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Abstract: The emergence of opinion polarization within human communities—the phenomenon that
individuals within a society tend to develop conflicting attitudes related to the greatest diversity of
topics—has been a focus of interest for decades, both from theoretical and modelling points of view.
Regarding modelling attempts, an entire scientific field—opinion dynamics—has emerged in order to
study this and related phenomena. Within this framework, agents’ opinions are usually represented
by a scalar value which undergoes modification due to interaction with other agents. Under certain
conditions, these models are able to reproduce polarization—a state increasingly familiar to our
everyday experience. In the present paper, an alternative explanation is suggested along with its
corresponding model. More specifically, we demonstrate that by incorporating the following two
well-known human characteristics into the representation of agents: (1) in the human brain beliefs
are interconnected, and (2) people strive to maintain a coherent belief system; polarization imme-
diately occurs under exposure to news and information. Furthermore, the model accounts for the
proliferation of fake news, and shows how opinion polarization is related to various cognitive biases.

Keywords: belief systems; opinion polarization; belief system dynamics; fake news; cognitive biases;
opinion dynamics

1. Introduction

As Evan Williams, co-founder of Twitter, famously said in a 2017 interview, “I thought
once everybody could speak freely and exchange information and ideas, the world is
automatically going to be a better place. I was wrong about that” [1]. This is a good
overview of the surprise that the unprecedented connectivity among people—primarily
driven by various internet-based social media platforms in the early 21st century—brought
us unprecedented factions, dissension and fake news [2,3], instead of agreement and
conciliation [4,5]. The reasons behind these phenomena are diverse and manifold and,
accordingly, are the subject of the most diverse scientific fields from history [6] through
sociology [7] to computational social science [8–10].

The quest for finding a valid explanation—and a practicable model—for the phe-
nomena of the above mentioned polarization and fragmentation has been underway for
decades. Specifically, regarding computational models, an entire field, opinion dynamics ,
has emerged in order to study the way opinions, information, views and beliefs propagate
in human communities [11–16]. In general, these models study the dynamics of attitudes
related to a certain topic, such as issues related to climate change, abortion, immigration,
vaccination, a certain politician or political party, etc. Typically, the attitudes of the agents
towards the given issue are described by scalar values which are assumed to be altered due
to communication with peers [11,12,17]. Within this scientific field, consensus refers to the
state in which all social actors share the same opinion, polarization to the condition when
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each agent accepts one of two opposing opinions, while fragmentation refers to a transitory
phase, in which a finite number of distinct “opinion islands” appear.

A key concept related to continuous opinion dynamics models—models represent-
ing opinions as scalars taken from a continuous interval usually between −1 and +1—is
the “confidence threshold”, which is a value above which agents cease to communicate
with each other. Above this threshold, “classical” bounded confidence models predict
consensus, and fragmentation and/or polarization under it [13–15,17]. However, the po-
larization/fragmentation breaks down in the presence of noise [18–22]—an essential and
unavoidable component in all social and biological systems [17]. In order to reach polar-
ization, other mechanisms have been suggested, such as “distancing”, which is the direct
amplification of differences between dissimilar individuals [18]. Lately, these models have
been further developed by incorporating more realistic features, such as heterogeneity
with respect to the agents’ confidence thresholds [23] or by incorporating an underlying
communication network [24] defining the pattern by which social actors interact with each
other. These approaches lead to more complex—and realistic—dynamics. Furthermore,
recently, building on the observation that events often have a polarization effect [25,26],
the process of polarization was modelled by extending a classical bounded confidence
model—the so called Hegselmann-Krause model [13]—in a way that individuals change
their opinions in line with the certain event [27]. Other models approach the problem from
a kinetic [28] or hydrodynamic [29] perspective.

In the present paper, an alternative, or complementary, explanation is suggested,
by showing that in case some “basic” human characteristics are incorporated, polarization
immediately appears once agents are exposed to new information—even without direct
communication. These almost trivial human characteristics are that (i) human beliefs are
interrelated rather then evolving independently of each other, and (ii) people strive to
maintain a coherent, contradiction-free belief-system. The fundamental difference between
“classical” opinion dynamics models and the ones incorporating such features is that while
in the first case agents are represented with a single scalar value in the second case the
model of the social actors has some kind of inner structure. This difference gives rise to an
entirely different dynamic [30,31].

