
royalsocietypublishing.org/journal/rsif
Research
Cite this article: Balázs B, Vásárhelyi G,
Vicsek T. 2020 Adaptive leadership overcomes

persistence–responsivity trade-off in flocking.

J. R. Soc. Interface 17: 20190853.
http://dx.doi.org/10.1098/rsif.2019.0853
Received: 14 December 2019

Accepted: 28 April 2020
Subject Category:
Life Sciences–Physics interface

Subject Areas:
biocomplexity, biomimetics, biophysics

Keywords:
collective motion, hierarchy, self-organizing

drones, response theory, collective behaviour,

agent-based modelling
Author for correspondence:
Boldizsár Balázs

e-mail: bboldizsar@hal.elte.hu
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.4977689.

© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Adaptive leadership overcomes
persistence–responsivity trade-off
in flocking

Boldizsár Balázs1, Gábor Vásárhelyi2 and Tamás Vicsek1,2

1Eötvös Loránd University, Budapest, Hungary
2MTA-ELTE Statistical and Biological Physics Research Group, Budapest, Hungary

BB, 0000-0002-8250-0417; GV, 0000-0002-5797-2340; TV, 0000-0003-1431-2884

The living world is full of cohesive collectives that have evolved to move
together with high efficiency. Schools of fish or flocks of birds maintain
their global direction despite significant noise perturbing the individuals,
yet they are capable of performing abrupt collective turns when relevant agi-
tation alters the state of a few members. Ruling local fluctuations out of
global movement leads to persistence and requires overdamped interaction
dynamics, while propagating swift turns throughout the group leads to
responsivity and requires underdamped interaction dynamics. In this
paper we show a way to avoid this conflict by introducing a time-dependent
leadership hierarchy that adapts locally to will: agents’ intention of changing
direction. Integrating our new concept of will-based inter-agent behaviour
highly enhances the responsivity of standard collective motion models,
thus enables breaking out of their former limit, the persistence-responsivity
trade-off. We also show that the increased responsivity to environmental
cues scales well with growing flock size. Our solution relies on active com-
munication or advanced cognition for the perception of will. The
incorporation of these into collective motion is a plausible hypothesis in
higher order species, while it is a realizable feature for artificial robots, as
demonstrated by our swarm of 52 drones.
1. Introduction
To understand the concept of persistence–responsivity trade-off in collective
motion, one can draw parallels, in terms of the principles, with the fluctu-
ation–dissipation theorem (FDT) [1–3], which limits even nonequilibrium
physical systems [4,5] not to be both permanent and susceptible. In its original
form FDT establishes a relation between the variability of any quantity in the
equilibrium system (fluctuation) and the irreversible response of that quantity
when the system is driven out of equilibrium as a result of external excitement
(dissipation). Breaking down the equation into single terms: higher/smaller
variability equates to a more/less intensive response.

Herewe aim to apply this simplified conclusion to the interdisciplinary field of
collective motion, where many key notions of traditional statistical physics (e.g.
order parameters [6], phase transitions [7], entropy [8,9], gas, liquid and solid
[10] or smectic [11] phases, first and second sound modes [12], hydrodynamic
regimes [13], broken symmetries [14]) have already found their analogous
counterpart.

A properly fittedmathematical formula for FDT in collectivemotion has been
introduced by [15]; however, although it is genuinely reassuring from a statistical
physics point of view, the paper has no intention to arrive to any consequence
relevant for biological or artificial flocks. Here we approach the question differ-
ently. Instead of another rigorous mathematical analogue, we purely concentrate
on the core message of FDT. It should be the ‘deep connection between fluctu-
ation and response’, as illustrated by the empirical data in [16].
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This deep connection is rooted in the following: when
a particle deviates from its previous state as a consequence
of either inner fluctuations or some external field, surround-
ing particles perceive these two processes exactly the
same way. Strong response to external fields comes together
with strong response to inner fluctuations. On the other
hand, reacting scarcely to external perturbations also pre-
vents any local variation to spread across the system
globally. Each of these considerations is applicable to
collective motion, so it is reasonable to expect that the cardin-
ality of biological units in a system and the presence of
noise together force permanence and susceptibility to be
reciprocals of each other.

Indeed, as long as collective motion in life can be
described by particles interacting in a simple, physics-type
manner, i.e. taking on an orientation according to their neigh-
bouring conspecifics [17,18], the corresponding systems
exhibit a few characteristic patterns of motion. Some of
these are simple flows in colonies of cells [19–22], while
other forms are reminiscent of turbulence [23–25]. The fact
that the governing forces of such systems are more complex
than simple electromagnetic forces (such as those in systems
in traditional statistical physics) does not resolve the conflict:
these systems are bound to choose either high persistence or
high responsivity when they exhibit collective motion. As
both features are desirable this situation is referred to as the
persistence–responsivity trade-off .

The tight vicinity of a critical point—where phase tran-
sitions occur—provides any system a chance to bypass the
trade-off. Here the magnitude of order rises above zero,
while the susceptibility to external fields decreases from infin-
ity. A collectively moving group can exploit the simultaneous
presence of order and susceptibility if it fine-tunes its internal
parameters—and, hence, its stability—in a way that the sys-
tem’s critical noise level is raised just above the given
external noise. With the presumption of global adaptation to
noise, criticality typically causes correlations to become
scale-free and thus a significant degree of instantaneous
order emerges that can also be changed at any time [24,26].
However, the emerging global velocity direction also becomes
too easily changed by the near-critical noise, hence it does
not prevail.

