model provides a fission-fusion cycle reminiscent of the dynamics characterising early 

states of humans. More importantly, the effect of the intensity of warfare on the complexity and 

sizes of polities can be analysed. As it can be seen in Fig. 3.13, low level of warfare results in 

considerably smaller polities regarding the extent of their territories (Fig. 3.13 a) with less 

hierarchical levels (Fig. 3.13 b). In contrast, high level of warfare results in larger and more 

complex polities, in accord with the case of historical societies (Turchin and Gavrilets 2009).  

The final purpose of such models is to gain a deeper understanding of the dynamics of 

historical events by reproducing (at least some) properties of historical polities. Using an 

improved version of the above model, Turchin et al. (2013) tested its predictions for a realistic 

landscape of the Afro-Eurasian landscape against real historical data. The main proposition to be 

tested was that costly institutions enabling large human groups to stay together within one 

political unit and function as one society evolved as a result of warfare. More specifically, they 

compared the model‘s predictions with a large dataset documenting the spatiotemporal 

distribution of historical (large-scale) societies appearing in the Afro-Eurasian lands between 

1,500 BCE and 1,500 CE (See Fig. 3.14). 

 

 
 

Fig. 3.14 Comparison of the predicted (b, d, f) and ―measured‖(a, c, e) data. The model predictions (―Data‖) are 

averages of 20 runs. The colour codes are the following: green: the absence of large-scale polities within the given 

time period, yellow: moderate density of large polities, and red: regions where large polities arose frequently. 

Reproduced from Turchin et al. (2013) 

 

Until now in this subsection we have seen ―political hierarchy‖ formed by superior and 

subordinate communities. But this is not the only type of hierarchy that is manifested in large-

scale societies. Inequality, the wealth distribution among members is another type, the one that is 

triggering much more attention and, accordingly, has much more extensive literature. However, 
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quantitative models are scarce in this field as well. Here we shall mention only one quantitative 

study briefly.  

By using a game theoretical approach, Carles Boix (2015) argues that voluntary cooperation 

exists only in small scale egalitarian communities, while economic growth inevitably brings 

about inequality (hierarchy), breaking down spontaneous cooperation. Economic growth usually 

results from technological development, such as plant domestication or the appearance of a new 

agricultural tool. According to his model, these changes precede the formation of state – which 

statement is in contrast with the main-stream view holding that the formation of state was first, 

and inequality appeared as a result of it. (In his work institutions play a much more limited role 

than it is usually assumed.) According to his framework, group members benefiting from the 

technological change can be considered as ―producers‖, while those group members who are not, 

will be the ―looters‖. The state emerges as a result of this situation. The type of a given state 

depends on the primary military technology: if the technology favours looters (e.g., those who 

use horses), monarchies tend to rise, while military machineries favouring producers (e.g. navy) 

call forth republican polities. The early states were mostly monarchies, but some of them were 

republican or mixed. Inequality tends to be higher in monarchical polities, but it depends on 

political institutions and other endowments as well. 

 

3.2.3 Nested hierarchy structure of human societies 

 

Up to this point, when discussing hierarchy, we have been considering flow hierarchy. However, 

the structure of human societies exhibits a nested nature as well with a preferred scaling ratio 

between 3 and 4. (For the definition of nested hierarchy see Sect. 2.) In other words, instead of a 

continuous spectrum of group sizes, it was argued that a geometrical series of 3-5, 12-20, 30-45, 

etc. individuals (Zhou et al. 2005) per group size can be observed.  

Various anthropological studies report that both human (Kottak 1991) and non-human 

primate (Dunbar 1988) societies consist of a series of nested groups classified as (Dunbar and 

Spoor 1995, Hill and Dunbar 2003, Zhou et al. 2005):  

 

 Support clique is the smallest one with the strongest emotional ties, ―defined as the set of 

individuals from whom the respondent would seek personal advice or help in times of 

severe emotional and financial distress; its mean size is typically 3–5 individuals.‖ (Zhou 

et al. 2005) 

 Sympathy group, characteristically containing 12-20 individuals, those with special 

(―friendship‖) ties, contacting each other at least once every month.  

 Bands (or overnight camps), reported in the ethnographic literature on hunter-gatherer 

societies (Dunbar 1993), refer to those more or less unstable groups of 30-50 individuals 

whose members belong to the same clan. 

 Clan (or regional group) contains ca. 150 individuals. This formation is very typical in 

small-scale traditional societies, and this number, 150, has become known as the 

―Dunbar number‖ referring to the biological limits of human cognition. According to the 

Social brain hypothesis (Byrne and Whiten 1988; Barton and Dunbar 1997) the main 

evolutionary force acting on the formation of primate brain has been the need to 

remember, coordinate and manage the complex social relations within a group. Since the 

stability of a group depends on the intimate knowledge of each other (meaning the ability 
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to keep count of the social ties based on which the behaviour of the group mates‘ can be 

predicted), the size of the brain (assumed to be proportional to its computational ability) 

imposes a limit on the group size. Above this limit, the group inevitably becomes 

unstable and splits up. 

 Mega-band is the next level identified in the literature, comprising about 500 individuals, 

and finally the 

 Tribe unites ca. 1000-2000 individuals, those belonging to the same linguistic unit. 

 

Zhou et al. (2005) searched the sociological and other related literatures for quantitative data 

on such human groupings, based on which they constructed a dataset consisting of 61 groups. 

The 3
rd

 column of Table 3.2 indicates the mean values of the sizes for all the six group types.  

Next they calculated the ratio of the sizes of the successive groups Si-1 and Si, and found that  

 

 |  |

|    |
    8        98         8      

 

(3.5) 

 

for i=1,…,6. |….| denotes the average group size (3
rd

 column in Table 3.2), and the mean value 

of these ratios is 3.52. Based on these values, they concluded that ―humans form groups 

according to a discrete hierarchy with a preferred scaling ratio between 3 and 4.‖ (Zhou et al. 

2005) 

 
Table 3.2 Human (and other primate) societies tend to have a well-defined inner structure 

consisting of nested communities with a scaling ratio between 3 and 4. The table shows 

the names of these communities (2
nd

 column) and their mean sizes (3
rd

 column). 

Reproduced from Zhou et al. (2005). 

 

 

 Group type Mean group size 

S0 Ego (individual) 1 

S1 Support clique 4.6 

S2 Sympathy group 14.3 

S3 Band 42.6 

S4 Clan 132.5 

S5 Mega-band 566.6 

S6 Tribe 1728 

 

Being interested in similar questions, Hamilton et al. (2007) reviewed the ethnographic 

literature on hunter-gatherer societies and analysed the data of 1189 social groups belonging to 

339 hunter-gatherer societies. They also found a self-similar structure with a scaling ratio close 

to 4. Importantly, their database contained groups from highly distinct cultures from five 

continents.  

These findings all indicate that there exists a kind of biologically rooted attribute defining 

fundamental features of human (and primate) social self-organization. A further support for this 

view came from the statistical analysis of a large-scale, high-precision, internet-based social 

network formed by the players of a massive multiplayer online game (MMOG) called Pardus 

(Fuchs et al. 2014). In this game (http://www.pardus.at), more than 400,000 players control 

avatars living in a virtual, futuristic world. Their interaction is based on an internal, private (one-

http://www.pardus.at/
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to-one) messaging system through which they can communicate without restrictions. Among 

others, they can make friendships, express their sympathy or revulsion, they can trade, cooperate 

or defect. As a result, a superposition of dense social networks of various types (trade, 

friendship, communication) is spontaneously created.  

The most important result is that even though the game is purely virtual – and as such it does 

not allow face-to-face human interactions – a highly structured social system emerges, one that 

strongly resembles those found among hunter-gatherers and other ―real-life‖ human societies.  

On the low levels of the friendship and communications networks, the support cliques 

appear, containing 5.1 individuals on average. The next level contains the ―clubs‖ 

(corresponding to the sympathy groups) with 11.5 members in average. On the middle scale 

―alliances‖ appear: this type of groups is a formal establishment in the game. The average size of 

this formation is 24.7, and the biggest alliance contains 136 members – a value pretty close to the 

Dunbar number. In fact, by analysing the same game, Pardus, Szell and Thurner (2010) found 

that the upper limit for friendship and other communication communities is exactly the Dunbar 

number, a value that does not seem to change by the usage of digital media (Dunbar 2012).  

The next organizational level, the ―political factions‖ are pre-defined by the game designers, 

so at this level we finish the discussion of spontaneously emerging communities. However, it is 

important to note, that even under such conditions the group sizes on these higher levels remain 

of the same order of magnitude than the ones observed in real-life human societies.  

 

3.2.4 Phenomenological theory of collective decision-making 

 
This subsection addresses a common situation in which hierarchy manifests itself in a specific 

way. The problem to be solved is complex (or ―multidimensional‖) and, as such, needs several 

―specialists‖ to be solved efficiently. Thus, there is a simple two-level hierarchy involved: within 

a given field involving distinct/particular knowledge, specialists are significantly better at 

solving problems than non-specialists. Furthermore, as it will be shown, in an optimally working 

group specialists will have at least some level of knowledge/insight related to other sub-

problems. (Zafeiris et al. 2017) Thus, the situation has some analogies with that of Sect. 3.1.4 

where - in order to find the best solution - the abilities of the group members were distributed 

according to an order hierarchy. But, here, a similar condition should hold simultaneously for a 

number of sub-problems. 