2. The Background: Fundamental Features of Human Belief Systems

During the last decades, a vast amount of knowledge has accumulated in scientific
fields on the ways humans perceive the world, make decisions and structure their be-
liefs. Despite the fact that obtaining a detailed understanding of these processes still
require further work, some scientific fields, such as neurobiology [32–36] or various human
sciences [37,38], such as psychology [39–42], anthropology [43], economics [44–46] and
political science [4,5,47–51] have progressed considerably. From our point of view, the key
finding is that in humans, opinions and beliefs never occur alone, that is, no concept or belief
can exist in isolation. (Actually, humans are not even able to memorize anything without
connecting it to something meaningful [32].) Rather, concepts and beliefs are organized
into a structure, a system (“belief system") which has well-defined features [32,47,48,52]:

1. First and fore-most, it seek to be consistent. This means that people try to maintain
a belief system in which the elements mutually support each other, or are indepen-
dent [48,52]. In the case of holding conflicting beliefs, people experience discomfort
called cognitive dissonance [53,54] which people will try to reduce. By this time, cogni-
tive dissonance has become one of the most influential and well-researched theories
in social psychology [54–56].

2. Secondly, beliefs are not equally important: those that are more personal, closer to
the “self”, “identity” or “ego”, trigger more intense feelings and are more difficult to
change [43,46,54,57]. In this sense, beliefs have a hierarchical property: the ones that are
higher in rank define or constrain the ones that are lower in rank [58]. For example,
the belief or disbelief in God is a central (high-ranking) element in one’s belief system,
while the belief that “an egg should be boiled for seven minutes in order to get the
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best soft-boiled egg” is a low ranking one, and, accordingly, can be changed more
easily [43]. Furthermore, beliefs that people hold in high regard tend to cause greater
dissonance in case of contradiction with other beliefs [54].

3. Finally, beliefs belonging to the same broader topic (e.g., health, art-related topics,
religion, political issues, etc.) are more strongly interrelated than beliefs belonging to
different topics. For example, attitudes towards “freedom of speech”, “religious free-
dom” and “freedom to choose spouse” are more closely related than beliefs regarding
“freedom of speech” and, say, homeopathic treatments. In mathematical (graph-
theoretical) terms, belief systems are “modular” or “compartmentalized” [43,50].

As a first approximation, such a structure can be represented as a modular, hierarchical
network (graph) in which the nodes are connected by supportive (positive) or invalidating
(negative) relations [48–50,59] (Figure 1). For example, according to a widespread belief,
“Pathogens can cause diseases”. According to another wide-spread belief—primarily in
historical societies—“Diseases are caused by evil spirits” [60,61]. These two concepts are in
negative relation: somebody believing in one of these opinions will probably disagree with
the other. In contrast, the beliefs “Pathogens can cause diseases” and “Contagion is due to
the spread of pathogens” support each other (positive relationship), since accepting one of
them renders the acceptance of the other more probable.

This last requirement ensures that the level of consistency can be defined [62]. In this de-
scription, nodes are beliefs, and edges represent functional relationships between
them [52,59,63]. This approach has already been applied by sociologists and economists
as well in order to model political belief system dynamics [49,50,59,63,64]. Within this
framework, the focus is on the relatedness of beliefs—captured by graph representation—
while the hierarchical and modular characteristics do not gain special importance (see
the Supplementary Material for the results incorporating the hierarchical characteristics
as well).

Figure 1. The graph representation of belief systems. (a) As a first approximation, human belief
systems can be represented by networks in which nodes are beliefs (“elements of a belief system” [59])
and edges represent relationships. (b) Links (relationships) can be either supportive (positive) or
contradictory (negative) [62].

In these models, a node is “an element of a person’s belief system” [59], which the
related literature names slightly differently, such as “opinions” [49], “concepts” [62] “atti-
tudes” [49,59,64], “beliefs” [50,59,62], or “positions” [63,64]. In the present article, the terms
“belief”, “attitude” and “concept” are mostly used, under the condition that we consider all
sorts of human thoughts as an “element of a belief system” (that is: a “belief”), whether
they be simple or complex, that can be transmitted with the use of language from one per-
son’s mind to another’s [38,43]. Accordingly, a node can be a thought or attitude towards
public issues such as abortion, climate change, immigration, vaccination, gun control; it
can be information regarding a public figure or a political party, an idea related to “proper
behaviour”, “justice”; or the belief that somebody did or said something, etc. Furthermore,
this definition implies that beliefs can be transmitted via communication. Communication,
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in its most basic form, can be discussion (talking) between two or more individuals, but it
can also be news/beliefs/information spread by a single agent or organization to many
people at the same time, for example via public and social media, news channels, journals,
etc. In short, communication is the circulation of news, information and beliefs within a
certain community.