In contrast, for higher order species, such as birds [27] or
ungulates [28], collective motion not only means persistent
movement of the masses on long time scales, but also a rapid
and global response to external stimuli, hence exploiting the
advantage of having many eyes, increasing the overall vigi-
lance of the surrounding world [29,30] if opacity is not too
high [31]. The question of how these systems achieve this simul-
taneously agile and reliable behaviour arises naturally. In the
simplest models of flocking the information which is shared
by the agents is their momentary position and velocity;
future positions and velocities are determined only from
these inputs. Over the years several improvements have been
introduced concerning various further aspects of the inter-
actions. One of the relevant features introduced by Zhang
et al. [32,33] was taking into account the predictions that the
members of a flock can make concerning the expected trajec-
tories of their neighbours. In addition to their theoretical
results, these authors showed that their algorithm based on
predictions led to a consensus (common direction) being
reached rapidly in the systems they studied (mostly fully con-
nectedwith weighted links, moderate size and no boundaries).
Ourmainassumption isthat themembersofagroupareable
to communicate information beyond their momentary position
and velocity. This ability of the flocking agents is both obvious
from observations and has been addressed in other studies. In
groups of animals there are several possible ways by which an
individual can send a signal to the rest of the group. A sudden
change in the orientation or a specific vocalization may serve
as cues. Strandburg-Peshkin et al. [34] investigated the effects
of visual sensing among flock mates, resulting (owing to the
associated limitations) in a representation of the state of the
flock that was different from the actual geometry. A few studies
have addressed the question of escape waves, which clearly
influence the behaviour of a flock as a whole. For example, in
[35,36] it was discussed how a local perturbation due to preda-
tory attack may result in a wave travelling over the whole
flock. In this approach the sudden change in velocity in a
given part of the flock serves as a cue for the whole group,
thus acting on a global scale. In addition, even the position of
a given individual (e.g. being in front of the flock) can have a
specific signalling role for the rest of the flock-mates [37]. In
the present work, however, we introduce a way of taking into
account cues using a model in which the positions and the vel-
ocities of the flock members are updated by taking into
account the information from some specific flock members
(whose role changes with time) conveyed through means
other than simply changing position or velocity.

To achieve this, individuals are driven to develop cognitive
capabilities that are often termed ‘theory of mind’, especially in
the case of primates [38]. This enables agents to perceive their
social environment and to distinguish between movements
that are interpreted as intentional and those that are not, so
that changes induced by external information, such as predators
or obstacles, can be transmitted across the collective with under-
dampedpropagation,while distortions of ever-present noise can
be ruled out with overdamped dynamics. This sets up the stage
for consensus finding [39–42], which is a pre-requisite for
flocking, a spectacular manifestation of collective behaviour
that gained attention in the context of collective robotics as
well [43–45].

From early on [6,10,13,17] most of the experimental and
modelling approaches assumed egalitarian interactions to
describe flocking and schooling [8,23,46–48]. However, when
the question of leadership was raised by Couzin et al. [49], the
science community found increasingly complex internal organ-
ization principles during group motion [50–52]. Combination
of two of the most widespread behavioural phenomena of col-
lectives, namely flocking and hierarchies, seems almost
inevitable. Hierarchical structures are prevalent from nature
to society [53], because they can be shown to result inmore effi-
cient group performance [54–56] by optimizing the flow of
information in systems. This feature is the reason we incorpor-
ate hierarchy into the new models presented in this paper.

To demonstrate how persistence and responsivity can be
achieved simultaneously, resulting in efficient flocking even in
complex environments, we investigate some of the most
commonly used agent-based models of collective motion
enhanced with a mathematically simple way of adapting the
interaction network hierarchically. We introduce agents of a
new kind that take account of more than the position and vel-
ocity of flock-mates. Through communication signs, or by
perceiving certain minor changes in physical phase space as
cues, they gain knowledge on the intention, i.e. will, of their
neighbours as well. Based on thiswill state—which is attributed
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Figure 1. Visual representation of how the desired velocity of the central
agent is calculated in three different ways, corresponding to the ViSt, CoLd
and WiSt models. In the ViSt model every agent is allocated the same
weight in the local velocity average, thus the interactions are symmetric
(mutual links). In the CoLd model the symmetry breaks (directed links) as
the informed (red) agent tends not to listen to its neighbours, but the
others still do not differentiate between the informed and other neighbours
in their local velocity average. In the WiSt model the uninformed neighbours
are aware of the informed state of the red agent, so they also lower the
weights (grey links) of every other uninformed neighbour in their local
average, which are dominated by the velocity of the informed agent.
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to agents possessing globally relevant information—local neigh-
bours change their interaction network, declare agents with
intention as local leaders (centres of a locally star-like leadership
hierarchy) and direct their motion, and thus the motion of the
collective in response to this intention, with high efficiency.

Going beyond the prior paradigm of time-independent
leader–follower relationships, here we no longer assume that
inner states and the leader–follower behavioural patterns are
irrespective of the actual situation of the flock. Instead, the
role an agent plays changes in accordance with the changing
situations in such a way that collective performance (ability
to be both persistent and responsive) becomes close to optimal.

