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Abstract— In this paper we present a general, decentralized
air traffic control solution using autonomous drones. We chal-
lenge some of the most difficult dense traffic situations, namely,
crosswalk and package-delivery scenarios, where intelligent
collective collision avoidance and motion planning is essential
for a jam-free optimal traffic flow. We build up a force-
based distributed multi-robot control model using a tunable
selection of interaction terms: anisotropic repulsion, behaviour-
driven velocity alignment, self-organized queueing and conflict-
avoiding self-driving. We optimize the model with evolution in a
realistic simulation framework and demonstrate its applicability
with 30 autonomous drones in a coordinated outdoor flight
within a densely packed virtual arena.

I. INTRODUCTION

UAVs in common airspace are already challenging current
centralized traffic-organizing schemes while their number is
expected to explode in this decade. To assist or even replace
human airspace control efforts, hybrid and fully decentralized
aerial traffic solutions will become a key in the near future.
To facilitate this trend, we show a self-organizing solution to
control large numbers of autonomous drones with individual
flight tasks. We use an agent-based algorithm that has been
inspired by recent, custom-tailored variants of the original
Vicsek-model [1], but also contains optimized traffic-specific
interaction terms. The local nature of this approach promises
the scalability of the solution to even global scale.

There is already vast literature on optimizing ground
traffic, which is restricted in most cases to quasi-one-
dimensional roads. This boundary condition together with
human imperfection in concentration, reaction time and
limited sight cause jams, slow traffic and also many accidents
[2]–[4]. There is an ongoing revolution to wipe out these
inevitable human faults by autonomous cars [5]–[7].

The complexity of two- or three-dimensional aerial traffic
with ever-growing number of agents can go beyond that of
ground traffic [8], even though the only infrastructure needed,
air, is present everywhere and in general there is a lot more
space in three dimensions than on one dimensional roads.
At the same time, aerial traffic might also be constrained
by virtual roads and restricted air spaces, close-to-ground
air traffic has to handle obstacles in 3D, while motion and
communication in the air is always much more challenging
than on the ground [9]. Centralized path-planning - e.g. game
theory based [10] or bioinspired [11] - calculates close to
optimal routes for a couple of agents, but the scalability of
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such approaches is questionable due to central communica-
tion and computational complexity. Self-organization is an
excellent direction to address all these difficulties [12], [13].
This approach is used by biological systems [14], [15], and
technological innovations [16], [17], too.

The first step of multi-drone coordination was to achieve
synchronized flight of a flock of drones as a common task
for all agents [18]–[21]. As a second step, here we intent
to organize the traffic flow of a flock of drones, where
coordination is still needed but the flight mission of each
agent is independent and thus there are a lot more conflicts
in the air to be resolved on the spot. Moreover, we investigate
the most difficult traffic scenarios of densely packed aerial
drones. We forge situations where the drones are compelled
to use every bit of the available airspace if they want to
reach their targets quickly. Additionally, the traffic flow
is demanded to be collision- and oscillation-free. All of
these self-organized global features need to emerge from
individual behaviour based on limited local information. Our
model runs in two dimensions to harden the task by limiting
possible movement directions to the horizontal plane, but it
can be used to handle full 3D traffic as well, if needed.

To perform optimal drone traffic, we build upon our previ-
ously proposed force-based simulation model of UAV traffic
[22] but will highly exceed it in the basic concepts about the
role of the interactions and the generality of the solutions
even in situations where our previous model failed (e.g.,
avoiding traffic jams around common targets). Furthermore
we will also demonstrate the functionality of our model with
actual field experiments using 30 fully autonomous drones.

First, in the next section we will give a detailed intro-
duction to our agent-based algorithm that is executed on all
drones in a distributed way.

II. TRAFFIC MODEL

We build up our control algorithm from four unique
interaction terms. First we will give a descriptive explanation
of each term which will be followed by exact mathematical
equations.