The fact that beliefs (attitudes/concepts) are in functional relation with each other
(that is, if they are connected, they either support or contradict each other) is crucial, be-
cause it implies that some “new” belief will fit into an already existing system—the ones
that increase the system’s consistency—while others—the ones decreasing the system’s
consistency—will not [52]. These latter gives rise to the disturbing feeling of cognitive
dissonance and people will apply various strategies in order to avoid them. Among other
strategies, they will try to keep contact only with those from whom they expect reassuring
information (homophily), they will ignore certain information and focus on other infor-
mation (attentional bias), while greater credence will be given to evidence that fits with
the existing beliefs (confirmation bias). These strategies are known as various biases in
the field of psychology and sociology [40,65–67]. Different people apply different strate-
gies to various extents; however, to some level, all the strategies are applied by all of
us [40,41,65,66].

Furthermore, these cognitive dissonance avoiding mechanisms are in close relation
with the proliferation of fake news and the circulation of various types of questionable
information as well. In case the well-fitting of a piece of information into the already existing
belief system weights more than its credibility, people will adopt it—simply because it
provides the pleasant feeling of reassurance. This mechanism is applied in all aspects of
life, not only in case of political issues. For example, in the field of economics, it has been
observed that managers, whose sales fall short of expectations, rather than rethinking the
qualities of the product, tend to identify the cause of the failure elsewhere, for example in
the marketing campaign. In such cases, they state that the marketing campaign failed, so it
is actually a miracle that the product was sold at all [68]. By finding this new explanation,
the sales results show directly the merits of the product, not its failure, and as such, serves
as a basis for the pleasant feeling of reassurance. This mechanism is analyzed in Section 4.2.

3. The Model

We assume a population of N agents. At this point, only their attitudes towards
two concepts are important (the attitudes towards, say, vaccination (Concept 1) and, say,
a certain public figure (Concept 2)). People can hold any kind of attitudes towards these
concepts, from total condemnation (marked by −1) to total support (denoted by +1).
Neutrality or indifference is indicated by zero or near-zero values. We are interested in how
the agents’ attitudes evolve due to being exposed to some news (piece of information) that
creates a relation between two originally independent concepts (see Figure 1b).

The relation K0 can be positive or negative. Using the above example, a trivial positive
connection can be that “XY public figure (concept 2) has spoken out in favor of vaccination
(concept 1)” (K0 = +1), while a negative connection can be that “XY public figure has
spoken out against it” (K0 = −1).

In case an agent holds positive attitudes towards both concepts, the positive message
(support of vaccination) will give rise to the comforting feeling of reassurance [41]. In this
case, the original attitudes are reinforced, since both concepts become better connected and
further embedded into the belief system. In contrast, in case the XY trusted and respected
politician takes a position against vaccination, a supported matter, the agent will experience
cognitive dissonance with an intensity proportional to the original attitude values, and will
apply a strategy in order to reduce it [53,54].

Turning back to the basic scenarios, an agent can hold negative attitude towards one
of the concepts, and a positive one towards the other—say, for example, a negative attitude
towards the public figure and positive attitude towards vaccination. In this case, a negative
relation will give rise to reassurance, i.e., “XY politician, whom I anyway hold very low,
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talked out against vaccination, a cause so important for me ... No surprise here, a fool is
known by his conversation” and so on. All scenarios can be analyzed with the same train
of thought.

Accordingly, from a mathematical point of view, the cognitive dissonance (or reassur-
ance), Ci(t), that agent i will experience at time-step t, can be formulated as:

Ci(t) = ai,1(t) · ai,2(t) · K0 (1)

where ai,1(t) and ai,2(t) are the original attitudes of agent i towards concept 1 and 2,
respectively, at time-step t, and K0 is the type of connection, which can take two values,
+1 or −1, according to the supportive or opposing nature of the connection between the
concepts (see also Figure 1b). In case C is positive, it is called reassurance, while in case it is
negative, it is usually referred to as cognitive dissonance. Anyhow, in both cases, C denotes
the value by which the information alters the coherence or consistency level of agent i’s belief
system. Note that | Ci(t) |≤ 1 is always the case, since | ai,1(t) |≤ 1, | ai,2(t) |≤ 1, and
K0 = ±1.

According to the literature [40,41,65,66], in case of facing information inducing cogni-
tive dissonance, people attempt to relieve the discomfort in different ways, among which
the most common ones are:

(i) Rejecting new information that conflicts with the already existing ones;
(ii) Re-evaluating the attitudes;
(iii) A tendency of “explaining things away”, that is, finding alternative explanations

(developing new beliefs) which supplement the original information in a way that the
primordial contradiction is dissolved.