The process of collective decision-making has generated great scientific interest for a long 

time (Clearwater et al. 1991, Forsyth 2006, Surowiecki 2005, Planas et al. 2015), since it is a 

highly relevant aspect of social group behaviour. In particular, it has been measured, argued and 

shown analytically that the ―wisdom of crowds‖ can go qualitatively beyond that of the 

individuals (Surowiecki 2005). This statement is true for both animal and human communities 

(Conradt and List 2009, Nagy et al. 2010, Couzin et al. 2011). An essential, but rarely considered 

case is when the problem has many ―dimensions‖, i.e., it has many facets and aspects. Under 

such conditions the performance of the group (the quality of the collective solution) is highly 

influenced by the composition of the group. Apparently, if the group members are identical, the 

performance of the group cannot go beyond the performance of its members. However, if the 

problem to be solved is complex, i.e., has a number of different aspects or dimensions (Vicsek 

2002) then a group with members specialized in their own respective fields of expertise is 

expected to be much more efficient in providing a high quality answer than a uniform 
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community. The stress is on the independent nature of the sub-problems, making the problem 

multidimensional. In a way, solving multidimensional problems can be considered as a 

quantitative approach to the problem of labour division (Smith 1970, Durkheim 1997) in the 

context of collective decision-making: the task is to bring about a decision, and the division is 

made among the specialists who work out the solutions for the various sub-problems. 

In spite of the above almost trivial observation regarding the necessity of specialists in 

heterogeneous/diverse groups, a quantitative demonstration of its validity needs a carefully 

constructed framework. Prior works involving quantitative analysis primarily focused on 

problems that could be regarded as ―one-dimensional‖ (Surowiecki 2005, Page 2010, Hong and 

Page 2001, Zafeiris and Vicsek 2013) in the sense that the problem to be solved needed a single 

kind of ability (for example, navigational skill). In the case of one-dimensional problems it has 

been demonstrated – by using approaches from theory (Page 2010, Hong and Page 2001), agent 

based simulations (Guttal and Couzin 2010), genetic optimization (Zafeiris and Vicsek 2013) 

and observations (Hamilton et al. 2003, Ruderman et al. 1996) - that diverse groups can 

outperform homogeneous ones.  

Some scenarios covered by the model presented below include (i) a board of directors for a 

large company, (ii) groups of animals searching for resources, (iii) a government, (iv) a scientific 

team for interdisciplinary research, etc. In the example of the board of directors a potential 

candidate for a problem can be the question of where to build the next factory. The various 

aspects of this problem are quite diverse, each of them requiring specific knowledge, like the 

history of the given country, characteristics of the labour force, education, local taxation laws, 

geographical and logistic conditions, potential markets in the region, and so on. Importantly, the 

members of the group cannot get any information about the quality of their proposals from an 

―outsider‖ knowing the optimal solution ab ovo.  

The formal description of the collective decision-making process is the following: We 

consider groups of N individuals solving a problem P having M sub-problems Pj (j=1,2,…M) so 

that each sub-problem needs a unique (specific) skill/ability to be addressed (it should be pointed 

out that P is not specified further). Thus, a set of N x M abilities, A(i,j) (i=1,2,…N) or 

levels/degree of skill is to be considered. A(i,j) corresponds to the ability of an individual i to 

give the best answer for the jth sub-problem ( - in other words, ability corresponds to 

competence).  

Next it is assumed that A(i,j) takes values from the unit interval [0, 1]. It is important to note 

that the cost of obtaining an ability A is typically not a linear function of A, since achieving the 

capacity of perfect knowledge (A=1) is much more costly than achieving a partial knowledge 

(e.g., A=0.5). For the sake of simplicity we assume that the cost C for obtaining ability A, is C = 

f(A)= Const A
x 
 (where 1< x, and Const is a constant corresponding to the relative weight of the 

costs).  

In this framework, the optimization is done with a genetic algorithm, where the evolving 

parameters are the A(i,j) values. The initial distribution is random, and the fitness function (to be 

maximized) is  

 

       (3.6) 

 

where Q is the quality of the final collective decision. 
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In other words, high fitness values correspond to distributions providing the best possible 

solution for the smallest possible (or for a given prefixed) cost. Then, the process of collective 

decision-making is divided into four basic stages. 

 

1. Each member i suggests a solution for each sub-problem Pj in a way that the quality of 

the given proposition Qij depends only on i‘s competence, Aij . This assumption, in the 

simplest case means that Qij= Aij, although, importantly, the addition of noise did not 

change our results. 

2. Perhaps this is the most essential step of the algorithm: group members, one after another, 

provide an evaluation of the proposals of the other members. If a member has zero ability 

to evaluate the proposal for a given sub-problem, then the contribution of this member to 

choose an otherwise excellent proposition becomes totally erratic. Conversely, even a 

relatively small ability to estimate the right quality of a proposal results in a decreased 

level of randomness in the evaluation and, in this way, provides a more accurate estimate 

of the quality of the proposition. Formally this step is described as next: The evaluation 

of member i‟ regarding the quality Qij is denoted by    
   and it is proportional to Qij (the 

quality of that given proposal). The accuracy of the evaluation    
   is distorted by a 

stochastic factor representing that those members who have small abilities to evaluate a 

proposal belonging to a given field of expertise j (that is,      is small), tend to make 

mistakes during their evaluation with an amplitude involving randomness.  

 

    
            (      )       (3.7) 

 

where Rand is a random number from the (0, 1) interval.  

3. ―Round table discussion‖. This step refers to the stage when somebody (most often, but 

not always an expert of the given field) tries to convince other members of the group 

about her/his opinion by sharing her/his ideas. Formally, X% (X=10, 20 or 30) of the N 

members is chosen in proportion to their ability in the given field to present their 

evaluations, to which the evaluations of others converge.  

4. Finally, the quality of the solution for a given Pj is obtained by accepting the proposal of 

member i∗ receiving the highest average evaluation. The quality Q of the solution for the 

original problem P is then obtained by aggregating these proposals (having the highest 

evaluations) for all the j=1…M fields, after the last round. 

 

The most important result is summarized in Fig.3.15 c, where each column represents a sub-

problem (specialty), and each row refers to an individual (group member). The colour of the 

square in the i
th

 row and j
th

 column corresponds to Aij, according to the colour bar (Fig. 3.15 d). 

As it can be seen, there is exactly one red square in each column, meaning that exactly one 

expert is needed for each field. By and large, these results overlap with the general intuition 

(holding that a well performing group needs a specialist for all fields, but no more ‖extra 

knowledge‖ is required from other members). What is less intuitive is that the rest of the squares 

are not homogeneously dark blue (corresponding to close-to-zero knowledge), but they are all 

shades of blue, meaning that in a group, optimal decision can be made if the members have at 

least some idea of other members‘ field of expertise. This result is likely to be due to better flow 

of relevant information among the group members. 
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Figure 3.15 a and b depicts the course of optimization: the fitness function F, the quality of 

the solution Q, the cost C and the diversity D, as a function of the generation number G. In all 

cases we find that the optimal distribution of the abilities is highly diverse. Diversity is 

calculated according to (3.8) 

 

 

  
∑ [(   

 
   )     ]   

  (   )
 

 

(3.8) 

because this definition – motivated by Freeman (1978) –  differentiates appropriately among the 

diversity of distributions in a way being both in  agreement with the intuition and sensitive 

enough in the range determined by the actual distributions of Aij-s.  

The plots in Fig. 3.15 display the behaviour of the model for N=10 and M=14, but these 

features of the optimal ability distribution do not differ qualitatively for other sets of N and M. 

Random initial conditions correspond to relatively low fitness values and high costs. The 

efficiency/fitness of a group quickly increases at the first stage of the optimization. It is to be 

noted that higher fitness values (F) correspond to higher diversity values (D). 

On the left (sub picture a) the ability cost is fixed, referring to a more general situation 

where a fixed amount of resource can be distributed among the members. Sub picture b belongs 

to the case when there is no pre-defined limit regarding the growth of the ability values, except 

for the fitness function in which it appears as a cost. (Note that the average ability is not the 

same as the cost of ability because C is not a linear function of A.)  

 

 
 

Fig. 3.15 The process (a, b) and the result (c) of calculating the optimal distribution of abilities, A
OPT

(i,j), using 

genetic algorithm as optimization method. The course of the optimization: the fitness (F), the diversity (D) and the 

average ability level as a function if the generation number (G). In sub figure a the ability cost (C) is fixed to 0.3 

(hence the fitness function F depends only on the performance of the group Q). On sub figure b the fitness F is 

calculated as F=Q-C, that is, C is not fixed. The averaging is made over a population size of 2000 groups. The 

corresponding diversity, D, is indicated by black line. The groups consisted of N=10 members and the problem P 

had M=14 sub-problems. Sub figure c displays the optimal ability matrix visualized by colours - the scale being 

indicated in d. These results describe a generic case, into which a few plausible assumptions are incorporated: the 

sub-problems have equal importance (weight) and X=30% of the members take role in the round-table discussion. 

The most relevant message of c is that there is one specialist for each sub-problem and, perhaps rather intriguingly, 

the specialists are found to have a clearly non-negligible competence concerning several of the other sub-problems. 

If we add some cost for the case when a single person is a specialist of more than one sub-problem, the solution 

ceases to have multiple specialities per person. Reproduced from Zafeiris et al. (2017) 
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Up to this point a certain ratio of evaluators (commenters) were assumed during the 

discussion phase. By fixing various values Xe (e=1,2,…) for this ratio and assuming a related 

cost function Ct = Constt f(Xe) the full cost function becomes the sum of the formerly introduced 

C and Ct. 

