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Abstract—In spite of the impressive advances related to retinal 
prostheses, there is no imminent promise to make them soon 
available with a realistic performance to help navigating blind 
persons. In our new project, we are designing a Bionic Eyeglass 
that is providing a wearable TeraOps visual computing power 
to advise  visually  impaired people  in their  daily  life.  In this 
paper  the  system  aspects  are  explained.  There  are  three 
different  types  of  situations  (home,  office,  street)  and  a  few 
standard image flows (with some auditory information).  The 
basic  tasks  are indoor and outdoor events,  defined by blind 
people. Two types of cellular wave computing algorithms are 
used:  general  purpose  spatial-temporal  event  detection  by 
analogic subroutines developed so far, and recently developed 
multi-channel  mammalian  retinal  model  followed  by  a 
classifier. Typical indoor and outdoor event detection processes 
are being considered.

I.INTRODUCTION 
In  spite  of  the  impressive  advances  related  to  retinal 

prostheses, there is no imminent promise to make them soon 
available  with  a  realistic  performance  to  help  navigating 
blind or visually impaired persons in everyday needs. In our 
new  project,  we  are  designing  a  Bionic  Eyeglass  that  is 
providing a  wearable  TeraOps  visual  computing power  to 
give them support in their daily life. The presented system 
differs from existing topographic classification techniques in 
the intensive multi-channel retina-like preprocessing of the 
input  flow,  as  well  as  the  specific  semantic  embedding 
technique. The system is designed and implemented using 
the  Cellular  Wave  Computing  principle  and  the  adaptive 
Cellular  Nonlinear  Network  (CNN)  Universal  Machine 
architecture [1, 2, 3].

There is a strong biological motivation behind building a 
multi-channel adaptive algorithmic framework.  It  has been 
known  since  long  that  the  mammalian  visual  system 
processes  the  world  through  a  set  of  separate  spatial-
temporal  channels  and  some  outer  retinal  effects  can  be 
represented  using  the  CNN  Universal  Machine  [1]. 
However, the striking new result is that the organization of 
these channels begins already in the retina, where a vertical 
interaction across many parallel stack representations can be 
identified [4].

Our Bionic Eyeglass makes a major difference compared 
to any other devices made for visually impaired people since 
it is based on

• a  cellular  visual  microprocessor  family developed  via 
the  CNN  Universal  Machine  principle  with 
unprecedented  computing power  on a ~1 cm2 silicon 
chip with ~1W dissipated power,

• a dual visual input architecture (called the Bi-i [5]), and 
its software technology [6] and system implementation 
based on the above type of microprocessors ,

• a multi-channel mammalian retinal model [7] based on 
the  recently  discovered  retinal  operation  and 
implemented real-time on the Bi-i., and 

• the  cellular  wave  computing  algorithms  combining 
topographic  and  non-topographic  multimodal  sensory 
flows [6].

A specific  objective is  to communicate  the recognized 
objects and /or situations to the impaired persons by sound 
(speech).  The  research,  design,  and  experimental 
implementation of the hardware and software tasks will be 
followed by the practical clinically supervised tests with the 
active  participation  of  blind  or  visually  severely  impaired 
people as well as their ophthalmologists.

In this paper the system aspects of the Bionic Eyeglass 
are  explained.  The  next  section  outlines  the  system 
requirements, design and architecture. The last section shows 
some  details  of  the  partially  neuromorphic  saliency  and 
event recognition system.

II.SYSTEM DESIGN AND ARCHITECTURE

The Bionic Eyeglass provides a wearable TeraOps visual 
computing power to advise visually impaired people in their 
daily  life.  There  are  three  different  types  of  common 
situations: home, work, and on the way between them. A few 
standard image flows with some auditory information is used 
as benchmark. The basic tasks are indoor and outdoor events, 
defined by blind people.

ONR N00014-02-1-0884 , and 
RET Szentágothai Tudásközpont 2005



TABLE I. TYPICAL SITUATIONS

Place Home Street Office
Lightning Controlled Uncontrolled Controlled
Events both emergency and conscious

requested

Color and 
pattern 

recognition of 
clothes

Recognition of 
marked and 
unmarked 
crosswalks

Recognition of 
control signs and 

displays in 
elevators

Bank note 
recognition

Escalator 
direction 

recognition

Support in 
navigation in 
public offices 
and restrooms

Public transport 
sign recognition

Identification of 
restroom signs

Bus and tram 
stop 

identification

Recognition of 
signs on 

walkways
Recognition of client displays

(e.g: in banks)
Recognition of messages on ATMs

autonomous
warnings

light left 
switched on
gas oven left 

turned on

obstacles at head and chest level 
(branches, signs, devices attached to 

the wall, etc.)