From a modeling point of view, the first strategy—rejecting the information—simply
leaves the belief system unaltered. In this case, in the framework of the model, the network—
nodes, edges and weights—remain unchanged. The second and third strategies do modify
the belief system, due to the new connection between the originally unconnected concepts.
In the following section, we will focus on modelling these strategies.

3.1. Modelling the Re-Evaluation of Beliefs

The constant re-evaluation of our already existing beliefs is an inevitable part of the
process of learning and development [32]. New information often comes in the form of
creating connection among concepts and beliefs that were originally disconnected. As a
matter of fact, this is a basic form of learning. Furthermore, people tend to evaluate most
information, beliefs and concepts according to some personal narrative, a personal “frame
of mind”, which is different from person to person. Simply put, this unique narrative
is our personality [37], which defines the very way we perceive the world and make
decisions [45,46]. This variety entails individual differences in evaluating the most diverse
topics around us, whether it be the judgement of a public figure, a movie or the question
of immigration.

In the context of a formal model, the most simple and plausible way to grasp these
attitudes is to use numbers between −1 and +1 in a way that negative values represent
negative attitudes and positive ones refer to positive stances. The two extreme values, −1
and +1, refer to complete condemnation/approval, respectively.

In order to see how these values might change, consider for example the following
case: Paul believes that, say, genetically modified food is harmful. He has already heard it
from his friends, and now he reads it in his favorite blog as well. This gives him a feeling of
reassurance, due to which he will be convinced about the verity of this belief even more,
and will be more attached to his favorite blog as well. In other words, the “embeddedness”
of the original attitudes will increase. Mathematically speaking, his already positive
attitudes towards these concepts (his belief and the blog) will increase even more due
to the positive connection. Now consider a situation where he learns the opposite from
his favorite blog, namely that there is nothing at all that could be harmful in genetically



Entropy 2022, 24, 1320 6 of 15

modified food (that is, a negative association appears among the two positive concepts: the
belief and the blog). In this case, he will experience some level of cognitive dissonance,
whose extent depends on his original commitments towards the two concepts [42,53,56].
This experience will make him less convinced, either of the reliability of the blog or of the
belief itself—or both. Mathematically speaking, the originally positive values (attached to
the two concepts) will decrease somewhat. In other words, cognitive dissonance (negative
Ci(t) values) decreases the absolute value of the affected attitude (k), while reassurance
(positive C values) increases it. Consider the following formula:

ai,k(t + 1) = sign(ai,k(t)) · (| ai,k(t) | +ρ · Ci(t)) + ZA (2)

where ai,k(t) is the original attitude of agent i at time-step t towards attitude k, sign(ai,k(t))
is its signal (+ or −1), ρ is a random value (“noise”) taken from the [0, 1] interval with
uniform distribution, effecting the extent to which the attitude changes, and Ci(t) (defined
by Equation (1)), is the level of “coherence” (commonly known as cognitive dissonance,
in case it is negative, and reassurance in case it is positive). Finally, the ZA noise comprises
the effects of other factors influencing the change of attitudes. It can be either positive or
negative with equal probability. In case the updated attitude value ai,k(t + 1) falls outside
the predefined [−1, 1] interval, it is set to the nearest threshold (+1 or−1).

Attitudes do not vary with the same probability and to the same extent in case of
different people and topics; for some, environmental issues are extremely important (and
“nothing can change” this stance), some people are detached, while others are convinced
that they are just evil-minded hoaxes. The more extreme an attitude is, the more difficult is
to change it [43,46,54,57]. (See also Section 2, 2nd bulleted point, “hierarchical property” of
belief systems).

Mathematically speaking, the feature “more difficult to change” can be introduced into
the model in two ways:

1. The more extreme an attitude value a is, the lower the probability that it will change.
Equation (3) expresses the most simple mathematical formulation of this relation.