After defining the models we create pure, isolated scen-
arios in a simulation in which we can clearly demonstrate
that agents with this extra information transmission can
indeed enhance their responsivity and thus break out of the
previous trade-off with unprecedented efficiency: they move
steadily in the long term and yet make rapid and accurate
global shifts as a correct reaction to the environment. The
final section demonstrates that this finding on the level of prin-
ciples easily translates to practical developments by surpassing
previous solutions of moving large numbers of artificial agents
in a closed space with high speed and coherence.
2. Model definitions
We investigate several agent-based models of collective
motion with simulations in two dimensions. First, we tem-
porarily omit the interaction terms that maintain the metric
distance of neighbours (repulsion and attraction), and focus
on the only remaining interaction term, the velocity align-
ment, which essentially determines how the flock maintains
or changes its global direction.

Instead of metric distance, we choose the Ni neighbour-
hood of agent i on a topological basis, meaning that every
agent interacts with its k nearest neighbours (and self ).

Besides the empirical evidence that the topological neigh-
bourhood describes some real flocks better [57] there is
another reason for this choice. In a topological neighbourhood
interactions cannot break down owing to spatial separation,
so one does not have to deal with the spatial diffusion of the
flock’s shape in this special casewhere attraction is not keeping
agents together (besides, diffusion is negligible in all our
simulations, even on the longest time scale investigated).

To analyse the differences in the models, we present them
in an easily comparable form. We always express the desired
velocity of agents as vdesiredi ¼ v0v̂i, where v0 is a constant
flocking speed and v̂i is the desired direction of individual
motion. In the following sections, the equations for these
desired velocities are detailed and compared.

2.1. Original self-propelled particle model
The first model we analyse in this paper is the standard
Vicsek model [6]; hereinafter, the ViSt model. Here we use
the notation ViSt for the case (equation (2.1)) in which only
the central idea of the updating rule of the original
model—i.e. averaging over the directions of the neigh-
bours—is accounted for,

v̂ViSti (tþ dt) ¼ N
X
j[Ni

vj(t)

0
@

1
A, (2:1)
where vj(t) is the velocity vector of agent j at time t and
N (v) ¼ v=jvj is the normalization operator of a vector.
Additionally, in the simulations above and in the rest of the
models, a relatively low noise level is used (to be specified
later).

2.2. Couzin leader model
An interesting and simple extension of the ViSt model is the
Couzin leader model [49]; hereinafter, the CoLd model. The
CoLd model was introduced to investigate how informed
(leader) agents can drive a flock in a desired direction. It
extends the ViSt model by assigning a continuous will
factor wi to agents, which is zero for followers and 1 for lea-
ders who tend to follow their desired direction (d̂) instead of
the local average,

v̂CoLdi (tþ dt) ¼ N ((1� wi)v̂ViSti þ wid̂i): (2:2)

Note that an agent’s new velocity is only affected by its own
will, as illustrated by figure 1.

2.3. Spin model of the Cavagna group
The third model we investigate is the inertial spin model pro-
posed by Cavagna et al. [58]; hereinafter, the CaSp model.
This elegant model describes collectively moving particles
based on symmetry arguments. The particle physics
approach used is based on the observation that collectively
moving animals keep moving at a more or less constant
speed. Their velocities can thus be described solely by their
direction of circular symmetry; therefore, a Hamiltonian-
type description of the system must depend on the generator
of rotations in the velocity: the spin. The spin is mathemat-
ically the same object in constant velocity motion as the
angular momentum in constant radius motion (i.e. rotation).
Thus, turning flocks are found to be analogous to isotropic
antiferromagnets and superfluids.

The translation of this model into the forms of expression
in this paper is as follows:

v̂CaSpi (tþ dt) ¼ N (R[vi(t), sViSti (t)dt]), (2:3)

where R[v; u] is the operator that rotates vector v at angle θ
on the x–y plane. The spin sViSti tries to align the current
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velocity to the ViSt velocity by its evolution,

sViSti (tþ dt) ¼ sViSti (t) e�(dt=t) þ J
vi(t)
v0

� v̂ViSti

� �
� êzdt, (2:4)

where êz is the unit vector along the z axis. Equation (2.4)
works as follows: if there is a misalignment between the vel-
ocity of the agent, vi, and the velocity subject to alignment by
the spinning mechanism (here v̂ViSti ) then the spin increases
and, through equation (2.3), aligns the individual velocity
to the local average. Here two free parameters are
implemented (see electronic supplementary material, text
S1 for their relation to the original model): τ, the character-
istic lifetime of the s spin of the agents, and J, the coupling
strength between the velocity differences and the spin.
Different parameter choices can lead either back to the over-
damped limit of the ViSt model (τ→ 0) or to an
underdamped phase (τ > size of flock/speed of spin-wave),
where spin waves can travel through the flock and enable
collective turns with equal radii.
7:20190853
2.4. New models with will recognition
The two models we introduce are analogous extensions of the
CoLd and CaSp models. The essence of the new behavioural
rule in both new models is that—owing to some kind of
cognitive capability—agents are aware of the level of deter-
mination (will) of their neighbours. This can be imagined
in various ways, such as: (i) attention to active signalling
(e.g. use of brake lights), (ii) recognition of unusual
behaviour (e.g. reaction to predators), or (iii) differentiation
between noise-induced and purposeful manoeuvres (e.g.
trained cognitive capabilities to analyse the fine motion
of neighbours).