Figure 3.16 shows how the efficiency (fitness) of a group depends on the number of contributors 

for various time-dependent cost coefficients. It is interesting to note that for a range of 

parameters the optimal number of contributors is scattered in a range around 30% of the size of 

the group. In this way we can support a widely observed phenomenon as well regarding the 

relation of the efficiency of a meeting and its duration. 

 

 
 

Fig. 3.16 Efficiency of a group as a function of the number of commenters during the negotiation phase, for various 

time cost values, in a group consisting of a: 10 and b: 20 members. For a range of the parameters the maximum is 

scattered around 0.3% of N where N is the size of the group. 

 

 

The above results are also exemplified by a number of studies on collaboration, especially 

on the creative groups formed by scientists, working on solving increasingly complex problems. 

At a recent meeting (Ball 2015) on interdisciplinary science it was concluded that productive 

interdisciplinary researchers have a deep knowledge of at least one field but also a working 

awareness of others. In other words, during broad collaborations individuals' breadth is as 

important as their depth of knowledge within their own field of expertise. In fact, Uzzi and 

collaborators have shown using huge bibliographic data sets (see, e.g., Wuchty et al. 2007, Uzzi 

et al. 2013) that papers of high impact tend to be produced by larger collaborations involving a 

broader scope of knowledge. One interpretation of these observations is likely to be related to the 

growing relevance of interdisciplinary research, requiring various kinds of specific scientific 

inputs. 

The formalism discussed in the present subsection covers applications to more specific cases 

corresponding to various real-life situations. It can be considered as the decision-making 

equivalent of the ―division of labour‖ concept. It can also be easily generalised to cases with 

various relative weights/influences of the members of a group (depending, e.g., on their social 

status in an organization). Additional future research could address further interesting questions 
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such as, e.g., the effect of ―overlapping‖ problems, the optimal size of a group for a given 

number of sub-problems, the most reasonable time interval spent on discussions, etc. 

Furthermore, the bilateral relations among the members (which may be interpreted as an 

underlying network) can also play an important role in finding the best solution.  
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4 Experiments on the emergence and function 

 

By the nature of the subject, it is very difficult to obtain data about the emergence of hierarchy in 

actual living systems. In most of the cases the process is too slow, and the documentation of the 

relations among the organism is too difficult for being available in the required details. For 

example, it is clear that evolution resulted in hierarchies both concerning a single organism as 

well as a whole social community of them. The available data is more like a timeline than a set 

allowing a deeper insight into the process itself. In this Chapter we discuss two experiments 

which were used/designed to track down how a hierarchy of leader-follower relationships can 

emerge in a group of humans over a week, or even about an hour. 

4.1. The Liskaland camp experiment 

4.1.1. The Liska model of economy 

 

In his theory, Hungarian economist Tibor Liska introduced a model of a ―trans-capitalistic‖ 

socio-economic system (Liska 2006, Liska 2008). This system would be trans-capitalistic as it 

would operate in a way that is self-regulating through a ―pure‖ market and unlimited competition 

to a higher degree than present day capitalism. In this model, property itself is fully open to 

competition as gaining control over property in open competition is regarded as a fundamental 

human right. The model allows the state to have only the role of a „referee‖. Accordingly, this 

system needs a drastic reduction of the role of the public sector and it must be totally self-

controlled. The self-controlled economy would also manage redistribution, education, 

environmental problems and all other socio-economic subsystems much more efficiently than 

present-day economies. The theory envisions a society without taxation, where all income is 

fully personal and all property (that is, means of production) is social but is in personal 

stewardship. The research produced substantial results.  

In the model the means of production should be owned by those who can generate the 

maximum profit from them, so properties would be openly and freely competed for. Everybody 

must have the right and the option to become a runner in this competition starting from a base 

level and, depending on his/her performance, can move forward. To achieve this goal, a new 

form of ownership was proposed: it is termed personal social ownership. It stands between 

private ownership and tenancy-type holding of property, while its status is significantly closer to 

private ownership. On the basis of personal social ownership, the bidder who guarantees the 

maximum of long-term profits will be selected for the position as owner, under the condition that 

he/she can keep this position only as long as he produces the maximum of long-term profits.  

The basic principle is that anyone has the right to make decisions and his further possibilities 

should depend on the result.  According to Liska, ―…systems in which one decides and others 

bear the cost of the decision are not desirable‖. The model assumes that people want to arrange 

their own things and do not like if others tell them what to do. While the other expectations of 

the model are justifiable relatively easily, this one is an exception. There are numerous people 

who do not like to make decisions even concerning their own interests. They prefer to follow a 

leader who tells them what is right and what is wrong.  

From among the elements of the model, the two most essential have been elaborated in 

precise detail.  
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- Social inheritance means that the income produced by one generation will be 

redistributed among the members of the next generation, which would also guarantee the 

most efficient way of spending money.  

- Personal social ownership would meet the selection criteria of putting the right man in 

the right place, the right man being the person who is able to manage the property in the 

most profitable way.  

 

 

4.1.2 The experiment 

 

Due to the above mentioned tendency of people trying to follow those who they think are better 

at making good decisions, we expect that in a simple realization of the ―Liska economy‖ a 

system of leader-follower relationships is gradually built up. Such a highly simplified version 

took place in a 2012 summer camp called ―Liskaland‖ for participants coming with various 

backgrounds (the related results – see below – have not been published). The camp is a mini-

society following the rules of the Liska model. Participants had to make financial decisions and 

competed to gain more ―öki‖ – the currency of the camp, with those turning out after a week to 

be the most successful ones winning prizes. In the Liska model, certain rules of the game are set, 

but otherwise there is an extremely minimal role of the state and the public sector, and an 

emphasis on unlimited market competition (Cropanzano and Mitchell 2005). The participants of 

the camp could bid for ownership of certain enterprises on the first day of the camp. During the 

camp these enterprises provided basically all of the services, such as accommodation, food, etc. 

Nothing was for free – participants had to buy these services. They also had to organize the 

functioning of these services (as owners of the services or as paid helpers of the owners). The 

camp lasted for 8 days. Each day of the camp simulated 1 year, so events happened fast, with 

enterprises switching often between owners. Financial decisions had to be made in situations 

where there were several uncertain factors (what will be the income of the enterprise, etc.). 

Further details can be found in Liska (2011). 

Dataset — 96 people (mainly university students) participated in the camp, 82 of them were 

competitors, the rest took part as organizers and as workers in the ―state‖ companies, such as the 

bank. On the first day the competitors were asked to fill out a questionnaire, and 73 of them filled 

it out. Average age of the respondents was 22 (Mones et al. 2013). 

In case of a range of monetary transactions competitors had to check into a computer system 

with username and password to manage their transactions. At this point they were presented with 

questions on the computer monitor regarding their decision making. They were offered pen-

drives as incentives to answer the questions and the camp leaders also repeatedly asked 

participants to help the research. As additional incentive, those who cooperated were offered 

information on how many other people marked them in their own replies to these questions. In 

this paper, we concentrate on answers to the following query: ―Whose decisions did you follow 

(by making similar decisions) – when making economic and other decisions?‖ Participants were 

given this information linked to the question: ―Following someone‘s decision means that you 

have reached a decision, because you found out about that persons decision and you chose to do 

in similar fashion.‖ As answer they could choose one or more people from the participants of the 

camp. 72% of the competitors answered the questions at least once during the camp. 

Local reaching centrality — A directed network was then built based on the answers. In the 
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network, each node represents a participant and there is an edge pointing from A to B if 

participant B followed the decision of participant A (i.e., B marked A in the questionnaire), see 

Fig. 4.1. As a simple filtering procedure, the participants who were chosen by a single participant 

but did not choose anyone were removed, thus reducing the effect of incidental answers. In order 

to describe the influence of each participant, the local reaching centralities, CR(i) were calculated 

(see Sect. 2.1.2). 

 

4.1.3 Results 

 

Hierarchical layout — Visualization of the hierarchical relations inside the network of decisions 

based on following the others is based on the distribution of CR(i) (see Sect. 2.1.2) .  

 

 
 

Fig. 4.1 Network of leader-follower relationships corresponding to the directed interactions between the 

participants of the ―Liskaland‖ experiment. The graph in a was generated by the approach reviewed in the 

visualization part. Reproduced from Nepusz and Vicsek (2013). In b the uppermost part of the whole network is 

shown, while c shows the corresponding ID-s, reaching centralities and final ranks of the participants. 

Visualization was made according to Sect. 2.2.2.  
 

In Fig. 4.2, we plot the histogram of the local reaching centrality of the Liskaland network in 

comparison with those of the random network. The random network (Erdős–Rényi graph) is 

generated by taking N number of nodes and adding M number of directed edges between 

randomly chosen nodes (with uniform distribution), where N and M are the number of nodes and 

edges in the Liskaland network. The corresponding distribution of the random network is 

determined from the average of   6 realizations. It is obvious that the distribution of CR(i) in the 

Liskaland network is more heterogeneous, having a high peak at very small values and 

decreasing slowly. This means that most of the participants do not have influence on the others. 