2. The more extreme an attitude value a is, the smaller the magnitude with which it can
change.

For the results presented in the main text, the above mentioned hierarchical property
was introduced into the model according to the first way, that is, by setting the probability
p(AttChi,k(t)) of attitude-change according to Equation (3), and setting ρ—the parameter
controlling the maximal extent with which the attitude values alter due to the experienced
cognitive dissonance or reassurance (C)—to 1. In other words, in Equation (2), ρ = 1 for
the results presented in the main text. In the Supplementary Material, a detailed analysis is
provided on how the parameter ρ effects the simulations (leading to the conclusions that
the main claims remain valid, independently of the maximal extent of the alterations, see
Figure S7).

p(AttChi,k(t)) = 1− |ai,k(t)| (3)

Note that in all the equations, the updated attitude values depend only on the agents’
previous attitude values (ai,k(t)), the type of the news (K0), and on the cognitive dissonance
(or reassurance) values that the news creates in the agents (Ci(t)). This means that agents
develop their attitudes independently from each other. This originates from the fact
that the source of the information does not matter in the present model. Accordingly, if the
assumption is that it is the agents who circulate the news among themselves (for example
in the form of “gossiping” either in person or on social media), then they interact with
each other. In contrast, if the source of the information is something else (for example,
state media or some kind of propaganda) then agents do not interact directly with each
other. In reality, information usually circulates in both ways. The reason why entire
populations are considered is twofold. Firstly, because one single agent cannot “polarize”;
they can develop extreme attitudes under certain circumstances. Polarization is an emergent,
statistical property of communities, a phenomenon which does not have an interpretation
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on the level of individuals. The larger the statistics, the more apparent the phenomenon.
The second reason is that after studying the elementary process of attitude-update in detail
(which is the topic of the present paper), an immediate next step is to study the way by
which agents manipulate and organize their social ties (links) assuming similar motivations
(avoiding cognitive dissonance and enjoying reassurance).

3.2. Modelling the Inclusion of New Beliefs in Order to Relieve Cognitive Dissonance

In case a social actor experiences the upsetting feeling of cognitive dissonance due to a
certain piece of information, a commonly applied strategy is to adopt—or create—an even
newer belief that changes the context of the original one in a way that it does not serve as a
basis of cognitive dissonance any longer; rather, it becomes neutral or even gives rise to
the pleasant feeling of reassurance [40,41,68]. An example of this maneuver is mentioned
at the end of Section 2, related to managers whose sales data lag behind the expectations
tendentiously conceive of various explanations, e.g., ones related to “awfully managed”
marketing campaigns. By adopting this new belief (namely that the marketing campaign
was awfully managed), the cognitive dissonance caused by the negative sales results
(linking a failure to their “self”) is eliminated; furthermore, in this light, the sales-results
could be seen as an achievement rather than a failure.

The most simple assumption is that the probability p(NBi(t)) of adopting such a new
belief (by agent i at time-step t) is proportional to the relief its adoption provides. Since
only positive CNB

i (t) values represent reassurance, the most simple mathematical formula
is the following:

p(NBi(t)) = max(0, CNB
i (t)) (4)

where,
CNB

i (t) = ai,1(t) · ai,3(t) · KNB (5)

As shown before, ai,1(t) and ai,3(t) are the attitudes of agent i towards concept 1 and the
new belief at time-step t, respectively, and KNB is the (positive or negative) connection
type between them. Note that in case CNB

i (t) is negative—marking cognitive dissonance,
instead of reassurance—the agent is highly unlikely to adopt the new belief.

4. Results
4.1. Re-Evaluating Beliefs

Let us consider a population in which the agents’ initial attitudes towards two arbi-
trarily chosen concepts are distributed uniformly, taking values from the [−1, 1] interval.
In other words, at the beginning of the simulation, all sorts of attitudes are present in the
population with equal probability, from complete condemnation to complete support and
everything in between, with an average of zero. Let us now assume that this population is
exposed to some kind of news, connecting the two originally unconnected concepts.