The motivation for the four major interactions in our
model can be viewed as steps from rudimentary to complex
behaviour. Repulsion and alignment are fundamental terms
of coordination used in the majority of flocking models [1],
[19], [23]. Repulsion is in charge of avoiding collisions,
while alignment aims to synchronize motion and thus in
general to diminish oscillations. Additionally, we use self-
driving to make the agents move circumspectly around each
others and prevent collision conflicts, and self-organized
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queueing behaviour, which is already halfway between local
and global problem-solving, as agents share information
about the global target of their local neighbours in the queue.

The joint usage of these interactions disrupts this simple
hierarchical picture. It turns out in real flights that agent-
agent interactions can not be driven by repulsion, as it ends
up in oscillations if the alignment is small enough to let
anything happen in the sky. Therefore, we need an agile self-
driving term to keep the agents away from collision-course
first. Such a well designed conflict-prevention term liberates
the repulsion term from its last resort role, so it may become
anisotropic to make the agents slip through frequented areas
quicker. The smooth flow provided by these terms allow the
agents to reduce the number of neighbours to align their
velocity to, with behaviour-driven selective friction. As the
agents handle well their neighbours moving in any direction,
an additional queueing term can be introduced to wait for
each other patiently at a common target, minimizing the
blocking effect of other queuers.

In our momentary force-based model the ith agent (with
position ri and velocity vi) calculates its momentary desired
velocity according to the interaction terms described above:

ṽi = vrep
i + valign

i + vtarget
i . (1)

In the followings we give a proper mathematical definition
to all of these interaction terms.

A. Anisotropic repulsion

Isotropic repulsion is generally used in flocking algorithms
to avoid agents getting too close to each other. If they move
into the same direction during flocking, repulsion sets the
average inter-agent distance. But if they move in the opposite
direction during a traffic situation, repulsion pushes agents
away from their desired direction, creating oscillations.

In our anisotropic repulsion term we distinguish agents
based on the difference between their direction of motion.
If the jth agent is close to the ith agent, but their direction
of velocity is the same (with an angular threshold of ±π

3 ),
then it is not the same type of threat as if they go into the
opposite direction. In the latter case, it is better to evade each
other than to oscillate. In fact, in jam situations it also seems
favourable to form some kind of chain of the agents going
in the same direction.

Both of these reasonable goals can be achieved by intro-
ducing anisotropy (A) into the repulsion:

vrep
i =

∑
j 6=i

urep
ij v

rep
ij , (2)

where the double indices refer to the interaction between
the ith and jth agents, from the viewpoint of agent i. The
magnitude of repulsion vrepij is calculated by the function

vrepij (rij) =

{
prep (R0 − rij) rij < R0

0 rij ≥ R0,
(3)

where prep is a linear gain, R0 is the radius of the repulsive
zone and rij = |rij | = |rj − ri|. The repulsion direction

ϕ

ρ
isotropic
anisotropic

Fig. 1. Explanation of the anisotropic repulsion. Agents are depicted with
colored triangles pointing towards their direction of motion. The anisotropic
response between the blue and green agents (↑↑, Eq. (6)) is different from
the response between the blue and red agents (↑↓, Eq. (7)). Dashed vectors
show the isotropic repulsion of agents as a response to neighbours with
given colors. The sum of these responses would force the agents to move
backwards. This is a suboptimal choice, as the green agent is about to open
up free space at the right side of the blue one. The sum of the anisotropic
responses represented by the solid vectors exploits the situation and forces
the blue agent to fill in the space opened up by the green agent. The effect
of the blue agent on its neighbours is also advantageous. It forces the red
agent to evade the blue one more and lets the green one continue its route
towards its target with less interference. The input (φ) and output (ρ) angles
of Eq. (5) are shown for the blue agent with respect to the red one.

urep
ij is the only direction which satisfies

(rit × rij) ·
(
urep
ij ×rit

)
> 0 (4)

where rit = rtargeti − ri and

ρ =

{
h↑↑(φ) α (rit,vj) ≤ π

3

h↑↓(φ) α (rit,vj) >
π
3 ,

(5)

where α(., .) is the angle between two input vectors, ρ =
α
(
urep
ij ,−rit

)
and φ = α (rij , rit).