However, there is a small fraction of the participants that have large local reaching centrality. On 
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the contrary, the distribution of CR(i)s in the random graph is dominated by the peak at large 

values, meaning that most of the nodes can reach a very large portion of the graph. This suggests 

that the role of participants in the Liskaland network is more heterogeneous compared to the 

random graph, which is a sign of the hierarchical organization. The above observation is also 

confirmed by the global reaching centrality values: for the Liskaland network,   
(𝐿 𝑠𝑘 𝑙 𝑛𝑑)

 

  6 8 while for the random network,   
(  𝑛𝑑𝑜𝑚)

    9  with a standard deviation of     7. 

The statistics on the random graph is obtained by a sample of the size   6. This means that the 

experimentally observed network is more hierarchical than a corresponding random graph with a 

significance level of more than 99.9%.  

 

 

4.2 Picturask 

 

4.2.1 The “game” 

 

Next we discuss an experiment named as Picturask (Mones et al. 2015) which was conducted 

over the Internet. The subjects participated in a game, where everyone had to take part in a 

common task (estimating the number of circles in an image), and the players were able to see the 

guesses of the others by clicking on the other players' tiles (displayed on the screen in order to 

inform the players about their performance). The player's actions through the game had been 

recorded, and these records were later used to inference the behaviour of the players. After the 

game, deep interviews were conducted with some of the players to see if the quantitative 

evaluations were in agreement with the players' intentions. 

From social psychological aspects the players in the game form a small group structure 

which can be characterized by interdependence where individuals act in a common interpersonal 

space, while they influence each other's actions in a special way (Johnson and Johnson 2005). In 

this Picturask, this space is somewhat artificial because it is determined by the rules of the game; 

for example direct communication was not allowed: players could only see the others' 

Fig. 4.2 Distribution of the 

reaching centrality values 

for the network of 

interacting participants and 

for a random network of the 

same size 
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anonymized guesses. It depended on the player whether he/she considered and/or accepted the 

tip of a number of selected other players as an advice. 

This setting is similar to the one considered in social exchange theory (Cropanzano and 

Mitchell 2005) where the subject of interaction is the information about each other's tips. Players 

gain this information from the colour of the tiles therefore tiles can be identified as heuristics. 

The theory of heuristics describes the stereotyping pattern of human being where a complex 

question may be often answered with a simplifying method – like players tend to judge a tip 

based on the colour of tiles (darker is better). 

Altogether 170 users signed up for the game of which 96 participated in more than 90% of 

the turns. The majority (89%) of the players were of age 18 to28, thus 65% of them received at 

least bachelor's degree or equivalent, and33% accomplished high school. 56% of the players 

were female. Subjects were divided into three groups to play the game, each group playing on 

different weeks, for three consecutive days. Participation was encouraged by a 2000HUF reward. 

(Equivalent to 6.7 EUR, approximately 1% of average salary in Hungary). Four players with the 

best results were assured to get special awards as motivation. 

 

4.2.2 Methods 

 

A player participated in the experiment on-line, from home, or from any other place, they could 

have access to the World Wide Web. The game was based on standard LAMP architecture, and 

players were able to participate through a standard Internet browser. The competition involved 

making 45 decisions/guesses and took less than an hour per session. Sessions were arranged 3 

times per week and each starting at 7p.m. over a time interval of 3 weeks. 

During the game the participants were asked to make a simple estimation: they had to guess 

the number of bubbles on randomly generated images (Fig. 4.3). As the game advanced, the 

correct answer changed with a relatively slow frequency in order to mimic the collective decision 

making process modelled by Nepusz and Vicsek (2013). The actual number of circles changed 

once in five turns, even though this was unknown for the players. Whilst answering, the player 

could reveal the previous answer of a maximum of 10 other players in each turn by clicking on 

its tile (Fig. 4.4). This act was considered as ―asking for advice‖, and the player being asked was 

called advisor. One of the motivations for this process was to see if the results of the related 

agent-based simulations (Nepusz and Vicsek (2013), Sect. 5.1) could be reproduced in real life. 

 
Fig. 4.3 This is a sample picture 

illustrating the one shown to the players 

who have to guess the interval between 

two numbers (see Fig.4.4) into which the 

number of coloured disks falls. 
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Depending on the ratio of advices that turned out to be correct, the tiles of the rivals became 

darker, indicating those advisors who gave the player the best advices. The estimated knowledge 

(the ratio of correct advices) was also displayed on the rival tile, but no other information was 

available. In fact, the rivals were displayed in a random permutation for each player in order to 

avoid potential biases introduced by the order of the tiles (Fig. 4.4). 

 

 
 

Fig. 4.4 Snapshots of the Picturask interface. The task was to estimate the number of circles shown for a limited 

time (5 seconds). On the answering interface (above), users were allowed to find out the previous answer of 

selected (by them, and at most 10) other users. They were provided by a panel of the others (Other users) which 

also displayed the success ratio of the previously inquired users encoded in the colour of each tile. Inquired 

advices were displayed in the Advice panel. 
 
For the analysis of the game logs various methods were used in order to represent the social 

structure at the end of the game by a graph. In this graph nodes represented the players, and a 

directed edge indicated a leader-follower type relation between the players: in the case the source 

node often asked advice from the target node the direction of the edge pointed from the target to 

the source node (Fig. 4.5). Global reaching centrality (GRC) was used to quantitatively describe 

the level of hierarchy in the resulting networks. Importantly, GRC was significantly higher in 

real setups than in those with a randomized version of the corresponding networks or the 

randomized control experiments. 

 

4.2.3 Results 

 

The primary conjecture about the experiments was that since the less well performing players 

would prefer to ask the advices of better performing individuals, they would voluntarily arrange 

themselves into a hierarchical network. Therefore, out of the nine games, two were so-called 
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control experiments, where the advices provided were randomized thus eliminating apparent 

differences in performance between players. 

It is worth mentioning that although the resulting structures in the real and control 

experiments were rather different, the majority of the players did not notice any difference 

between the true and the scrambled games/guesses. This is likely to indicate the existence of a 

characteristic time that is necessary to discover differences in performance; otherwise the social 

structure remains random. 

 

 

 
 

Fig. 4.5 Hierarchical structure of the leader-follower relationships. Two illustrative examples of the structures 

that emerged during the game as players queried advice from others: a Game 6 (regular experiment) and b Game 

9 (control experiment). Colour intensity indicates the performance of the users, and edges pointing upward in the 

network are drawn in red colour. As the structure of the consecutive levels indicates, the network of influences in 

the regular experiments features hierarchical characteristics in contrast to the one found in the control 

experiment. Visualization was made according to Sect. 2.2.2. 
 
 

Based on the interviews made after the 9 sessions had been over, it became clear that there 

had been three main stages of decision making in Picturask. First, the player makes an initial 

guess, then he/she collects information from others, at the end of the 1 minute given for an 

answer the player makes a final decision using the information collected from others. It is 

important to separate information gathering from the decision making process. 

The only information a player new about the others was the colour of the tile corresponding 

to the ratio of correct advices by the person represented by the tile. Even if the players did not 

understand what the exact meaning of the tile was, they used it as a heuristic: linking good 

performance with the colour of the tile. Thus, the colour had two functions: in most cases, it 
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indicated the pool of possible advice givers and the order of asking advice (the darker is better), 

but it also could give more weight to the advice of some players. 
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5. Modelling emergence and control 

 

In this Chapter we shall consider some of the dynamical aspects of hierarchical systems as 

obtained from simulations of the related models. Although the emergence of hierarchy and the 

optimal ways of controlling the processes in a hierarchical structure represent two of the most 

relevant aspects of the subject of hierarchy, the related results are far from being complete. 

Further research in these directions is of essential importance.  

Relation to game theory: In the related works emergence is typically considered as a result 

of optimizing a quantity which is called by various names (e.g., performance, effectiveness) but 

is analogous to the notion of fitness. And, much like in game theory, fitness has a positive 

ingredient (benefits) and a negative part associated with disadvantages (costs). Although the 

models we discuss can be mapped onto games, our preference will be using the language and the 

techniques of networks, agent based modelling and statistical mechanics.  

 

5.1 Emergence of hierarchy in model systems  

 

This section is about approaches involving simple models that are capable of reproducing the 

emergence of multi-level network structures based on the degree to which the units (individuals) 

are able to contribute to the efficiency (capacity to operate on a high level) of the system. We 

shall adopt terminologies that are, on one hand, used in statistical mechanics and network 

science, while, on the on the other hand, being typically used in the context of organizations and 

the underlying networks of collaborations. However, we expect this framework to be applicable 

to a significantly larger class of systems. Thus we consider the groups of humans as a paradigm, 

but our approach is so general that it is expected to be applicable to simpler systems such as 

groups of collaborating animals (apes, wolfs, etc.) as well as complex machines constructed by 

people. 

There are only relatively few works on how a hierarchical network structure emerges. We 

first briefly discuss two works that describe the emergence of networks which have undirected 

edges only, but can be considered to be hierarchical from the point self-similarity. Mengistu et al. 