Assuming the most general setup, at each time-step t, a randomly chosen agent i
acquires the information, and updates his/her attitudes according to Equation (2). (For
the flowchart of the algorithm, see Figure A1a. The source of information can be anything,
such as public or social media, propaganda, government information, etc. As it can
be seen in Figure 2a,b,d,e, proportionally to the level of exposure (iteration number t),
the attitudes tend to move towards the two extreme values, +1 and −1, either due to the
experienced reassurance or due to the attempt to reduce cognitive dissonance (Equation (2)).
The distribution of the attitude values within the population evolves very similarly in case
of the two attitudes, since both are governed by Equation (2). (See Figure 2a,b,d,e). At high
iteration numbers (indicating strong exposure to the news), around half of the population
fully supports Concept 1—marked by attitude values close to +1—while the other crowd—
composed of those whose attitude values are close to −1—fully rejects it. In other words,
the population is polarized with respect to Concept 1 (Figure 2a,d). The same applies to
Concept 2 (Figure 2b,e). In case the type of connection (K0) is negative (Figure 2 bottom row),
the two “stable points”—adopted by the vast majority of the population—are (+1,−1)
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and (−1,+1), that is, where the two attitudes are reversed, either complete rejection of
concept 1 and complete acceptance of concept 2 occurs, or vice versa. These are the two
peaks in Figure 2f. In a symmetric manner, in case the connection type, K0 is positive,
the vast majority of the population will either completely support both concepts (one of the
peaks will be at (+1,+1)), or will completely reject both of them (the other peak will be at
(−1,−1)), as in Figure 2c. That is, independently of the type of connection, the originally
uniformly distributed attitudes will tend towards the extremities, meaning that the mere
attempt to maintain a consistent belief system alone promotes the processing of attitudes
tending towards extremities in case of being exposed to persistent information. Of course,
in reality, it is not only one type of news that circulates within a community, but many
types, often with different messages and connotations, but it is certainly an important—and
so far overlooked—point, that this human drive (the urge to maintain consistent beliefs)
alone has the capacity to push attitudes towards extremities—a phenomenon increasingly
experienced in our increasingly connected world.

Figure 2. A typical time evolution of two attitudes (ai,1(t) and ai,2(t)) within a population of N = 100
agents. Top row: K0 = +1 (supportive relation). (a,b): the distribution of attitudes values towards
concepts 1 and 2, respectively, as a function of time t. (c): At the final state, the vast majority either
supports both beliefs (marked by the peak at (1, 1)) or rejects it (marked by the peak at (−1,−1)).
Bottom row (d–f): K0 = −1 (conflicting relation). (f) The major difference in this case is that at the
end of the simulation most agents support one of the beliefs and disagree with the other (marked by
the sharp peaks at the (+1,−1) and (−1,+1) points). The parameters are: population size N = 100,
number of iterations T = 50,000, and connection type K0 = −1/ + 1, and the noise value is ZA = 0.01.

In Figure 3c “extremity” is defined as “being closer to +1 or−1 than a certain threshold
value ε”. Accordingly, if ε = 0.01, then attitudes between 0.99 and 1, and attitudes between
−0.99 and −1 will be considered as “extreme”. Similarly, if ε = 0.1, then attitudes between
0.9 and 1, and the ones between −0.9 and −1 will be considered as “extreme”. Apparently,
as can be seen in Figure 3c, the exact value of ε does not matter.
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Figure 3. A typical time evolution of an attitude value ai,k(t) as a function of time (t) for (a) large
population (N = 1000), and (b) under limited exposure to news (T = 10,000). In this case, since in each
time step 1 individual learns the news (out of the N = 1000), on average, each agent will have heard
it 10 times at the end of the simulation. As can be seen, for such a level of exposure, developing a
neutral standpoint (adopting attitude values close to zero) is a good “strategy” as well. However, this
neutrality vanishes in case of more enduring circulation of the news. (c) Proportional to the level of
exposure (iteration number t), the ratio of the population holding “extreme” attitudes monotonically
grows, independently of how “extremity” is defined (by the parameter ε). The parameters are:
population size N = 1000, Number of iterations T = 150,000 (except for sub-figure (b), on which
T = 10,000), connection type between the concepts K0 = −1 and the noise value is ZA = 0.01.

Note the small peaks around near-zero values in Figure 2a,b,d,e, at small t values.
According to the simulations, in case of limited exposure to the news, agents might also adopt
neutral standpoints (marked by near-zero attitude values) in order to avoid cognitive
dissonance. This phenomenon is highlighted in Figure 3b. However, this is an unstable
equilibrium point, since any further information regarding the given concept (appear-
ing as noise ZA in Equation (2)) pushes the attitude value away from zero. (See also
Supplementary Information, Figure S3).

4.2. Finding Relief in New Ideas

As has already been mentioned, the other “basic strategy” applied by people in order
to reduce the unpleasant feeling of cognitive dissonance is to reinterpret the incoming
information by placing it into a context in which the contradiction vanishes, or even
better, serves as a basis for reassurance [53]. For example, a doctor in his blog recollected
memorable moments of the first year of the COVID-19 pandemic [69]. He remembers that
when he tried to convince his family members to take the vaccine, he received vehement
rejection, which was settled by receiving the comment that “You have good intentions, we
know it. But you do not see the reality, because the “big players” leave you out from the
party”. As it turned out, by this they meant that the “big players” know perfectly well
that the pandemic is a hoax, but they use the everyday doctors—such as the one writing
the blog—for their purposes, i.e., to force “everyday people” into take the unnecessary
and harmful vaccine. In this example, the doctor is a positive concept in the eye of his
relatives, but the epidemic is negative (considered to be a hoax). When it turned out that
the doctor considered the epidemic real (hence they should take the vaccine), he created a
positive (supportive) relation between himself and the pandemic. This resulted in cognitive
dissonance in the relatives, which was dissolved by adopting the new belief (about the
“party” of the “big players”), which allowed the original attitudes to remain unchanged.