Eq. (4) and (5) mean that urep
ij lies on the opposite side

of −rit than rij and is making ρ angle with it, as seen in
Fig. 1.

The shape of the h↑↑(.) and h↑↓(.) functions is determined
by the anisotropy parameter A. If anisotropy is 0, we get the
isotropic repulsion with urep

ij =
rji
rji

≡ N (rji). This means
that both h(.) functions are linear with a slope of 1. As A
increases towards its limit 1, the two functions deviate from
this single linear shape to piecewise linear functions, with
the boundary condition h↑↑(π) = h↑↓(π) = π:

h↑↑(φ) =

{
A · φ φ ≤ π

2

π +A · (φ− π) φ > π
2

(6)

h↑↓(φ) =

(
1− A

2

)
(φ− π) + π. (7)
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In Eq. (6) the A ·π jump at π
2 magnifies the lane-forming

phenomenon, what is already present in similar systems at
equilibrium [14], but we want to accelerate its construction
to increase the flow. Similarly, the deviation from the identity
function in h↑↓(.) results in the acceleration of evading
provided also by the self-driving term, as can be seen later.

B. Selective alignment

If the goal of the fleet is not to flock together coherently,
alignment may seem superfluous. Indeed, it turns out to be
useful in any stochastic collective flight to reduce oscillations
and to prevent dangerous situations by eliminating too high
velocity differences between close-by neighbors. In other
words, while repulsion is a form of excitation, alignment
acts as a useful damping term. Our alignment term is

valign
i =

∑
j∈Ai

N (vji) ·

·θ
(
vji −max

(
valign, D

(
rij , R

align, palign, aalign
)))

, (8)

where θ is the Heaviside step function, and D is a smooth
and optimal braking curve to decay velocity as a function
of distance, with explicitly taking into account the motion
constraint of finite acceleration capabilities:

D (r, d, p, a) =


0 r < d

p(r − d) d < r < d+ a
p2√

2a(r − d)− a2

p2 d+ a
p2 < r,

(9)

where a is the acceleration limit, p is a linear gain in the
v-r plane and d is a distance offset for D(.) in the v-r plane.
The square root part corresponds to a constant deceleration.
The reason one needs to cut it - continuously to first order
- with a linear part is that a little noise in distance can
cause enormous difference in output velocity near the point
of infinite derivative.

To reduce undesired alignment, every agent may select the
neighbours it aligns to. To decide whether alignment should
be used for a neighbour (i.e., it is part of the set Ai), the agent
first checks three conditions. The first two represent possible
danger: D1) the neighbour comes towards the agent (with
fixed angular threshold ±π

4 ); D2) the neighbour is between
the agent and its target (with fixed angular threshold ± 2π

3
relative to the agent-target direction). The third condition is
related to efficiency: E3) the velocity of the neighbour points
towards the target of the agent (with fixed angular threshold
±π

2 ), i.e., they both head to similar directions in a flock.
If at least two of these three conditions are valid, we use
alignment. Otherwise, we switch it off as the situation is safe
enough and would not be efficient enough with alignment.
Fig (2) visualizes all conditions when alignment can be
neglected.

C. Agile self-drive

Every agent moves towards its target with vtarget
i . In open

space this vector has a magnitude of vSPP, a predefined
travelling speed. However, if there is any neighbour in the

E3
D1

D2
Criteria

D1
D2
E3

Fig. 2. Selectivity of alignment. Neighbors of the blue agent show three
cases when alignment can be switched off as each of them holds only one
danger or efficiency criteria and thus motion remains safe and becomes
more efficient without alignment. These three conditions are: D1) coming
towards the agent; D2) being in front of the agent; E3) moving towards
the target of the agent. For sake of simplicity the blue agent moves exactly
towards its target. Auxiliary lines represent angular thresholds of the one
and only held criterion for each neighbor.

way, it needs to be shrunk and/or rotated to prevent getting
into the range of repulsion.