(2016) investigate the changing structure of networks using evolutionary arguments. They 

evolved graphs which can be regarded as computational abstractions of animal brains. Such 

structures are commonly called artificial neural networks (ANNs) and can solve hierarchical 

Boolean logic problems (Fig. 5.1). Evolving the ANNs with or without a cost for network 

connections leads to qualitatively different results. Specifically, the experimental treatment 

selects for maximizing performance and minimizing connection costs (performance and 

connection cost, P&CC), whereas the control treatment selects for performance only 

(performance alone, PA)  

A comparison of the evolved networks (under varying conditions) resulted in the conclusion 

that the P&CC networks are significantly more hierarchical, modular, than those of the P&A 

ones and solve significantly more sub-problems.  
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Fig 5.1 The main hypothesis. Evolution with selection for performance only results in non-hierarchical and non-

modular networks, which take longer to adapt to new environments. Evolving networks with a connection cost, 

however, create hierarchical and functionally modular networks that can solve the overall problem by recursively 

solving its sub-problems. These networks also adapt to new environments faster. Reproduced from Mengistu et al. 

(2016) 
 

Lee et al. (2011) used a game theoretical type model to investigate how social structures 

emerge. In their approach, a number of feedback couplings from the behaviour of the agents to 

their environment was assumed, and this is why it could be considered as a multiadaptive game. 

The expressions they used were relatively simple – and somewhat arbitrary – still the resulting 

behaviour of the network of agents was very rich since even the strategies of the agents were 

evolving as a function of their interaction network configurations. In one of the phases the 

simulated networks had the scaling of the distribution P(k) of the degrees k of the nodes as well 

as the clustering coefficient C(k) as a function of the degree of the nodes. Here C(k) is the 

average of the ratio of the triangles around a given node to the total number of potential 

triangles). Such a simultaneous scaling was showed by Ravasz et al. (2002) to correspond to a 

self-similar structure. Since the edges were undirected we consider this type of self-similarity as 

a less pronounced manifestation of hierarchy then the one based on directed flows. 

Now we turn to discussing directed hierarchical networks. Corominas-Muntra et al. (2013) 

do not discuss realistic criteria leading to emergence, but their work is still interesting from the 

point of our subject. They consider a set of possible mechanisms leading to a very wide set of 

potentially realizable hierarchical structures with directed edges. Four major kinds of hierarchies 

were identified by analysing the large voids in the morphospace defined by the authors. Two of 

them matched those structures what were expected from random networks with similar 

connectivity, thus suggesting that nonadaptive factors were at work. Ecological and gene 

networks define the other two domains, indicating that their topological order is the result of 

functional constraints. We presented more features of these results in a different context in Sect. 

2.1.3. 

Next we describe in more detail a model which was designed to investigate how 

advantageous leader-follower relations result in the emergence of hierarchy in the presence of a 

changing environment (Nepusz and Vicsek 2013) 

 

The assumptions of the model were the following: 
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i) A group of people is embedded in a changing environment. Better adaptation (by which 

we mean the ability of finding out about the new conditions as quickly as possible) 

represents one of the core advantages an individual can have.  

ii) The individuals possess different abilities to hold on in such a constantly varying 

environment on their own,  

iii) The actors constantly monitor the decisions of their group mates which observations alter 

their own decisions. The effect on their own decisions is proportional to the degree to 

which they trust the judgment of that certain other group member, as compared to their 

own level of competence. The degree of trust is dependent on the prior success of the 

observed group mates. 

iv) Maintaining a connection with another group member has a cost (effort).  

 

Once the above assumptions are integrated into a set of rules that are corresponding to a 

game theoretic-like, stochastic model, a collaboration structure emerges in which the leader-

follower relationships manifest themselves in the form of a multi-level, hierarchical network. 

This network is at the same time both stable and sensitive to the changes in the environment, 

according to which it is capable to re-wire itself in a dynamic fashion. Omitting any of the above 

four assumptions leads to the loss of the emergence of the multi-level, hierarchical structure. 

 

The main steps of the decision making process are:  

 

1. The state of the environment is simply given by a value of either 1, 2 …or l. After the 

state assumes one of these values it sticks to it and changes to a randomly selected 

other state only with a probability p. where p is in the range of 0.05-0.2. 

 

2. The actors have different abilities to find out the state of the environment (that is, to 

―adopt‖ to the environment), described by a pre-defined parameter taking values from 

the [0, 1] interval according to some distribution. In each turn, the guess of each 

individual is based on the weighted average of (i) its own estimation, and (ii) its 

interactions with the other k=1, 2,…,m most trusted other actors. (k typically ranges 

between 2 and 7). 

 

3. In each round, after each agent has finished with the decision making, the actual state 

of the environment is revealed, letting the actors finding out which one of them has 

made the correct decision and which one of them made the incorrect estimate. 

 

4. Based on the above information the so called ‗trust matrix‘ (T(i,j))is updated, in which 

the values correspond to the degree to which actor i trusts actor j. This trust is 

proportional to the number of rounds agent i made use of the estimate of agent j in a 

way that the guess of agent j contributed positively to the guess of agent i. Accordingly, 

the trust-level of an individual is based on his/her prior performance. Agents that are 

more trusted are ―listened to‖ more frequently.  

 

By iterating the above steps, the dynamics of the system typically converges to a trust matrix 

in which the values depend on the original abilities of the actors in a non-trivial way. A typical 

run starts with a uniform trust matrix (except for the values in the diagonal positions) converging 
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to a state that corresponds to a much better performing set of interactions and a hierarchical 

structure (See Fig. 5.2). 

 

 
 

Fig. 5.2 The dynamics of the model as a function of time and noise for various ability distributions. Each column 

represents a different ability distribution with the same mean and a variance. The distributions are: (i) constant,(ii) 

normal, (iii) log-normal and (iv) power-law respectively. The upper row corresponds to the noiseless case; whereas 

the middle one corresponds to 20% relative noise, where noise stands for randomly perturbing the decisions directly 

following from the rules of the model. The middle and the bottommost curves correspond to two different hierarchy 

measures: (1) fraction of forward arcs and (2) global reaching centrality (GRC). In both cases the hierarchy level is 

expressed as numbers between 0 and 1, where 0 corresponds to ―no hierarchy‖, and 1 corresponds to ―maximal 

hierarchy‖. The topmost lines (small red circles) show the improvement of the overall performance. Reproduced 

from Nepusz and Vicsek (2013). 
 

 

To create a graph from the trust matrix the following procedure is made: each agent is a 

node in the graph and the weight of the edge (reflecting how much actor i trusts actor j) is the 

element (i,j) in the matrix. Only the strongest ties are taken into account in the network. The 

resulting graphs have a hierarchical structure with multiple levels in them (Fig. 5.3). These 

structures emerge in time, as depicted in Fig. 5.2 and, in which two complementary hierarchy 

measures are shown: the ‗global reaching centrality‘, GRC, proposed by (Mones et al. 2012), and 

the normalized fraction of forward arcs, defined by (Eades et al. 1993). Both measures are 

discussed in detail in Sect. 2.1.2.  
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Fig. 5.3 An early, less stable state of the emerging hierarchical network (a) and a more stable (b), persistent solution 

corresponding to the local maximum of performance of the network showing the nodes copying decisions (indicated 

by arrows) of the other members of the group. The numbers (environment) to be guessed are denoted by colours. 

Network (b) is reminiscent of the experimental result displayed in Fig 4.1. a. 
 

Thus, the actors in the model show a strong tendency to structure themselves into a 

multilevel hierarchical organization that – apart from being a commonly seen, is an ―intuitively 

natural‖ form of self-organization – which has recently gained support from a human experiment 

as well, called ―Liskaland‖ (see Sect. 4.1) 
 

5.2 The complex efficiency landscape of hierarchical organizations 

 

In this section the emergence of optimal network structures is discussed using an approach which 

is reminiscent of the one introduced by statistical physicists in order to interpret complex systems 

using relatively simple rules of units and interactions. The original – so called spin-glass – 

approach assumes spin states (up or down) in the nodes of a network. The interaction along the 

edges is randomly ferromagnetic or antiferromagnetic and the configuration of the network is 

fixed and ranges from lattices (Edwards and Anderson 1975), through scale-free (Kim et al. 

2005) to full graph (Sherrington and Kirckpatrick 1975).  

The essential new feature of the treatment we describe below is that instead of optimizing by 

looking for a locally optimal state of the spins in the nodes of a pre-defined network, optimal 

networks are searched with the states of the nodes being fixed. Thus, the approach represents 

searching for extrema – as a function of the underlying network topology – in the complex 

efficiency landscape. In addition to the above (ferromagnetic or antiferromagnetic links), in 

contrast to spin-glass models, the edges in the underlying network of interactions have a 

direction. 

The sign associated with an edge corresponds to collaboration (positive) or antagonistic 

(negative) relations. Searching for optimal states then is carried out by modifying the network 

topology so that both the collaborating partners (within an organization) and the flow of 

influences result in a maximal efficiency.  

Within such an approach it is possible to address the question of the spontaneous emergence 

of hierarchical networks displaying behaviours some of which are analogous to those of glasses. 

By glassy behaviour we mean that while we are searching for a stable state, our structures do not 

converge to a unique network with a well-defined extremal value of their efficiency (an analogue 

of the energy in the physics literature). Instead, glassy systems ―freeze‖ into various disordered 

structures representing local extrema full of strains or frustrations. 

5.2.1 Modelling organizations 

 

The relations in an organization can be represented by a network made of directed edges 

corresponding to the leader-follower relations in the system. In this approach the ability of 

member i to contribute to the effectiveness of the organization is denoted by ai. In an ideal case 

the direction of an edge between members i and j would point from i to j if ai > aj (it is 

advantageous and is typically indeed the case that agents with higher abilities can enforce their 

decisions on agents with smaller abilities, i.e., occupy a higher position within the organizational 

hierarchy). However, with some finite probability, in a realistic case a proportion p of all of the 
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links between two members points from the less knowledgeable to the more knowledgeable 

person (Zamani and Vicsek 2017).  