In the context of the present framework, this scenario can be represented by supple-
menting the original graph (including two nodes and an edge between them, as in Figure 1)
with a new node, representing the new belief (see Figure 4a. The new belief can be related
to either of the original concepts, or to both of them. As an example, in Figure 4a, the new



Entropy 2022, 24, 1320 10 of 15

belief is connected to Concept 1. The type of connection, KNB, can be either supportive or
contradictory, similarly to the connection relating the two original concepts, K0.

Figure 4. Change of attitudes within a population due to the circulation of some news, connecting
concepts 1 and 2. In this case, agents might adopt a new belief as well, in case it reduces their cognitive
dissonance. (a) The new belief can be connected to either or both concepts 1 and 2. (b) The “stable
configuration” toward which the dynamics tends to (after 150,000 simulation steps). (c) The ratio of
individuals holding “extreme beliefs”, and adopting the new belief (black semi-dotted line). “Extreme
attitudes” are those closer to +1 or −1 than a certain threshold value ε, such as 0.01, 0.05 and 0.1. As it
can be seen, the ratio is largely independent of the exact value of ε. The parameters are: N = 1000,
T = 150,000, K0 = −1, KNB = −1 and ZA = 0.01.

Figure 4b depicts the “stable configuration” which the dynamics tends towards. As has
been shown already, in the case of K0 = −1, the attitudes towards concept 1 and 2 tend to
be antagonistic and extreme (marked by the attitude values accumulating in the (−1,+1)
and (+1,−1) points on the x− y plain), while in the case of K0 = +1 (positive relation),
the attitudes towards concept 1 and 2 tend to be coincidental and also extreme (marked by
the attitude values accumulating in the (+1,+1) and (−1,−1) points on the x− y plain,
see Supplementary Figure S5). The vertical, z axis depicts the attitude values towards the
new, cognitive-dissonance-relieving belief; those who adopt it tend to develop an extreme
relation towards this belief as well (in case of unceasing exposure). In contrast, those for
whom the approval of the new belief would create cognitive dissonance, simply reject
its adoption. In terms of the model, in their case, the edge KNB will simply not exist,
and hence the node representing this belief will not be connected to the belief network.
The two solid columns belong to these agents, depicting their original attitudes, which
simply do not change throughout the simulation. (In case we stipulate that only those
values are shown in the figure which participate in the belief system of an agent, these
values could be omitted as well, but for sake of clarity, in Figure 4b, we have kept them.)
Furthermore, a small vertical “cloud” can be seen in the middle of the chart, representing
those who are neutral towards the original concepts, i.e., their attitude towards the new
(cognitive-dissonance-relieving) belief can take any value. Importantly, as is apparent from
Figure 4, this mechanism pushes the attitudes towards extremities as well.

5. Discussion

The detailed methods by which humans perceive and make sense of the world—
despite some eminent achievements [33,34,38,39]—is still to be understood. However, some
basic characteristics have been elucidated by now, and have become part of mainstream
science as well [32,35,36]. One such characteristic is that in the human mind, beliefs
are strongly interconnected, and as such, no belief, concept or “piece of information”
can exist on its own. Furthermore, in case of new information, humans immediately
attempt to interlock it in a coherent way, seeking for connections and support with already
existing beliefs.
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Accordingly, the novelty of the present model lies not in “assuming” the above-
mentioned two human characteristics—since they are well-studied and widely accepted
by main-stream science [43,53,55]—rather, it lies in their mathematical formulation and
incorporation into agent-based models.