The agent reduces its target velocity iteratively. It chooses
its closest neighbour which is inside the rectangle with
length of the distance of the previously chosen neighbour
(or the target at the start of the iteration) and half-width of
a safety distance RS , pointing in the direction of vtarget.
The agent separates the component of vtarget pointing
towards the chosen neighbour and reduces it according
to D(rij , RS , p

target, atarget). This reduced component is
rotated with an angle of T · sin−1(RS/rij) towards the
direction of vtarget

i . The tangentiality parameter T defines
the amount of rotation. At T = 1 the remaining part gets
rotated exactly to the tangent line, while T = 0 switches
off rotation completely. The rotated component is added
back to the perpendicular component. The final magnitude is
constrained not to grow in any step. Since the agent chooses
closer and closer neighbours in every step and the velocity
magnitude decreases, the iteration is guaranteed to stop either
at the closest neighbour or at zero vtarget

i . Fig. 3 summarizes
the algorithm behind the self-drive mechanism.

D. Radial queueing

When approaching a target it is reasonable to require that
the agent decreases the magnitude of vtarget

i smoothly as
getting closer. We do this with the previously introduced D(.)
function. To keep the number of parameters manageable, this
term uses the same values for acceleration and slope as the
self-driving term (as these are similar cases of deceleration,
in front of a target or another agent). If there are more agents
approaching the same target, they queue up and thus might
have to stop before they reach their target. To calculate the
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before
after
RS

Fig. 3. Agile self-driving with T = 1. The green neighbour is out
of the danger zone (blue rectangle), hence does not force the blue agent
to decrease its original target velocity represented by a solid blue vector.
The RS (black ruler) safety environment of the red neighbour would be
intersected though, so the agent decomposes its target velocity into a
component pointing towards the neighbour and an orthogonal component,
both represented by blue dashed vectors. The former component gets
decreased according to the function described in Eq. (9) with the parameters
that can be found in Table I. Having decreased the component it gets also
rotated to the tangential direction (red dashed vector), and is added back to
the orthogonal component. The result is vtarget, represented by the solid
red vector. If there were more neighbours closer than the red one, more
iterations would be needed to get the final target velocity vector.

individual stopping point, agents search for the neighbour
who is i) closer to the agent than a queueing interaction
range RQR; ii) going towards the same target or within a
safety radius of RS ; iii) closer to the target than the agent
itself and iv) furthest away from the target among agents
fulfilling i-iii.

If this neighbor exists, this will be the one in front of the
agent in the queue, called the q-agent. In this case, the agent
stops at a queueing distance RQ further from the target than
the q-agent. If the q-agent does not exist, the agent wants to
slow down to zero exactly at the target.

This interaction forces the agents not to approach their
targets, but to wait patiently in a queue instead. The queue is
virtual, the agents do not form lines in real space. Queueing
can be treated as a very useful collective behavioural state
of the agents (as a form of instantaneous, self-organized
order hierarchy) to avoid unnecessary self-excitation in the
repulsive range in certain situations. This term helps to
prevent giant over-packed jams around a frequented target,
where even the agent who has reached its goal and wants to
move to another one can not move due to the dense packing.

However, the model also needs to take care of situations,
when despite their ability to move freely towards their target,
multiple agents freeze because a few agents closer to the
target are stuck in a jam. The following method rules out
these situations: 1. check if the agent who is closer to the
target of q-agent than the q-agent itself and is the closest
neighbour of the q-agent is going to the same target as q-
agent. 2. If it is going elsewhere, and it is closer to q-agent
than R0, then we do not queue up behind q-agent, since he
is stuck in a jam independent of our queueing.

As a result of numerous simulation, RQR defines the
queueing behaviour more intensively than RQ, so the latter
will be ruled out from the free parameters, with the following

estimation. The n agents closest to the common target all take
each other into account if the furthest is RQR/2 away from
the target. This implies that the nth agent is nRQ away.
All the n agents need free space with radius RS around
themselves, so (nRQ)

2 ' nR2
S . From all this we get

RS =

√
RQ

RQR

2
, (10)

thus RQ can be defined by free parameters RQR and RS .
There is one last possible situation when the agent has

to stop before its target: when a neighbour is behind the
target, but its security zone of radius RS intersects with the
line segment between the agent and the target. This shall be
resolved by stopping at this intersection.