Though we tried to restrict  the task by selecting some 
typical  places  (home,  street  and office),  the proposition is 
still very complex. The algorithmic development starts from 
the former analogic CNN algorithms for recognition of door 
handle  and  door  sign  [8],  as  well  as  object  avoidance 
mechanisms  [9],  integrates  the  cellular  wave  computing 
algorithms  for  typical  situations  and  blooms  to  a 
neuromorphic system with attention-selection and semantic 
embedding. The hardware implementation platform evolves 
from the present Bi-i self contained unit and mobile phone 
platform to a single, integrated eyeglass-mount unit using a 
SoC.

Two types of cellular wave computing algorithms will be 
used: (i) stand-alone templates and subroutines and (ii) bio-
inspired  neuromorphic  spatial-temporal  event  detection. 
Examples for the former one are the door handle detection, 
corridor sign extraction, bank-note and letter extraction [10]. 
The  second type  of  algorithm is  a  neuromorphic  saliency 
system [11]  using  the  recently  developed  multi-channel 
mammalian retinal model [7] followed by a classifier using 
the  semantic  embedding  principle  (e.g.  [12]).  The  system 
architecture is shown in Figure 1.
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Figure 1. The partially neuromorphic system overview

III.COLOR PROCESSING

Despite  the  fact  that  visually  impaired  people  do  not 
perceive color the information about the color of an object is 
important in some cases e.g. color of clothes, Figure 2. Thus 
we include a function that informs the blinds about the color 
texture  of  the  objects  seen.  For  the  computation  of  the 
perceived color we will use the CIE Luv color space, which 
has the property that the distances of stimuli is similar to the 
human  perceived  chromatic  distance.  The  transformation 
between the color spaces occurs on an accompanying digital 
hardware, because this is a pixel-wise operation. The great 
advantage  of  the  CNN-UM architecture  comes  with  local 
processing. In the field of color processing such operation is 
needed  at  a  chromatic  preprocessing  stage  where  an 
anisotropic  diffusion  is  performed.  This  allows  us  the 
preservation  of  color  boundaries  but  the  elimination  of 
smooth transitions along illumination changes [13].

 a)                b)

  c)   d)

  e)

Figure 2. An example of color filtering: a) shows the original picture;
b-e) show filtering of different colors. White areas show the location of the 

classified colors indicated in the small box beside the images.



IV.SOME DETAILS OF THE NEUROMORPHIC SALIENCY AND EVENT  
RECOGNITION SYSTEM

A. Adaptive image sensing
Adaptive  image  sensing  is  important  if  we  deal  with 

scenes  that  have  large  intra-scene  dynamic  range,  like  in 
real-world street image flows. Recent works [13] on adaptive 
image sensing using CNN-UM are developed using locally 
adaptable  sensor  array.  A  retina-like  adaptation  can  be 
achieved by adjusting the integration time so, that the local 
average  of  an  image  region  becomes  the  half  of  the 
maximum  value.  This  eliminates  the  intra  scene  DC 
differences.  In  outdoor  scenes  where  the  variations  of 
illumination might be large – both in time and in space – the 
adaptation is a useful property that enables the operation of 
the recognition steps.

B. Parallel image sensing- processing
The first and best-known part of the visual system is the 

retina, which is a sophisticated feature preprocessor with a 
continuous input and several  parallel  output channels [14]. 
These  interacting  channels  represent  the  visual  scene  by 
extracting  several  features.  These  features  are  filtered  and 
considered as components of a vector that is classified.

Beyond reflecting the biological  motivations,  our main 
goal  was  to  create  an efficient  algorithmic  framework  for 
real-life  experiments,  thus  the  enhanced  image  flow  is 
analyzed  via  temporal,  spatial  and  spatio-temporal 
processing channels. The outputs of these sub-channels are 
then combined in a programmable configuration to form new 
channel responses.

An  example  for  this  is  recognition  of  signs  of  public 
transport vehicles. This is a controlled situation thus the user 
has to activate this function. The processing uses subsequent 
frames  of  the  input  video  flow  to  recognize  the  sign. 
Algorithms modeling the channels first locate the sign on the 
scene,  then  extract  features  and  classify  the  number  (see 
[12]). The process is shown on Figure 3 and 4.

Figure 3. Localization of the sign and the number on a tram

Figure 4. Localization of the sign and the number on a tram

C. Saliency selection
Visual attention is our ability to direct our gaze rapidly 

towards  the  objects  of  interest.  This  is  a  very  complex 
mechanism,  which  includes  two  different,  but  tightly 
together, parallel working methods. These are the bottom-up 
(or image-based) and the top down (or task-driven) methods 
[11].  Bottom-up originates  at  the  retina  and goes  towards 
higher brain areas. This is involuntary, fast (25-50 ms) and 
comes  before  getting  aware  of  the  scene.  Top  down 
originates in the high brain areas and projects towards the 
muscles of the eyes. This is voluntary, slower (200 ms) and 
task-dependent. Since the bottom-up method is bounded to 
lower brain areas in the sense of processing hierarchy,  we 
know  much  more  about  this  process.  Bottom up  method 
basically is for filtering out the salient, conspicuous, sudden 
and unexpected parts of the visual scene, therefore it helps 
increasing the efficiency of the algorithm of a bionic glass.