Next, it is assumed that on an absolute value scale the contribution of the members is 

between 0 and 1. In addition, the joint contribution of two members Eeff,ij is linearly proportional 

to their abilities, i.e., Eeff,(i,j)= ai aj. However – and this is an essential point, when one considers 

the relations of sophisticated creatures – the interaction between two individuals can be both 

harmonic and antagonistic with probabilities (1-q) and q, respectively. In the ―harmonic‖ case, 

the contribution of the two members is positive, on the other hand, if they are in an antagonistic 

relation their interaction will result in a decrease of the total efficiency, thus their interaction 

enters the expression for the efficiency as negative contribution.  

Assuming that the total performance of the organization can be represented as the 

contribution of the pairwise interactions it follows that 

 

 

    (   )     ∑   (   )    

 

  

 

(5.1) 

 

with the summation running over nodes that have at least one incoming or outgoing edge. 

(Remark: in the original publication 1/N was used for normalizing the efficiency, however, 1/M 

is a more appropriate quantity for this purpose.) According to the above arguments about the 

possible relations between two interacting members, we assume that Jij can be equal to 1 or -1. 

For the ai values it is quite natural to use randomly generated numbers on the unit interval 

following a bounded log-normal distribution (which can be argued to be characteristic for the 

outputs of complex entities).  

The sign of Jij  and the direction of the edge ij are decided by two factors: 1) whether the ij 

edge points from the larger to the lower ability of the participants i and j and 2) whether these 

participants are compatible or antagonistic. Thus, (with the corresponding probabilities)  

 

i) Jij =1 if the ij edge points from a node with larger ability to a smaller (ai > aj  and the two 

individuals cooperate (and Jij = - 1 otherwise) 

 

ii) Jij = - 1 if the ij edge points from a node with smaller ability towards a larger one and the two 

individuals are antagonistic (and Jij = 1 otherwise) 

 

iii) If there is no edge between i and j then Jij = 0.  

 

iv) A further essential restriction has to be taken into account to make the system more realistic 

(much like as it was described in Sect. 5.1). In addition to the above, it should also be required 

that the total number of edges of a node cannot exceed a pre-defined value. 

 

5.2.2 Simulations and results 

 

The numerical experiments start out with a full graph with N nodes each associated with a 

constant ability ai  and with edges pointing towards lower ability sites from larger ability ones 

with a probability 1-p. In addition, 1 or - 1 is associated with each edge, independent of their 
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direction (however, because of the term 1-p, the number of negative edges for small p will occur 

in larger overall number for the ai > aj cases (than for ai < aj) so that the efficiency values and the 

structure of the graph become coupled. 

The next step is searching for locally optimal networks. This will be a particular subgraph 

containing M edges within the full graph of N nodes, where N is the total number of possible 

members and M is the actual one. The initial configuration is a random connected subgraph of 

3N edges. Throughout the calculations, the number of edges within the subgraphs satisfy the 

criteria that in average the ratio of edges in them pointing from a site with larger to a smaller 

ability will be equal to 1-p and the number of antagonistic interactions Jij = -1 will be, again, in 

average, qM ( for  ai < aj). The searching is much like a Monte Carlo simulation, where 

efficiency plays the role of energy times -1. In each step a randomly selected edge is eliminated 

and next two random nodes are chosen which are not yet connected by one of the M-1 edges. 

The sign and the direction of the new edge, Jij is chosen according to conditions i)-iv) outlined in 

the Sect. 5.2.1. A randomly generated new edge is accepted if it results in an increasing 

efficiency and is also accepted with a small probability of it decreases the efficiency 

Repeating the procedure results in a distribution of the individually obtained locally optimal 

efficiencies. The corresponding histogram (probability density function –  PDF) can be 

constructed for various N values to see the size effect. The properties of the networks 

corresponding to the locally optimal states were also investigated from the point of their 

hierarchical nature using the GRC measure (see Fig. 5.4).  

 

 

 
 

Fig. 5.4 Distribution of the local maxima of the efficiency values (a) and Global Reaching Centrality (GRC) values 

(b) for the locally optimal states. Averaging over the initial full graph (250 initial full graphs and for each initial full 

graph we have 250 local optimal states) of N nodes and the initial subgraphs of 3N edges and for p=q=0.2 was 

carried out. There is an overall tendency of the PDF-s as a function of the system size. GRC and the average 

efficiency grows with increasing N. Reproduced from Zamani and Vicsek (2017). 
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In Fig. 5.4 a few characteristic dependences of the related networks are depicted. Fig. 5.4 a 

shows that larger systems are likely to be more efficient, while Fig. 5.4 b shows that for larger 

networks the optimal configurations seem to fall into two classes with one having a smaller and 

another one a distinctly more hierarchical structure. In order to illustrate the variety of the 

optimal structures, in Fig 5.4 a number of typical examples are shown. These include smaller and 

larger networks (N=16, N=128), networks for smaller or larger GRC for p=q=0.2. For 

visualization we use the method described in detail in Sect. 2.2.2.  

According to the above results, the structures of the obtained networks (Fig 5.5) are such 

that they possess the two, perhaps most important features of complex systems: a simultaneous 

presence of adaptability and stability. Stability is associated with the presence of a local 

optimum. Only significant perturbations can ―kick out‖ a given arrangement of the participants 

from this favourable state. However, if the perturbation is large enough (the external conditions 

change significantly) the network can adapt itself and settle into an alternative, more optimal 

configuration that suits the new conditions better. The efficiency of the hierarchical structure is 

higher than a randomly chosen sum of the contributions of the pairwise interactions. These 

features are in an analogy with those of the glasses including spin glasses. 

 

 
 

Fig. 5.5 Hierarchical graphs in selected local optimal states of networks. Number of nodes is N=128, the other two 

parameters are p=q=0.2, a: GRC = 0.62, b: GRC=0.25. Reproduced from Zamani and Vicsek (2017). 
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5.3 Controlling hierarchical networks  

 

In this section we shall overview two approaches from a field which – although very important – 

for some reason have been overlooked by researchers in the last decades: the controllability 

properties of complex networks. This field is about the study of the conditions under which a 

network can be driven from any initial state into any final state within finite number of steps.  

This definition implies that the nodes have a state, for example the amount of traffic flowing 

through a node in, say, a traffic or communication network, or the transcription factor 

concentration in a gene regulatory graph. The question is that how and where one has to 

intervene in order to drive the system into a desired (pre-defined) condition. 

5.3.1 Structural controllability – controlling nodes 

 

The first approach, proposed by Liu et al. (2011), investigates the controllability properties of 

weighted directed networks. The main idea is to identify a set of the so called driver nodes (a set 

of vertices through which the dynamics of the entire system can be controlled). The nodes of the 

network are assumed to behave according to non-linear processes, but their behaviour is 

approximated by the following linear dynamics: 

 

   ⃗( )

  
   ⃗( )    ⃗⃗( ) 

(5.2) 

 

where  ⃗( )  (  ( )     ( ))
 is the state vector of the N nodes (in which xi(t) describes 

the state of node i at time t), A is the N×N adjacency matrix, capturing the interaction strength 

among the elements of the systems (which are the nodes of the graph), and B is an N×M matrix 

defining the driver nodes: these are the vertices which are to be controlled from the outside in 

order to drive the system to the desired state. Finally,  ⃗⃗( )  (  ( )     ( ))  is the time-

dependent input signal, the vector controlling the system. The justification of this approximation 

is that according to Slotine and Li (1991), the controllability of a nonlinear system is in many 

aspects structurally similar to that of a linear system. 

A dynamics (A, B) is said to be ―structurally controllable‖ if it is possible to choose the non-

zero elements in A and B in a way that the network can be driven from any state to any other 

final state by appropriately choosing the elements of  ⃗⃗. This property, structural controllability, 

is important, because in real-life complex systems the weights of A (the link weights of the 

network) are usually unknown, or just partly known. A structurally controllable system can be 

shown to be controllable for almost all weight combinations, thus this property helps to 

overcome the incomplete knowledge of the link weights in A. Then, the minimum number of 

driver nodes is determined by the maximum matching in the graph, which is a maximal set of 

links that do not share start or end vertices. A node is matched, if an edge in the maximum 

matching points at it, otherwise it is unmatched. Then, from here, the task is basically solved, 

because according to Yu el al (2010), full control can be gained over a directed network if and 

only if each unmatched node is directly controlled and there are directed paths from the input 

signals to all matched vertices. 

The key results of this study are the following: (See also Table 5.1) 
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 The number of driver nodes within a complex network is mainly determined by the 

network‘s degree distribution. 

 Sparse inhomogeneous networks (a type of graph very often seen in relation to real-life 

complex systems, often the ones that have evolved to control another underlying process 

such as a transcriptional regulatory network) are the most difficult to control (they need 

many input signals.) 

 In contrast, dense and homogeneous graphs need only a few driver nodes in order to be 

controlled 

 And finally, the most counterintuitive result is that the driver nodes tend to avoid the 

high-degree nodes (―hubs‖), both in model and real-life systems. In other words, control 

signals control the hubs only indirectly, which is, according to Nepusz and Vicsek 

(2012), due to the fact that in this approach the driver nodes are not able to control their 

subordinate vertices independently from each other. 

 

Importantly, these results apply for linear nodal dynamics. 