E. Model summary

In this section we introduced a traffic model that generates
a desired velocity as a sum of three velocity terms provided
by the specific interactions, as it can be seen in Eq. (1).
This velocity depends on the world agents observe around
themselves (set of rjs and vjs) and the actual values of the
free model parameters, which are summarized in Table I.

In the beginning of this section the origin and nature of
the terms was introduced. After having rigorously explained
the exact functioning of the terms, Fig. 4 gives a general
overview of the new features through two-agent interactions.
As one can see on the first subfigure, isotropic repulsion with
a constant target velocity leads to oscillating and ineffective
motion and unselective alignment holds off the agents from
leaving the impact zone even after passing by each other.
Anisotropy and selectivity offers a quick resolution of the
two-agent conflict (second subfigure), but resulting trajec-
tories are still not smooth enough. Changing the constant
target velocity to the one given by the self-driving term (third
subfigure) smoothens out the trajectory a bit, but with the
compromise of much slower motion. Making the self-drive
agile (fourth subfigure) further enhances the smoothness
of the curves, improves the performance while maintains
mutual avoidance. In the final solution distance between
agents is increased, which increases safety but creates longer
paths. However, speed is maximal most of the time which
compensates for the loss of efficiency.

In the next section we tune the free parameters with
realistic simulations to obtain an optimal working model to
be used on real drones as well.

III. REALISTIC SIMULATION

Our simulation framework imitates realistic conditions by
providing the agent imperfect information about its neigh-
bours and its sensors due to limited communication range,
non-zero communication time delay tdelay and noise. The
simulation also limits the velocity of agents to reach the
desired value defined in Eq. (1) with finite acceleration amax.
All details about the used realistic conditions can be found
in our previous work [24].

To investigate how the four new features of agile self-
drive, anisotropic repulsion, selective friction and radial
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Fig. 4. Effect of the interaction terms demonstrated by simulating two
agents in a direct conflict. Coloring of the trajectories is mapped to
the velocity (red-slow, green-fast, with the same color map as in Fig.
7). Turning on the features of the interactions (A: 0→0.42, sel: off→on,
RS : 0 m→16 m, T : 0→1) is symbolized by gray background in the upper
right corner. Other parameters are set according to Table I. Arrows show the
direction of motion and the time needed for the agent to reach its target.
The right-hand rule bias is not included in the ruleset, we chose similar
situations for better comparability.

queueing handles hard situations, we set the mean free path,
l = L/

√
N as low as 20 − 30m, while maintaining a

vSPP = 6m/s target velocity. Note that the lower limit is
hardly 2vSPP

(
tdelay + vSPPa−1

max/2
)
, what is the distance

where two frontally moving agent can stop with late reaction
and limited deceleration. Moreover, we forge two target
scenarios demonstrating the two most challenging aspects

of traffic: i) multiple path conflicts; ii) flow bottlenecks.
In the first scenario drones are placed in a ’crosswalk’

situation: half of agents start from one side of the arena,
while the rest from the opposite side. Every time an agent
gets to its target it takes a new target randomly selected
on the opposite edge of the arena. Initially this results with
two fronts of agents colliding into each other (same as
with people on green light on a crosswalk [25]) and later
several agents meeting near the center with a potential head-
on collision. These path conflicts form a testbed for the
anisotropic repulsion and the self-driving term, as the agents
have to evade each other effectively, and form lanes to open
up space for the rest. Increasing the number of agents, while
keeping the mean free path constant makes the targets more
dense on the one-dimensional arena-edge, so queueing also
plays a more and more important role.