The flow diagram of the bottom-up process is depicted in 
Figure 5. In the first step the incoming vision is dissolved 
into several parallel retina channels, which are topographic 
maps of the visual scene. These channels code different low-
level visual features, like motion, edges, colour antagonisms 
etc. In our model we use real retina channel emulations.

Figure 5. The flow diagram of the bottom-up attention mechanism.

Once these channels are drawn up, each creates its own 
saliency map, which indicates that how salient, how ‘loud’ 
the different points are according to the appropriate low-level 
visual feature. These are also topographic maps, like the final 
(or master) saliency map, which is produced by aggregating 
the former ones and the most salient point wins the attention. 
The weights of the different retina channels are not the same, 
they change according to the actual tasks.
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One of the outdoor tasks that we would like to perform is 
to define the direction of the escalator. This is particularly 
important in those cases, when nobody or very few people is 
on the spot, so the blind person can not move with the crowd 
or can not ask. Figure 6 shows a potential solution for this 
task: looking for horizontal lines that can be filtered out from 
most of the retina channels. Even so we are using all of them 
–it would be unnecessary–: the transient (third picture in the 
first row), the local edge detector (beneath the transient) and 
the intensity channels  are  enough.  If  this the detected bar 
moves upwards, i.e. its vertical co-ordinate lessens, then the 
escalator shoves out, otherwise it draws near. If the bars are 
steady, then the device is out of order.

Figure 6. The most salient point in a moving staircase

D. Autonome feature extraction and selection
The  retina-like  spatial-temporal  feature  channels  are 

further analyzed to extract low-level features. These binary 
maps describe the density of edges, irregularity,  rough/fine 
structures, connected structures etc. of the input. The image 
around the most salient point is processed in detail.  Local 
features are extracted, based on the assumption that the black 
patches are objects. These objects as entities are collected in 
a  list  and  their  features  such  as  area  or  eccentricity  are 
computed.  Descriptive  statistics  is  used  to  aggregate  the 
same feature of the different objects such as min or mean.

The  number  of  the  features  that  can  be  extracted  is 
enormous.  We  have  to  find  those  attributes  that  are 
informative enough for proper object categorisation, whereas 
the number of them is still  treatable.  We have chosen the 
Sequential  Floating  Forward  Selection  (SFFS)  algorithm 
[15], which works as follows:
• Input: Y, the whole feature set
• Output: Xm, an m-sized feature-set
• Termination: when k=m
• Initialisation: X0=∅, k=0, where k is the number of the 

already selected features.

Step1:  
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then xXX kk
−

− −=:1 1−= kk  and goto Step2
else goto Step1

Note  that  the  k index in  this  algorithm  denotes  the 
number of the elements in the feature-set and not the step 
number. The function J, which measures the accuracy of the 
selection, can be defined in  several modes, for example it 
can be the Fisher-quotient. We have picked this algorithm 
because in practical adaptations this proved to be the best.

E. Spatio-temporal event library
The Event Library contains descriptions of events in the 

expected  scenarios;  see  Table  I.  Parallel  scenarios  are 
activated by salient features  extracted from the scene. If  a 
scenario  is  active  it  has  an  influence  on  the  attention 
direction. The scenarios are weighted by a priori information 
and by the identified events, and the more weight a scenario 
is assigned the bigger the influence it will have on decisions 
and attention direction.

F. Multimodal classification with semantic embedding
The classification task can be greatly enhanced by using 

semantic  embedding.  This  is  the  way  formally  and 
systematically evaluating the sensory context. These can be 
location  based  autonomous  tasks,  as  listed  in  Table  I,  or 
restricted  set  of  objects  for  example  in  recognising  the 
number on a public transport vehicle, Figure 4. In addition to 
the visual input we plan to use auditory clues as well e.g. the 
noise of the arriving bus or tram, the rustle of the escalator.

There are several classifiers that could have been used. 
We have applied an adaptive resonance theory (ART) based 
module, capable of learning on pre-selected training image 
flows  [16].  The  ART  network  has  its  inspiring  roots  in 
neurobiological  modeling  and  has  a  mathematical  back-
ground.  A further  advantage  is  that  a modified version of 
ART can be implemented on existing CNN-UM architecture.
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