 

5.3.2. Switchboard dynamics – controlling edges 

 

Nepusz and Vicsek (2012) proposed a dynamics that takes place on the edges, instead of the 

nodes, and leads to significantly different controllability properties for the same real-life 

networks. The motivation is visualized in Fig. 5.6 demonstrating that hierarchical networks – in 

case the nodes are directly controlled by one of their neighbours or by driver nodes – need a 

disproportionally large number of driver nodes. In this model the state variables correspond to 

the edges of a directed complex network, and the vertices of the network act as linear operators 

that map state variables of inbound edges to outbound edges. It is called switchboard dynamics, 

exactly because of this property: each node acts as a ―switchboard-like device‖ mapping the 

signals coming from the inbound edges to the outbound edges, by applying a linear operator 

called mixing, or switching matrix. That is, each node has a separate switching matrix, Mi, 

enabling the nodes to control their subordinates separately.  

 

 
 

Fig. 5.6 When node controllability is considered, a given node can influence the state of only one of its neighbours. 

This needs a relatively large number of nodes to be controlled from ―outside‖ (denoted by wavy lines). Thus, an 

alternative approach may be more efficient. Reproduced from Nepusz and Vicsek (2012). 
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This arrangement is reminiscent of the characteristics of many real-life networks in which 

each node constantly processes information coming from its inbound edges and forwards them in 

a differentiated way via its outbound edges. A plausible example can be an arbitrary social 

communication network in which the nodes are the persons who constantly receive and forward 

messages, but in ways depending on the recipient. 

In this switchboard dynamics framework (SBD), each edge has a state, which is denoted by 

the  ⃗  [  ] state vector. For each i node belongs a  ⃗ 
  and  ⃗ 

  vector pair, consisting of those xj 

edge-state values that correspond to the incoming and outgoing edges, respectively, of node i. 

For example in Fig. 5.7 a, the inbound edges of node i are c and d, whose states are defined by 

the values of xc and xd, whereas its outbound edges, e, f, and g, are in the state described by the 

values xe, xf and xg, respectively. The switching matrix of this node, Mi, has three rows (out-

degree, number of out-going edges) and two columns (in-degree, number of incoming edges). 

The dynamics is controlled from the outside by adding an offset vector (or control signal)  ⃗⃗  to 

the state vectors of the outgoing edges of node i, marked with red undulate arrows on Fig 5.7 a.  

The dynamics of the network is described by the following equation: 

 

   ⃗ 
 

  
     ⃗ 

 ( )         
 ( )     ⃗⃗ ( ) 

(5.3) 

 

where σi is 1 if node i is a driver node (see Sect. 5.3.1), and 0 otherwise. The vector τi includes 

damping terms corresponding to the edges in  ⃗ 
 (t), and finally  , denotes the entry-wise 

product of two vectors being of the same size. 

 

 

 
Fig. 5.7 a The dynamics of the 

system in the switchboard dynamics 

framework is controlled by adding 

an offset vector  ⃗⃗  to the state 

vectors of the outgoing edges of 

node i (marked with red undulate 

arrows). In case this vector is not a 

null-vector, node i is a driver node. 

b The state of an arbitrary edge j 

originating in node r and 

terminating in vertex s depends only 

on itself, xj, and on the states 

belonging to the inbound edges of 

node r, that is, on the set   ⃗ 
 . 

  
 

 

In order to simplify the equation, the state variables and control signals are implicitly 

considered as time-dependent, even if the time variable is omitted. By re-writing (5.3) in terms of 

xi, the dynamics of the system yields a more simplified form (5.4): 
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 ∑  𝑘  𝑘

𝑘   
 

       𝑠   
(5.4) 

 

where wkj is an element of the switching matrix Mr belonging to node r defining the information 

process between the inbound edge k and the outbound edge j. Note that the set Γj
-
 includes all the 

state variables on which the derivative of the state variable   ̇ depends on, since it is effected 

only by itself, xj, and on the states of the edges ending on node r, that is, on  ⃗ 
 :   

  { ⃗ 
    }  

By defining all the values in Mr which do not affect the state of xj as zero (that is, those wkj 

values which are not in the set Γj
-
), we get (5.5) 

 

  ̇  (   ) ⃗    ⃗⃗ (5.5) 

 

where the W, T and H matrices are: 

 

 W=[wkj], where wkj can be non-zero if and only if the end-point of edge k is the 

staring node of edge j.  

 The diagonal matrix T=[τjj] contains the damping terms related to the edges, and 

 H is also a diagonal matrix in which the jth diagonal element is σs, if edge j 

originates in node s.  

 

(5.5) basically describes a simple linear time-invariant dynamical system in which W is the 

adjacency matrix of the line graph L(G) of the original graph G. This means that each node in 

L(G) corresponds to an edge in G, as it is demonstrated on an example graph on Fig. 5.8 a and b.  

By applying the maximum matching theorem, in the spirit as it was done in the structural 

controllability framework by Liu et al. (2011), we get a set of control paths and driven nodes in 

the line graph L(G). Note that these are at the same time driven edges in the original graph G, 

that is, a set of edges whose state should be modified in order to gain control over the network. 

Since edges can only be controlled from the nodes they are originated, this set of edges define 

the set of driver nodes as well: these are the vertices from which at least one driven edge 

originates from. As it is proven in Nepusz and Vicsek (2012), the minimal set of driver nodes in 

a graph G can then be determined by selecting those vertices in G for which dv
+
>dv

-
 , and one 

arbitrary vertex from each ‗balanced component‘. (Balanced component is a connected 

component consisting only of nodes for which dv
+
=dv

-
 , and above this, contains at least one 

edge.) 
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Fig. 5.8 Demonstration of how the switchboard dynamics approach pinpoints the driver nodes. a a simple input 

network G with six nodes and nine edges. The control applies to the edges of the network, instead of the nodes. b 

The line graph L(G) corresponding to G. A linear time-invariant dynamics on the nodes of L(G) is equivalent to 

the switchboard dynamics in G. Node labels refer to the endpoints of the edges in G. c The maximum matching 

theorem applied to L(G) returning disjoint control paths. d The control paths in G, inferred from the results 

yielded on L(G). Note how each path in the line graph L(G) became an edge-disjoint walk in G. Numbers on the 

lines represent the order in which the edges have to be traversed in the walks. The two driver nodes are a and e 

since each walk starts from either one of them. Reproduced from Nepusz and Vicsek (2012). 
 

The minimum number of driver nodes (nodes that are driven from the outside in order to 

gain control over the entire network) is found to be largely determined by the joint degree 

distribution of the network.  

The following survey of 38 real-life networks, shown in Table 5.1, reveals that under this 

approach, transcriptional regulatory networks are well-controllable with a small number of driver 

nodes and also that most real-world networks are easier to control than random Erdős–Rényi 

networks with the same number of nodes and edges (last 3 columns). 

Note that this is in deep contrast with the findings of Liu et al. (2011), who have found that 

regulatory networks need a high fraction of driver nodes and that randomized Erdős-Rényi 

networks are easier to control than the real-world ones. 

The differences are very spectacular in highly hierarchical, tree-like networks as well, in 

which the presence of central out-hubs rapidly increase the required number of driver nodes 

within the framework of Liu et al., while the same out-hubs can efficiently control many 

subordinate nodes in the switchboard dynamics – and thus decrease the required number of 

driver nodes. This is a central result, since such hierarchies are ubiquitous in nature and society, 

from scales as small as gene regulatory networks through leader-follower relationships, up to 

large-scale organizations.  
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Table 5.1 Controllability properties of real networks. First five columns: (1) type of the network, (2) its number, 

(3) name, (4) number of nodes and (5) number of edges, respectively. 6
th

 column: nD
SBD 

 , fraction of driver nodes 

in the switchboard dynamics framework. 7
th

 column: nD
Liu 

 , fraction of driver nodes in the structural 

controllability framework, (overviewed in Sect. 5.3.1), and 8
th

 column: nD
ER 

 , fraction of driver nodes in the 

switchboard dynamics framework in randomized networks using the Erdős–Rényi model and nD
Dgr

 the degree-

preserving configuration model. References to the real systems data can be found in Table 1. and the reference list 

of the Supplementary Material to Nepusz and Vicsek (2012). 
 

*: Networks in which the edges have been reserved compared to the original publication. 

†: Results calculated from the degree distribution. From Nepusz and Vicsek (2012). 