In our models, every agent j has a momentary will factor
wj with a value of [0, 1] (time dependence becomes relevant
later; see §3.5). The will factor is a representation of new or
important information an agent possesses and this deter-
mines how much influence an agent has on its own
velocity and—as a crucial improvement to wj used in the
CoLd model—also on the velocities of its neighbours. As illus-
trated in figure 1, this approach leads to a temporal local
star-shaped hierarchy dominated by informed agents. Note
that star structures are considered to be maximally hierarch-
ical according to most graph theoretical measures (e.g. [59]).

Our first new model (called the standard will model,
referred to as WiSt from now on), the extension of the
ViSt/CoLd models, takes the following form:

v̂WiSt
i (tþ dt) ¼ N v̂CoLdi þ

X
j[Ni

wj
vj(t)
v0

0
@

1
A: (2:5)

Finally, we merge our will-based approach with the orig-
inal CaSp model. In the CaSp model agents align to the ViSt
velocity through rotations. ViSt velocity extended by the
enhanced influence of informed agents is the WiSt velocity,
so the natural extension of the CaSp model with will recog-
nition is aligned through the spinning mechanism to WiSt
velocity. The resulting will + spin, or simply WiSp model, is
the last model to be investigated and compared,

v̂WiSp
i (tþ dt) ¼ N (R[vi(t), s

WiSp
i (t)dt]), (2:6)

where, in accordance with equation (2.4), the evolution of the
spin towards the will-weighted velocity is

sWiSp
i (tþ dt) ¼ sWiSp

i (t) e�(dt=t) þ J
vi(t)
v0

� v̂WiSt
i

� �
� êzdt: (2:7)

Equations (2.1), (2.3), (2.5) and (2.6) define the momentary
(time dependent) desired velocity an agent tries to reach. The
way in which this desired velocity is approximated is deter-
mined by the dynamic model of the agent and the physical
environment; namely, by some kind of inertia and noise in
our simplified models. This results in the following equation
for the acceleration of agents (using the same simulation fra-
mework as in [43,60]):

ai ¼ N (vdesiredi � vi) �min
jvdesiredi � vij

tc
, amax

� �
þ j, (2:8)

where τc is the characteristic time of exponential convergence
to the desired velocity, amax is the maximum acceleration of
the agents and ξ is white noise, a vector drawn from a two-
dimensional normal distribution with an expected null
vector and variance s2

j . For values during the simulation,
see electronic supplementary material, table S1.
3. Simulation results
In this section all fourmodels described by equations (2.1), (2.3)
and (2.5), (2.6) are investigated from two distinct perspectives,
as test beds for measuring responsivity and persistence:
(i) how quickly and how accurately a group of agents can
change to any new direction if the new information about the
desired direction is given only to a single agent; (ii) how long
a group of agents can maintain the direction of global move-
ment in the absence of any new information or external threat.
To focus purely on the outcome of the tests described above,
the effects of stochasticity are minimized first: (i) noise levels
are defined to allow all models to maintain a highly polarized
(approx. 0.98) collective motion; (ii) every simulation is started
with an ordered flock in terms of both position and velocity:
N agents are placed homogeneously within a circle, separated
by 15m on average, and they all move in the same direction
upon release with speed v0 = 8m s−1.

3.1. Quantifying responsivity
In real flocks the global direction of motion changes many
times as a result of observed external stimuli, such as obstacles
or predators. Here we want to evaluate the collective response
regardless of what triggers it. After allowing the noise to cause
slight disarray in the initially uniform and perfectly coherent
motion for ts = 3 s, we turn agent 0—initially placed in the
centre of the entire flock—with an angle of deviation w relative
to the initial direction. Following this, the desired velocity of
agent 0 will always point towards this new direction n̂w, and
its will in the new models also jumps to and remains at 1,

v̂agent0ðt . tsÞ ¼ n̂w: (3:1)

The level of the collective response to this new infor-
mation is given by the time average of the scalar product of
the new direction, n̂w, and the global velocity,
V(t) ¼ 1=N

P
i vi(t), over a response transient time, tR,

rðwÞ ¼ 1
v0tR

ðtsþtR

ts
VðtÞ � n̂wdt: (3:2)
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respond to high coupling (J = 1400) and dotted lines to low coupling (J =
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s) and ‘× ’ to where spin stays in the system longer (τ = 0.8 s). Models with
will recognition (WiSt, WiSp) can always improve their responsivity further
by increasing the connectedness of agents, while models that lack
the cognitive feature of will recognition do not improve in terms of
responsivity as k grows. Simulations were performed with N = 250
agents, tR = 15.8 s, s2

j ¼ 1 m2 s−4.
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Typical deviation-angle dependencies can be found in
electronic supplementary material, figure S1.

To characterize the general ability of the flock to respond
to external stimuli, one should condense the responses
depending on the angle into a single descriptive value. The
simplest assumption (in the absence of external symmetry
breaking) is that the distribution of the desired new global
direction is isotropic; thus, we perform multiple tests at
different deviation angles and average over them to get the
responsivity,

R ¼ 1
p

ðp
0
hr(w)idw, (3:3)

where 〈 · 〉 symbolizes the average over numerous simu-
lations. In the case of this responsivity test, five simulations
are run for each deviation angle. Discretization of the angular
integral is 10°.