In the second ’star’ scenario all of the agents have one
common destination: the center of the square-formed, L-
sized arena. Having reached this destination they head to a
randomly selected point on the edge of the arena. This bot-
tleneck situation is a perfect testbed for the radial queueing
behaviour (and could be of interest e.g. for drone package
delivery applications where a central post office has to be
reached by all agents).

For the optimization of a wide range of parameters
we used the state-of-the-art evolutionary optimizing tool
CMA-ES [26]. To quantitatively decide if one parameter set
is better than the other, one needs to define a fitness function.
Our goal is to make the agents reach the most possible
targets in 600 seconds, without colliding into each other,
and without burning energy for unnecessary accelerations.
For sake of simplicity each term got transformed into [0,1].
These requirements result in a fitness function that was also
used in [22], expanded by a third, acceleration minimizing
term.

F =
C2

(< ψcoll >t +C)
2

< veff >t

vSPP

amax− < |a| >t

amax
, (11)

where ψcoll is the collision risk, i.e., the normalized
probability of two agents being closer to each other than 5
m, as defined in [22], C=2E-6, veffi is the effective velocity
of agent i defined as the velocity component in the direction
of the ideal waypoint vector pointing from the last to the
next target, ai is the acceleration of agent i, amax = 6 m/s2

is the acceleration limit of the simulated agents, < . >t

denotes averaging through all time instances (t) and x is the
average of x for all agents. Evolutionary optimization for
100 agents and L = 250m ran with 100 generations and
100 phenotypes per generation on a computer cluster. The
optimization works on a superagent level, as all the fleet uses
the same parameters in one simulation, and the evolution
searches for the best average fitness for the fleet. The results
represent parameter sets that produce a safe and effective
traffic flow. Gladly enough this was almost the same for both
target scenarios concerning the most dominant parameters:
R0 ' 10m, RQR ' 25m, RS −R0 ' 1m, T ' 0.7,
A ' 0.5.
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TABLE I
MODEL PARAMETERS

sim. real

vSPP maximum target velocity 6 6 m/s

R0 repulsion distance 13.5 9 m

prep slope of repulsion 1.3 1.1 1/s

A anisotropy of repulsion 0.42 0.5

valign tolerated velocity difference 0.2 0.8 m/s

Ralign −R0 alignment distance offset 2.2 1.7 m

palign slope of alignment 2 1 1/s

aalign acceleration of alignment 3 3 m/s2

RS −R0 safety distance offset 2.5 1.5 m

T tangentiality 0.4 0.6

RQR queueing interaction range 35 30 m

ptarget slope of self-drive 0.5 0.5 1/s

atarget acceleration of self-drive 2.5 2.5 m/s2

Evolution provided us optimal values and working ranges
of parameters where fitness was found to be high. Starting
from these values we selected final parameters for the actual
system size used in real experiments (N = 30, L =
150m) through visual inspection of the simulations. Note
that final fine tuning of the system is hardly avoidable due
to the obvious limitations of a quantifiable fitness function
in capturing the overall quality (e.g. ’smoothness’ in our
case) of a complex system (cf. definition of IQ for human
’intelligence’ [27]). In other words, two different parameter
sets may give the same value for collision risk, effective
velocity, acceleration or other simple descriptors, but the
overall difference in quality could still be perceptible.

The main difference between the evolutionary optimum
and the final parameter setup was in the role of the repulsion.
Evolution utilized repulsion for collision avoidance but in the
real system we wanted to avoid repulsion-driven oscillations
completely so we decreased the range of repulsion and
the anisotropy and increased the safety distance of self-
drive instead as a preventive, conservative action, with the
compromise of some fitness loss.

To minimize the uncertainty in the parameter choice we
also swept around all the final parameters and based on
5 simulations at each parameter value we chose the most
effective version for the real flight system size. Switching
between the human pattern-recognition and the data-driven
computer analysis is called the centaur method, and has been
successfully applied in medical challenges [28], [29]. The
concluded parameter sets were so close for the two target
scenarios that we kept the set of the more difficult crosswalk
scenario. The final parameters can be seen in Table I.