There are two more further points worthy of consideration related to the model:

(i) Real belief systems have a tremendous amount of elements (instead of two or three),
that are interconnected and embedded into each other in a complicated manner [39,43],
and, accordingly, the “optimization process”—the attempt to minimize the contradic-
tions among the components—refers to the entire system. From a physicist’s point of
view, this process is in close relation to physical structures aiming to reach an energy
minimum. In this approach, “different realities” [57] can be different local energy
minimums of similar systems. However, it is imperative to understand the elementary
relation between two elements of the system before considering the entire structure.
The present manuscript focuses on this elementary relation. Graph representation is
important because, and only because, it serves as a mathematical tool for handling
interrelated entities (which are the “beliefs” or “concepts” in our case). Since in the
human mind a vast amount of concepts and beliefs are interrelated densely and intri-
cately, any of its graph representations must also assume a vast amount of intricately
interrelated (linked) nodes. However, from the viewpoint of the present study, the spe-
cific type of the graph does not play any role, because we focus on the elementary
process altering the characteristics of two nodes (namely the “attitude values”) due to
a newly appearing link between them. (If a link appears, it is due to a certain piece of
information connecting the two, originally unconnected beliefs/concepts). The nodes
whose values alter are selected by the link (representing a piece of information).

(ii) The present model does not assume that the repeated information is exactly the same,
only that the type of connection between two concepts (say a political party and a public
issue, such as immigration or environmental topics) is tenaciously either positive
or negative. Hence, it also explains how attitudes can become extreme due to the
continuous repetition of information, and as such, it serves as a complementary
explanation [70] for the reason why, throughout history, the most diverse regimes
found it useful to repeat the same messages over and over again (despite the fact that
everybody had already heard them many times).

Furthermore, the present model has some additional results as well, which are yet
to be studied. Specifically, according to the results, the attitudes a certain type of news or
information triggers depend on the intensity of the exposure. More precisely, in case of
limited exposure, people tend to develop a centralist attitude first (which is an unstable
equilibrium point), which, in case of persistent news-circulation, give way to extreme
stances. The dynamics under limited exposure to news was not studied extensively in the
present manuscript.

The ambition of the paper was to call attention to certain human traits that have
not yet been incorporated into current computational models aiming to simulate opinion
dynamics in human communities. From this perspective, the main point is the natural-
ness by which polarization can emerge, despite the fact that the model incorporates only
minimal assumptions which are considered to be part of well-established, main-stream
scientific results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e24091320/s1. Figure S1: Histogram of the attitude values, along
with their standard deviations, for four time-steps: t = 0, 1000, 5000 and 30,000. Figure S2: Simulation
results for N = 100 agents, that is, for one scale smaller population than the one studied in the main
text. Figure S3: The evolution of attitudes within a population, due to limited exposure to news,
achieved by limiting the number of iterations in T = 3000. Figure S4: Simulation results with four
different noise values. Figure S5: The effect of the choice of K0, the type of connection. Figure S6:

https://www.mdpi.com/article/10.3390/e24091320/s1
https://www.mdpi.com/article/10.3390/e24091320/s1
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Simulation result with four different initial attitude value distributions. Figure S7: Incorporating the
hierarchical nature of beliefs.
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Appendix A. Flowchart and Parameters

The simulation was written in Python. Figure A1 shows the flowchart of the algorithm
which is enough to replicate the results. However, the source code of the simulation can be
found on CoMSES, a public computational model library as well [71]. Figure A1a shows
the algorithm for the results explained in Section 4.1, and Figure A1b depicts the algorithm
for the case when people might accept a new, cognitive-dissonance-relieving belief as well,
the case explained in Section 4.2.

Figure A1. Flowchart of the algorithms. (a) is the algorithm of the case discussed in the Section 4.1.
(b) depicts the algorithm detailed in the Section 4.2. The main difference—highlighted with purple—is
that in the latter case, agents might adopt a new belief as well, in case it decreases their cognitive dis-
sonance.

https://www.comses.net/codebases/2ccbae5e-d51c-41ed-80c2-5e4b33c4e9c0/releases/1.0.0/
https://www.comses.net/codebases/2ccbae5e-d51c-41ed-80c2-5e4b33c4e9c0/releases/1.0.0/
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Since this is a minimalist model, altogether 5 parameters were used, which are over-
viewed in Table A1. The robustness of the results have been validated for a wide range of
parameters, for which the results can be found in the Supplementary Material.

Table A1. Summary of the model parameters. Left column: Nomination used in the manuscript.
Middle column: description, and right column: values used in the simulation.

Notation Meaning Values

N Number of individuals (population size) 1000 (SI: 100)

T Number of iterations (level of exposure) 100,000–300,000

ZA

Noise on the magnitude of attitude change

∈ [−0.01,+0.01]
(SI: ∈ [−0.05,+0.05],
∈ [−0.1,+0.1],
∈ [−0.2,+0.2],
∈ [−0.5,+0.5])

KO Positive or negative: Type of the connection between the two original concepts +1 or −1

KNB Type of the connection between the newly accepted concept and the one it is connected to. +1 or −1
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