Note that the values of R are mathematically bound
between − 1 and 1, but practically between 0 and 1: a flock
that keeps on moving straight (n̂0) irrespective of agent 0’s
changed direction has 0 responsivity, while the perfectly
responsive flock that globally copies the velocity of agent 0
at the moment it turns reaches R = 1.

Keeping tR independent fromw is simple and is observed in
nature [61]; however, the choice of this value is not obvious.We
need to provide the flock with enough time to reach the new
velocity direction and then also to exploit high V · n̂w in the
time average, but tR must not be too long in order to see the
difference between slow and rapid turns in R. The flock spatial
size scales with

ffiffiffiffi
N

p
in two dimensions, so if we expect linear

information propagation, then tR � ffiffiffiffi
N

p
must hold for compar-

able results throughout changing flock sizes. For the sake of
simplicity, we choose the constant that connects the response
time and the square root of flock size to be 1 s, meaning that
we measure the turn of a flock of 100 agents for 10 s,
which—based on simulations—provided us with the relevant
information. This is also approximately the amount of time
that an agent in the middle would need to cross the flock, so
it is a reasonable time scale for comparison (e.g. [62]).
3.2. Responsivity scaling
First, we investigate how the number of topological neigh-
bours k affects the responsivity of a flock following different
alignment rules: ViSt, CaSp, WiSt and WiSp. (With a single
agent forced to alter direction there is no difference between
the ViSt and CoLd models. Since the descriptive power of the
CoLd model is apparent when several agents possess infor-
mation, these responsivity measurements are referred to as
ViSt throughout the paper.) As shown in figure 2, the ViSt
model has low responsivity because, in low k cases, the infor-
mation diffuses slowly on the sparsely connected interaction
network; as k increases, the voice of a single turning agent is
lost even in the local average. One can also see that the
responsivity of the CaSp model is mainly determined by
the coupling strength J, the parameter that shapes how
much spin is injected into the system by a turning agent.
Stronger coupling means better responsivity. This obser-
vation is in agreement with the idea of a spin being a
conservative quantity [58]. To a smaller degree, responsivity
is also affected by the lifetime of spin, τ. The more agents
the spin reaches before it dies out, the more responsive the
flock becomes.
Adding will recognition to either the ViSt or CaSp models
as seen in equations (2.5) and (2.7) enhances the responsivity
by a considerable amount—as expected. It is very encoura-
ging that for k≥ 15 even the less responsive new WiSt
model is better than all CaSp models in terms of responsivity,
notwithstanding the fact that spin models were originally
designed to describe collective response (figure 2).

Scalability is an essential requirement of collective behav-
iour in both nature and technology. To compare the models
with and without will recognition, we studied how the size
of the flock (N) affects the responsivity of the collective
(figure 3). We found that responsivity decreases gradually
as the size of the flock increases in the case of models without
will recognition—irrespective of whether they start from high
(CaSp) or low (ViSt) responsivity for small flocks. Meanwhile
the same models upgraded with will recognition can keep up
with increases in the size of the flock if the agents extend their
attention to more neighbours. It is very advantageous that, in
order to keep the same level of responsivity, the neighbour
number, k, only needs to scale with

ffiffiffiffi
N

p
, as seen in figure 3.

The relation is not rigorous, as saturation curves of the
WiSt model decrease slightly with growing flock size, but
curves of the WiSp model seem to converge similarly. It is
worth mentioning that the WiSp model in biologically realis-
tic k=

ffiffiffiffi
N

p ≃ 1 scenarios has an almost twofold advantage
over any other model investigated in terms of responsivity;
furthermore, it reaches an impressively high responsivity
value of around 0.8. A visual demonstration of the perform-
ance of all the models can be found in electronic
supplementary material, video S1.

Benchmark studies [8] of collective motion imply that the
assumption k = 7 corresponds to the highest entropy for the
high-resolution data collected from swirling flocks of star-
lings of different sizes. This means that the simplest
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j ¼ 1 m2 s−4.
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interaction network that is already capable of explaining the
observations is the one with seven topological neighbours.
Our results do not contradict this seminal conclusion. The
CaSp and WiSp models have a responsivity—interpolated
to k = 7—of no lower than around 0.2 even for 2500 agents.
The overall value is mainly decreased by rather sharp turns
(greater than 120°), which are much more relevant for artifi-
cial systems. The global turns recorded for natural systems of
starlings typically do not reach this value; they tend to stay in
the moderate region of direction change, where models with
responsivity of around 0.2 continue to perform well.
3.3. Quantifying persistence
It is desirable not only to change the global velocity quickly
when needed, but also to keep the global direction stable for
a long time when there is no need for a change. To measure
how the different models perform from this point of view, we
introduce a new measure of persistence. The angle Φ between
the initial direction of the flock and the momentary global vel-
ocity V behaves as a random walker if the polarization (V/v0)
remains in the high regime. To understand this, imagine the
noise as a randomperturbation that changes the global velocity
slightly. This means that every agent will have approximately
this new velocity, and further perturbations will act upon the
new direction either by changing it back towards the original
direction or by moving it even further away from the initial
direction. This is a diffusion process of the angle of the global
velocity, which can be described by

h(DF)2i ¼ DFt: (3:4)