As a final check in simulation, we created statistics of the
effective velocity (veff ), the overall magnitude of the traffic
flow, i.e., the flux (veff/l) and the collision risk (Ψcoll) as a
function of the mean free path (l) in the crosswalk scenario
with 100 agents. Results give a typical density dependence,
with low collision risk and relatively high effective velocity
even in the dense traffic range, with a maximal flux at
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Fig. 5. Traffic flow statistics as a function of mean free path (density).
Twenty 10-minute simulations were averaged at each measurement point.
Standard deviations are shown with error bars, but they are too small for the
flux and the mean free path to be visible. The overall flux has a maximum
at 36 m mean free path, which is a relatively dense traffic situation.

around l = 36 m (see Fig. 5). The collision risk got a
tenfold decrease compared to that of [22], while keeping the
maximal flux practically the same. Note that the crosswalk
scenario leads to more dangerous head-on situations than
others studied in the previous paper. Additionally, the proper
handling of the finite acceleration capabilities enables our
model to work with vSPP= 6 m/s. This leads to a 1.5 times
increase of the flux in the low-density regime.

To assess the star scenario we calculated the time between
two agents reaching the central target in the queue. The
statistical average of 20 simulations for each of the 48
mean free path values between 22 and 365 m is mostly
independent of density (viz. reaching the central point is a
bottleneck) with an overall value within 12±1 s. The number
of collisions was zero in every simulation. Visualizations of
both scenarios can be seen in the Supplementary Video.

IV. REAL FLIGHTS

Real experiments were performed with our tailor-made
quadcopter fleet, designed for swarming missions. The
drones are based on a PixHawk low-level autopilot [30],
running a custom modified version of the ArduCopter code
[31]. Positioning is based on GNSS, which required an
open air outdoor space. The low level autopilot receives
desired velocity commands at 20Hz rate from an Odroid
minicomputer. This high-level autopilot executes our traffic
algorithm, using information received from other fleet mem-
bers through an ad-hoc wireless network in the form of UDP
packages. Communication between drones and computation
of the actual control signals remained local and distributed
at all times.

The final experiment with the 30-drone fleet took place on
a windless, sunny day around Paty, Hungary. Having tested
the parameter set before for 6 drones and both scenarios,

6370



we went for 10 and 20 drones first. Note that the simula-
tion framework provides solutions for worst-case scenarios
regarding noise and delay to make sure the uncertainty
in the reality gap will not decrease safety. The first real
tests happened to show stable enough behaviour to further
optimize some parameters and maximize the flow. The final
parameter values used for experiments are summarized in
Table I. The final experiment had 30 agents, moving in a
150×150 m arena with 6 m/s according to the more difficult
crosswalk target scenario.

Note that the takeoff position of the drones had some
effect on initial transient performance. While the algorithm
is prepared to prevent risky situations, neither of anisotropic
repulsion, selective friction, agile self-drive and radial queue-
ing is purely optimized or even dedicated to handle situations
starting from risk already. Consequently, when the drones
were not spread out initially as in the simulation but took
off very close to each other (e.g., with 5-7 m spacing),
the initial movement of the drones was somewhat erratic as
they started from within the range of anisotropic repulsion,
which pushed them away from each other at high speed. It
is not an actual fault, because this is a situation what the
algorithm would never allow to happen. Nonetheless this
is a field, where there is space for improvement, e.g., by
introducing a new behavioural phase to handle such ”panic”
situations effectively. Anyhow, after the initial transient, the
fleet always found a formation where every drone had its own
safe space, and from that point on, they reached their targets
fast and smoothly while using the available space smartly.

Fig. 6 contains a long exposure photo of the experiment,
Fig. 7 shows plotted trajectories of the drones in the horizon-
tal plane, Fig. 8 shows order parameters of the flight collected
from flight logs and the Supplementary Video shows raw
footage and visualization of the flight with 30 drones. All
visualizations demonstrate the smooth, stable and efficient
functioning of the algorithm in a real outdoor experiment.