 
Type # Name Nodes Edges nD

SBD
 nD

Liu
 nD

ER
 nD

Dgr
 

Regulatory 1 Ownership-USCorp 7,253 6,726 0.160 0.820 0.339 0.085 

 2 TRN-EC-2 418 519 0.222 0.751 0.366 0.148 

 3 TRN-Yeast-1 4,441 12,873 0.034 0.965 0.415 0.033 

 4 TRN-Yest-2 688 1,079 0.177 0.821 0.381 0.137 

Trust 5 Collage* 32 96 0.344 0.188 0.418 0.315 

 6 Epinions* 75,888 508,837 0.336 0.549 0.445 0.448 

 7 Prison* 67 182 0.403 0.134 0.411 0.451 

 8 Slashdot* 82,168 948,464 0.323 0.045 0.458 0.392 

 9 WikiVote* 7,115 103,689 0.281 0.666 0.463 0.620 

Food web 10 Grassland 88 137 0.318 0.523 0.381 0.297 

 11 Little Rock 183 2,494 0.639 0.541 0.463 0.649 

 12 SeaGrass 49 226 0.449 0.265 0.436 0.433 

 13 Ythan 135 601 0.304 0.511 0.432 0.337 

Metabolic 14 C. Elegans 1,173 2,864 0.182 0.302 0.409 0.309 

 15 E. coli 2,275 5,763 0.182 0.382 0.409 0.309 

 16 S. cerevisiae 1,511 3,833 0.185 0.329 0.409 0.313 

Electronic 

circuits 

17 s208a 122 189 0.451 0.238 0.381 0.431 

18 S420a 252 399 0.456 0.234 0.385 0.440 

 19 S838a 512 819 0.459 0.232 0.381 0.442 

Neuronal and 

brain 

20 C. elegans 297 2,359 0.549 0.165 0.449 0.499 

21 Macaque 45 463 0.333 0.022 0.446 0.457 

Citation 22 arXiv-HepPh* 34,546 421,578 0.356 0.232 0.459 0.577 

 23 arXiv-HepTh* 27,770 352,807 0.359 0.216 0.460 0.569 

WWW 24 Google 15,763 171,206 0.670 0.337 0.457 0.612 

 25 Polblogs 1,490 19,090 0.509 0.471 0.460 0.501 

 26 nd.edu 325,729 1,497,134 0.271 0.677 0.433 0.301 

 27 Standford.edu 281,904 2,312,497 0.665 0.317 0.450 0.653 

Internet 28 P2p-1 10,876 39,994 0.334 0.552 0.425 0.344 

 29 P2p-2 8,846 31,839 0.344 0.578 0.423 0.344 

 30 P2p-3 8,717 31,525 0.343 0.577 0.424 0.344 

Social 

communication 

31 Twitter*
†
 41.7*10

6
 1.47*10

9
 0.402 - 0.476 0.434 

32 UCIOnline 1,899 20,296 0.216 0.323 0.456 0.375 

 33 WikiTalk 2,394,385 5,021,410 0.022 0.968 0.399 0.026 

Organizational 34 Consulting* 46 879 0.522 0.043 0.458 0.460 

 35 Freemans-1* 34 645 0.412 0.088 0.441 0.476 

 36 Freemans-2* 34 830 0.588 0.029 0.439 0.465 

 37 Manufacturing* 77 2,228 0.597 0.013 0.468 0.424 

 38 University* 81 817 0.519 0.012 0.451 0.532 
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Thus, the central corollary of the above research is that the presence (or absence) of 

hierarchical structure appears to be an important factor in the controllability properties of large 

dynamical systems.  
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6. Conclusions 

 

In this Chapter we summarize the main lessons one can learn about hierarchy by considering the 

results presented in the previous Chapters. The first point we would like to make is that we 

concentrated on works involving quantitative results. There is a huge literature on the vast 

qualitative or ―narrative‖ interpretation of hierarchies, but the number of studies based on 

calculus is rather limited. As it was already mentioned in the introduction, in this book we 

describe studies related to hierarchy in general and the particular cases we consider have been 

related to that domains of nature, which can be described as assemblies of organisms that can 

communicate by processing information as unique individuals. 

Before going into some details, we would like to point out a very general aspect of 

hierarchy. According to the studies we presented, hierarchy and complexity (as it is understood 

when the expression of complex systems is used) are intimately related. Complex systems are 

usually associated with many units displaying a widely varying behaviour, but, more importantly 

for us, a property, which is summarized by the following statement: a complex system exhibits a 

qualitatively different behaviour (as a whole) from that of its units. Now, this is true for 

hierarchical systems as well with an addition that this emergence of new qualitative behaviour 

can be associated with the existence of ―hierarchical levels‖ of an underlying network in the 

systems. 

 

6.1 General features of hierarchical structures. 

 

Hierarchy has several manifestations. We classified these as order, embedded and flow 

hierarchies. The most compelling and complex of these is flow hierarchy that assumes directed 

or undirected interactions among its units. In order to characterise quantitatively the structure of 

a system having an underlying flow hierarchy is far from being trivial. This is true for the 

visualization of the hierarchical nature of the flow of information in a complex system. 

Correspondingly, in Chap. 2 we give many related details. As it turns out even the level of 

hierarchy is a problem that cannot be defined in a unique way. This is also true for visualizing 

the hierarchical nature of a system. We overviewed a number of suggestions to quantify and 

make hierarchy visible even for the case of flow hierarchies. 

In all cases a hierarchical system has ―levels‖. Sometimes these levels are well defined, but 

not always. Each level has its own behavioural patterns and may contain groups/units made of 

closely related organisms and separated from the other groups. 

We argue that the most complex representation of a hierarchical system can be achieved by 

considering an underlying network of directed and undirected edges. In fact, we also conclude 

that in a system of organisms interacting by exchanging and evaluating information, an approach 

based on flow hierarchy is the most suitable and this is what we mostly consider in the book. 
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6.2. Origins of flow hierarchy 

 

Our main observation is that complex hierarchical systems are usually implying the relevance of 

the flow of information. This is so in part because the units are not fully informed about their 

environment. The above flow can have several manifestations: for example, the less informed 

units copy information (either by freely provided or simply obtained by ―watching), or a person 

on a higher level giving orders to subordinates.  

Based on the observations and models presented in this book our main conclusions are that 

the origins of hierarchies in systems of organisms are related to two main factors:  

 

i) optimizing the functioning and   

ii) limits concerning the resources or costs involved.  

 

Before going into a bit more detail, we point out that in practice both i) and ii) become 

dominant factors due to the incomplete flow of incomplete information. If every participant was 

aware of the exact information all the time, hierarchy would not be needed in most of the real-

life cases. 

Next, we shortly discuss point i). First of all, optimization (searching for the best performing 

state/structure of the system) typically involves finding a ―synchronized‖ regime of behaviour of 

the agents/actors. We assume that complex systems of organisms are optimal from the point of 

their structure: this is due to a natural competition/selection principle in the Darwinian sense of 

the process. There are two possible main variants of this aspect. In the first case the individual 

units are ―selfish‖ they are trying to optimize only their own advantage from the interaction with 

the others. In this ―soft‖ hierarchy there is no external, global condition that would force the 

hierarchy to emerge. We could also associate these systems with a bottom up structure. All this 

can be studied both experimentally and by modelling.  

The other main version of hierarchy is due to the simultaneous action of both the above 

points i) and ii). It usually involves an external pressure (in the context of which the 

optimization, i.e., i) has to take place). In this ―hard‖ hierarchy optimizing in the presence of this 

pressure is the interest of the whole group of organisms and it becomes the main determinant of 

the hierarchy. Examples include armies or even universities. There is a global goal which has to 

be achieved (win the battle, educate in many areas as efficiently as possible). Such hierarchies 

usually involve that the direction of the ties between the units determine the behaviour of a 

subordinate as a function of the decision of the ―boss‖. They are clearly organized from top to 

bottom. 

The above points can also be approached from a more practical approach. Points i) and ii) 

can be best demonstrated by recalling two specific examples which, on the other hand, bear the 

essential features of most of the other possible examples. (A) Let us consider a system, in which 

the participants are trying to optimize their own performance by copying the decisions of those 

group mates who are better at making good decisions. Without limitations this process would 

inevitably lead to a star-like network with everyone following the decisions of the agent with the 

highest ability to make the right choices. However, if the number of connections an agent can 

manage (as it is in real life) is limited, the above structure cannot be maintained and rather, a 

cascade of information flow appears along a hierarchically organized network (also leading to a 

better average performance than independent decisions). (For example, if 3 is the maximum 

number of edges an agent can maintain, a simple tree-like structure – with one incoming and two 
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outgoing edges – can optimally result in the best information flowing from the top to the many 

agents at the bottom of the hierarchy in an optimal way). (B) The simplest everyday example one 

can mention is that of an army (already mentioned above). If the decisions concerning many 

people have to be made on a short time scale, a hierarchical organization has a great advantage. 

Here the limiting cost is time. Imagine an ―egalitarian‖ army fighting against a ―dictatorial‖ one. 

In short: until the egalitarian army – following many rounds of discussions – make the decision 

which tactics to choose, the dictatorial (hierarchical) army – using a simple strategy – can 

override them.  

 

 

6.3 Emergence of hierarchy 

 

Obviously, this is one of the most interesting questions one can raise in the context of 

hierarchies. Most of the related studies describe historical processes without calculations. 

However, there exist by now a few quantitatively treatable models giving insight into the 

―abstracts‖ process of emergence. 

The emergence of hierarchies can be discussed in terms of evolutionary biology and/or game 

theory, with a number of relevant differences. If one aims at incorporating realistic assumptions 

and the corresponding real-life like behaviours, than exact treatment is not possible. However, 

computer simulations are feasible (see, e.g., Chap 5). In addition, numerical experiments aimed 

at shedding light on particular aspects of emergence can be carried out which is hardly realizable 

in the context of evolution. 

Thus, we present in the book a few models that involve such notions (borrowed from game 

theory and evolutionary theory) as fitness, benefits and costs. These models include specific 

definitions/assumptions for the above notions and give new insight into the mechanisms or the 

reasons why hierarchy emerges from an originally random set of connections among the units of 

a system.  

Finally, our book, by the nature of the subject, is far from being complete. There are many 

more, and we expect, there will be much more works on the topic since the pool of phenomena 

related to hierarchy is inexhaustible. We wish that our book would stimulate works concentrating 

on quantitative treatments of this exciting field. 

 

 