The diffusion coefficient, DΦ, describes the intensity of the
diffusion process. Since agents are disturbed by the same level
of noise and they follow the same rules, having N agents in a
system at a given time instead of a single one is like having N
times more memory, which results in an N times slower time
scale in the diffusion process. For a summary of memory in
collective motion, see [63]. So, as a baseline, we compare the
diffusion coefficient of the global velocity DΦ for N agents
with the diffusion coefficient of the velocity of a single particle,
disturbed by the same noise with an N times slower time scale
Ds

F=N. The ratio of these two diffusion processes measures the
persistence P of a model,

P ¼ Ds
F=N
DF

: (3:5)

Note that P is not bounded to be lower than 1, as Ds
F=N is

not a theoretical limit of the diffusion coefficient—it is only a
reasonable subject of comparison. Note that it is also the dif-
fusion coefficient of a ViSt model with all possible pairwise
interactions (k =N), where every agent moves towards the
global average velocity: Ds

F=N ¼ DViSt
F jk¼N . A low diffusion

coefficient DΦ means slow diffusion, which means that the
flock can keep its original global velocity while maintaining
high polarization for longer times. This is high persistence.

3.4. Persistence–responsivity trade-off
In the spirit of the fluctuation–dissipation theorem, respon-
sivity and persistence are contradicting features of a model.
The motion of responsive flocks often strongly fluctuates
because of agitation by noise, while persistent movement
requires changes in global velocity to be prevented. As long
as noise-induced and intentional changes are not separated
by individual cognition, there is a trade-off between persist-
ence and responsivity, as shown on the left side of figure 4,
where traditional models reside. The ViSt model and likewise
underdamped CaSp models (parametrized with low J and
low τ) are highly persistent, but possess low responsivity.
In contrast, there are responsive CaSp models with high
coupling and long-living spins, but they exhibit unreliably
diffusive motion (low persistence). There are intermediate
parameters, but these are also bound by the threshold of
the persistence–responsivity trade-off, which is visualized
in figure 4 as well. The CaSp model is designed to be unify-
ing, hence very rich in behavioural patterns, so it is
reasonable to expect that if this model cannot break out of
the trade-off, then any other model constrained to the same
information about the neighbours will also fail to do so.

In contrast, our new models with will recognition, on
the right-hand side of the symbolic cognitive barrier shown
in figure 4, avoid the previous persistence–responsivity
trade-off and provide superior solutions with maintained
persistence and highly increased responsivity. A notable
achievement of the WiSp model is that, with correctly
chosen low τ and low J parameters, it can outperform any
parameter combination of models lacking will recognition in
terms of both persistence and responsivity. Since no new
information is injected into the system in any persistence
measurement, WiSp always has the same persistence as the
CaSp model with the same spin parameters. So with the par-
ameters that lead to the most persistent motion at the cost of
low responsivity in the CaSp model, the WiSp model retains
its highest persistence, and its responsivity, which is increased
by will-based hierarchy, surpasses even the most responsive
models without cognition. The collective breaks out of the persist-
ence–responsivity trade-off with the combined power of individual
cognitive abilities and adaptive local leadership hierarchy.
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Also with a choice of certain intermediate τ and inter-
mediate J parameters the collective can reach an
impressively high responsivity of ∼0.6. Note that the environ-
ment is set deliberately noisy, and still such high responsivity
can be achieved with persistence remaining above 1, thus it is
even more persistent than the mean-field ViSt model.

3.5. Moving in confined environments
After the successful tests of responsivity to a single particle
with will and persistence in boundless empty space, the con-
cept of will is to be tested in a complex use case requiring the
simultaneous presence of both persistence and responsivity.
Agents are tasked to flock around coherently in a closed
arena without collisions. Walls trigger the frontal agents to
have a will and thus induce a global velocity change. The
additional complexity of this scenario compared with iso-
lated unit tests is that (i) there can be any number of agents
possessing will simultaneously; (ii) desired changes can con-
tradict each other at the corners.

In terms of the WiSp model, the will of an agent jumps to 1
when it is forced to turn because of thewall. Two practical ques-
tionsarisewhen implementingwill in suchsituations, as follows.

When do walls force agents to turn? All four linear wall seg-
ments of the square-shaped arena have the same virtual
width: RWall. If an agent gets closer to a wall segment than
this threshold, a prohibited angular domain is created for its
desired velocity. The centre of the angular domain points per-
pendicularly towards thewall segment. The size of the angular
domain grows linearly starting from 0 at RWall distance from
thewall segment and reaches 2π exactly at thewall. The overall
set of wall segments generates a union of prohibited angular
domains. If the desired velocity of the flocking terms defined
in equation (3.6) dictates a velocity direction that is inside
this unified prohibited domain, the agent turns away to
point its desired velocity outside of the domain.

How do agents turn at walls? Ideally, every agent in the
flock has to be synchronized in terms of turning choices at
the wall to stay together. If the flock already started a right-
hand turn, every other agent that would later be forced to
turn at the wall has to turn right as well. In order to do
this, agents see each other’s will in a signed form (our conven-
tion is + for left turns and− for right ones). When an agent is
forced to turn, it sums up the will of its neighbours to choose
a new velocity direction for the next time step. It chooses the
left/right edge of the unified prohibited angular domain
according to the sign of the sum. In the absence of willed
neighbours, the agent chooses the edge which requires a
smaller rotation relative to the rejected velocity given by the
interagent social interactions of equation (3.6). The absolute
value of the will jumps to 1 with a sign in accordance with
the direction of its turn. Will values decay exponentially
with a characteristic lifetime of τW. The value of this par-
ameter needs to approximate the time that new information
remains globally relevant and, hence, is worth spreading.