V. DISCUSSION

In this paper we presented an agent-based, decentralized
and scalable solution for difficult 2D air traffic situations.
We proposed four new interaction terms: repulsion became
anisotropic and alignment became selective to adapt more
to traffic situations, while queueing and self-drive got in-
troduced to resolve oscillations and jams. Eliminating these
problems enabled our UAV fleet of 30 drones to complete
random missions of coordinated flight with conflicting tasks
in dense environments.

Keeping the mean free path constant, the same set of
parameters proved to be a fine real-life solution for several
systems sizes of 6, 10, 20 and 30 agents. Moreover, our
parameter set keeps on working well in simulation with
significantly increased (up to 12 m/s) speed. These two facts
represent a very promising feedback on our approach for
handling difficult traffic situations.

Further improvement in this field can be obtained by
also handling arbitrary obstacles in the way or introducing
heterogeneity/hierarchy among agents.

Fig. 6. Long exposure photo of a flight with many drones during a 2D traffic
experiment at 20 m altitude. The color of the drones changed according to
their behavioural state: green means that there are no obstacles in the way,
blue/purple means that the drone needs to break and avoid others, while red
means that the drone is in a queueing phase.

Fig. 7. Five minutes of horizontal trajectories from a flight with 30
drones. Colour of the trajectories is mapped to horizontal velocity. Curvy red
sections represent collision avoidance and evasion, occurring mostly in the
middle of the arena, while straight green lines represent free motion towards
the targets arranged in two sides of the arena. One trajectory is shown in grey
to highlight individual motion. The trajectories show smooth deceleration
and collision avoidance behaviour without uncoordinated oscillations and
demonstrate the efficiency of the algorithm (see Supplementary Video for
a dynamic visualization of the flight).
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Sculpture Department, Hungarian University of Fine Arts.
The authors are grateful for the help of other members of
the robotic team, namely to Tamás Vicsek, Tamás Nepusz,
Gergő Somorjai, Balázs Badár and Csaba Virágh, who have
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[21] T. Nägeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges,
“Real-time motion planning for aerial videography with real-time
with dynamic obstacle avoidance and viewpoint optimization,” IEEE
Robotics and Automation Letters, vol. 2, no. 3, pp. 1696–1703, 2017.

[22] C. Viragh, M. Nagy, C. Gershenson, and G. Vasarhelyi, “Self-
organized uav traffic in realistic environments,” in IEEE International
Conference on Intelligent Robots and Systems, vol. 2016-Novem,
2016, pp. 1645–1652.

[23] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in ACM SIGGRAPH computer graphics, vol. 21. ACM, 1987,
pp. 25–34.

[24] C. Viragh, G. Vasarhelyi, N. Tarcai, T. Szorenyi, G. Somorjai,
T. Nepusz, and T. Vicsek, “Flocking algorithm for autonomous flying
robots.” Bioinspiration & biomimetics, vol. 9, no. 2, p. 025012, 2014.

[25] D. Helbing, L. Buzna, A. Johansson, and T. Werner, “Self-organized
pedestrian crowd dynamics: Experiments, simulations, and design
solutions,” Transportation science, vol. 39, no. 1, pp. 1–24, 2005.

[26] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (cma-es),” Evolutionary computation, vol. 11, no. 1,
pp. 1–18, 2003.

[27] N. J. Mackintosh, IQ and human intelligence. Oxford University
Press, 2011.

[28] W. R. Swartout, “Virtual humans as centaurs: Melding real and
virtual,” in International Conference on Virtual, Augmented and Mixed
Reality. Springer, 2016, pp. 356–359.

[29] I. M. Goldstein, J. Lawrence, and A. S. Miner, “Human-machine
collaboration in cancer and beyond: The centaur care model,” JAMA
oncology, 2017.

[30] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “Pixhawk:
A system for autonomous flight using onboard computer vision,” in
Robotics and automation (ICRA), 2011 IEEE international conference
on. IEEE, 2011, pp. 2992–2997.

[31] Collmot branch of the arducopter codebase on github. [Online].
Available: https://github.com/collmot/ardupilot/tree/CMCopter-3.4

6372