So far we have introduced the sign of will to encode the
direction of change, which is seen by others. In the case of
a flock of birds, knowledge about the direction of change is
relatively easy to access because birds tilt their bodies [36].
If the mere mechanics of a manoeuvre does not require
such an apparent sign, efficiency will demand it.

Agents reaching the wall turn the flock effectively by the
high absolute value of will and the rapid propagation of spin.
But there are still some other agents reaching the wall. Since
they tend to be neighbours of the first-at-the-wall agent, the
sign of will ensures that they also start a turn in the same
direction as their frontal neighbours. Assuming that every-
thing works well, by the time another agent at a more
distant part of the flock encounters another wall, the flock
will have turned enough so that its default choice of direction
(smaller rotation of desired velocity) will be the continuation
of the previous collective turn even if this new agent does not
see any willed agent around itself. This self-replicating trend
of choice is the key to moving around in unison.

In order to make that happen we introduce the following
algorithm (WillFull model) for the desired velocity:

v̂WillFull
i (tþ dt)

¼ N [(1�Vi)R[vi(t); sWiSt
i (t)dt]þViv0v̂WiSt

i ],
(3:6)

where Vi ¼ max (jwij,
P

j[Ni
jwjj=(1þ

P
j[Ni

jwjj)).
This model aims to merge the benefits of all models

presented so far. It uses the CoLd model scheme for differen-
tiation between (rare) will-aware and (abundant) ignorant
agents. The majority propagate information through the
CaSp model’s underdamped wave transmission of spin,
which aligns agents indirectly. But initiators of the waves are
willed agents, who find consensus among themselves reliably
by applying the overdamped dynamics and direct alignment
of the ViSt model. Unwilled agents with significant will in
their neighbourhood do not bother with spin, but follow the
leaders they see directly.Will recognition amplifies new infor-
mation if it is present, hence it realizes a very responsive flock
without losing the ability to maintain persistive motion.

The simulation environment being used now is more
realistic in terms of noise level and constraints in communi-
cation and motion dynamics. Both are inherited from [43].
Besides making the task and the environment more realistic
and thus substantially more challenging, expectations
towards the proper behaviour are also raised compared to
previous unit tests. Coherent flocking is also expected to be



Figure 6. Long-exposure photograph of 52 aerial robots (drones) demon-
strating the applicability of the WillFull model in real-life scenarios. Colour
represents the flying direction of the agents. The virtual arena was a
200 m × 200 m square. Photo taken by Andras Tekus.
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Figure 5. Relative maximum density of simulated flocks with 8 m s−1 speed
in a square-shaped arena as a function of time. Dark purple corresponds to
the DroneFlock’18 model for flying robots [43] based on ViSt; gold corre-
sponds to the main model in this paper, the WillFull model. The motion
provided by the WillFull model is more reliable: the most challenging situ-
ations (turning at corners) raise average density by only a factor of three and
not six, as previously. Furthermore, these density peaks also became less fre-
quent. The time average of the nearest neighbour distance is 22 ± 1.8 m for
the WillFull model and 31 ± 4 m for the DroneFlock’18 model. Simulations
were run for 500 agents in a 1400 m × 1400 m square arena, with an initial
nearest neighbour distance of 20 m and an initial flock radius of roughly 300
m. Density is measured by dividing the arena into a 28 × 28 grid. x-axis,
time; y-axis, maximum of the population of grids over the average population
of non-empty grids. Thick line is smoothed from the original time series (thin
line) with a co-moving averaging time window of 5 s.
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free from both wall–agent and interagent collisions. There-
fore, customary terms are added to equation (3.6): repulsion
and friction, to avoid collisions and oscillations, respectively,
as in [43]. The parameters of the model, including τW, J and
τS, are optimized using the same evolutionary algorithm as
in [43], and are listed in electronic supplementary material,
table S2. Note that the rectangular arena acts as an implicit
attraction as it does not allow agents to disperse.

Efficient flocking means more than high polarization.
From the perspective of artificial agents (robots, drones) it
also means other features that natural flocks exhibit: staying
together, keeping the average density high, but avoiding
dangerously dense packing even during the inevitable
turns. To measure the performance of the WillFull model,
we simulate a flock of 500 agents starting from the middle
of an arena of 1400 × 1400m, with initial nearest neighbour
distance of 20m. The arena is sliced into a 28 × 28 grid
(50 × 50m each), and in every time step of 0.01 s the popu-
lation of each grid is counted. The number of agents in the
most populated grid represents the maximum density,
while the number of agents over the number of populated
grids represents the average density. Hence, the expectation
towards efficient flocking is that the ratio of maximal and
average densities in space remains low and stable in time,
meaning that free flight parts of the flock remain dense but
density does not peak any higher anywhere either when
the need for direction change puts the system under stress.

With that measure, the WillFull model is compared with
the best of our previous studies so far for moving artificial
agents in confined environments [43]. We use the algorithm
presented in [43] for comparison because no other analogous
computations (i.e. simulations of realistic drone flocks) have
been carried out (and, thus, it has rapidly become a standard
reference in the field [64–66]). We shall use the expression
DroneFlock’18 to denote this algorithm in the present paper.
Both DroneFlock’18 and the algorithm introduced here are
given the same realistic constraints on communication (80m)
and the same initial conditions and environmental parameters.
The results for 8m s−1 speed in figure 5 are reassuring: the
WillFull model clearly outperforms the previous ViSt-based
solution as it keeps the average density high but the
maximal density relatively low, resulting in a much more
reliable collective motion for a flock of 500 agents (for a
visual comparison, see electronic supplementary material,
videos S2 and S3).

As a physically realized use case, we also applied the Will-
Full model to our tailor-made flock of outdoor quadcopters
and successfully reproduced the above-mentioned simulated
experiments in the real world with up to 52 drones at 8 m s−1

flocking speed in stable self-organization (figure 6). See elec-
tronic supplementary material, text S2 for drone-related
technical details, figure S2 for density fluctuation analysis simi-
lar to figure 5, and video S4 for footage about the flights; or
browse the interactive three-dimensional visualization of the
flight logs at https://share.skybrush.io/s/pers-resp/.

The main reason for the WillFull model performing better
than previous ones both in simulation (figure 5) and with real
drones lies in the increased responsivity that facilitates
quicker information propagation throughout the flock when
there is an obstacle in the way. In previous models, frontal
agents had the choice of stopping in front of a wall (and
thus colliding with those behind) or continuing their
motion in coherence with the rest of the flock (and thus
colliding with the wall). Since information propagation was
much slower, agent pressure accumulated much more at
walls, which resulted in higher local density, potential
collisions and slow and ineffective turns. To avoid collisions,
the models had to be tuned for more stability and thus
less optimal dynamics and for quite strong and long-ranging
repulsion, which resulted in more spreading across the arena
when not squeezed together by the walls. In thewilled model,
information propagation is much faster; therefore, density
fluctuations are convincingly reduced. Hence repulsion can
be weaker, so oscillations inside the flock are less apparent.
Therefore, friction does not have to dampen every difference
in velocity, so changes can spread more quickly and the posi-
tive loop is complete. As a consequence, the scalability of the
model to larger flock sizes is also substantially increased.

https://share.skybrush.io/s/pers-resp/
https://share.skybrush.io/s/pers-resp/
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4. Discussion
Natural or robotic flocks perform well if they are capable of
simultaneously maintaining coherent motion and changing
their direction abruptly (the group as a whole) when a
sudden external influence arises. Such strong impulses may
correspond to an attack (by a predator) or confronting phys-
ical limits, e.g. walls, trees, etc. We aimed at understanding
the complexity of the situation and constructed the simplest
possible model that was able to optimize performance in
terms of both kinds of behaviour.

Themodelwe presented introduces a new kind of hierarchy
into the set of interactions among the co-moving agents. This
hierarchy corresponds to the degree by which an agent influ-
ences others, which is time dependent and is invoked by both
internal and external conditions. The few parameters of this
new type of hierarchy can be chosen in such a way that the
flight of the flock optimally adapts to the environment, or to a
particular decision of a member of the flock. Here optimal
stands for smooth, collision-less (conflict-less) flight patterns.
In general, we hypothesize that sophisticated designs of hierar-
chies are likely to result in new, efficient forms of collectively
moving agents capable of processing complex information
transmitted by the co-moving members of the group.

Our figures, especially figures 4 and 5, show the power of
the concept introduced in this paper. For example, the left-
hand side of the plot in figure 4 displays the expected
trade-off (either performance or responsivity have relatively
high values) for the most relevant existing models of flocking.
However, our models, especially those combined with the
spin-based model of Cavagna et al. [58], are able to be both
‘stable’ (coherent motion with nearly homogeneous density)
and ‘sensitive’ (a sudden external influence does not destroy
homogeneity). The corresponding symbols are in the region
around the top right corner of the plot.

The main key of our concept is that external stimuli are
assumed to trigger a new form of communication among
flock members. The weight by which the ‘informed agents’
influence the trajectory of the rest of the flock is both
simple and new. The contribution of the externally influenced
members is increased, and without any new relevant infor-
mation this additional feature gradually decreases. Thus, in
our model the influence of the members of the flock changes
with time as a function of the external conditions (and this is
why we consider it to be a model of adaptive leadership). In
this way new information about the environment can spread
through the flock much faster than in prior models. We can
look at the way in which our equations manifest themselves
as follows: informed individuals give a special signal to
others, and the others process this signal correspondingly.
Our model works best if the range of interactions is such
that the number of neighbours is above 10–20. For some
species, and especially for robots, this can be easily rea-
lized—as seen in figure 6.

Since, in the framework we have presented, some individ-
uals may play a decisive role, errors in sending information
about the external perturbation can be a problem. A further,
more complex question of intentional distortions [67,68]
arises as well. Having avoided the persistence–responsivity
trade-off agents might find themselves facing a new one,
the speed–accuracy trade-off of information processing
[69,70]. It is easy to think of prey species as those that are
forced to choose speed over accuracy, hence they are exposed
to frequent false-positive alerts [71], resulting in the spectacu-
lar overall patterns of murmurations. Questions of this sort
are of great interest, and can be handled by suitable modifi-
cations to our approach. Further potential applications
include a chase and escape situation where the information
about the escaping agent spreads quickly in the flock, helping
others to optimize their trajectory. We also believe that our
model can be used efficiently as a collective control frame-
work mostly in cases where adaptivity becomes a
significant requirement, which is expected to happen more
and more often in the future of artificial swarming.
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