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Abstract
Coordination of local and global aerial traffic has become a legal and technological bot-
tleneck as the number of unmanned vehicles in the common airspace continues to grow. To 
meet this challenge, automation and decentralization of control is an unavoidable require-
ment. In this paper, we present a solution that enables self-organization of cooperating 
autonomous agents into an effective traffic flow state in which the common aerial coordina-
tion task—filled with conflicts—is resolved. Using realistic simulations, we show that our 
algorithm is safe, efficient, and scalable regarding the number of drones and their speed 
range, while it can also handle heterogeneous agents and even pairwise priorities between 
them. The algorithm works in any sparse or dense traffic scenario in two dimensions and 
can be made increasingly efficient by a layered flight space structure in three dimensions. 
To support the feasibility of our solution, we show stable traffic simulations with up to 
5000 agents, and experimentally demonstrate coordinated aerial traffic of 100 autonomous 
drones within a 250 m wide circular area.

Keywords Drone swarm · Self-organization · Unmanned traffic management · Collective 
intelligence · Collective AI · Decentralized air traffic

1 Introduction

With the rapid growth rate of drone use today the demand for safe and reliable Unmanned 
Aircraft Systems Traffic Management (UTM) solutions has also increased critically (Ali, 
2019). In the US the FAA currently registers around 200,000 manned aircraft generating 
only a couple of thousand flights simultaneously at peak times, while there are already over 
half million recreational and over 300,000 commercial drones registered with over 240,000 
pilots who wish to use the same airspace as flexibly and as frequently as possible (Federal 
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Aviation Administration, 2022).1 It is foreseeable that handling unmanned aircraft as part 
of the airspace traffic management system will require unprecedented levels of automation 
and decentralization with proper path planning and detect-and-avoid (DAA) solutions that 
take the burden off the shoulders of both air traffic controllers and pilots, providing levels 
of efficiency, safety and reliability that would not even be possible by pure human control.

The density of autonomous or semi-autonomous unmanned aerial vehicles will increase 
even more in future smart cities where drone services for inspection, safety monitoring or 
delivery of goods and people will be part of everyday life, and thus drone traffic control 
will become a minimal requirement of drone usage (Khan et al., 2020; Foina et al., 2016).

Providing a full solution to the UTM integration challenge is an extremely complex, 
long-term process that requires cooperation from many disciplines, stakeholders, authori-
ties and users (Rumba & Nikitenko, 2020). In this paper we concentrate on a very specific 
aspect of UTM: we demonstrate the decentralized resolution of complex traffic scenarios 
generated by high numbers of autonomous aerial vehicles.

The situation evokes the early days of standard traffic, i.e., when cars traveling on the 
streets first experienced the reduction of the free space between them to a degree, which 
prevented free flow and resulted in a loss of efficiency in reaching their destination 
(Greenshields, 1935). To avoid traffic bottlenecks, several major structural improvements 
have been invented and introduced. These included increasing the number of lanes both 
along the roads and at the cross-sections and other locations relevant to smooth flow. An 
alternative method was the introduction of one-way streets improving the overall through-
put of a network of streets by providing more space for cars moving towards pre-defined 
destinations. Following some prior works, in the early 1990s several groups of physicists 
developed theoretical approaches to the quantitative description and prediction of phenom-
ena occurring during traffic situations, both involving vehicles and pedestrians. Most of 
these works are presented in the review by Helbing (2001).

One of the essential features of vehicular traffic is that despite the above improvements, 
it is still confined to a quasi-one-dimensional area: the roads/streets. The main reason for 
this is that efficient traffic requires a good quality surface, while producing such surfaces is 
costly. As a result, all sorts of cars are moving along a network of roads with two or more 
lanes, where the lanes are assigned to a unique direction (one out of two), while cross-
sections are managed by traffic lights or signs/rules determining the behavior of a vehicle 
arriving at a cross-section or roundabout.

The traffic situation involving aerial units is facing similar challenges in many aspects as 
the density of aircraft is increasing. The standard air traffic control response to this is restric-
tive, as it builds on the well-known concepts of road traffic: the airspace is increasingly struc-
tured, quasi-one dimensional virtual lanes are created for each vehicle in it, the general right-
hand rule is used that results in virtual roundabouts etc. On the other hand, the essence of 
airspace seems different from road infrastructure, primarily because there is no extra cost for 
using extra space. In other words, changing the actual path (e.g., to avoid another aircraft) 
does not require expensive additional road infrastructure. This allows for much more free-
dom in the conflict resolution between flying agents compared to what we are used to on the 
ground, but this freedom can be exploited only with a deeply different attitude that involves 
decentralization, decrease of road structure and increase of local problem solving.

There have been many recent attempts to provide solutions for the coordination of multi-
ple aerial vehicles. Centralized collision-free multi-robot path planning is a major direction 

1 See link, here.

https://www.faa.gov/air_traffic/by_the_numbers/
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where the NP-hard mathematical problem of generating non-overlapping 4D trajectories is 
solved by a central computer before takeoff or during flight. Used methods include numerical 
approaches, such as mixed integer linear programming (Grøtli & Johansen, 2012), sequen-
tial convex programming (Augugliaro et al., 2012), graph search (Jose and Pratihar, 2016) 
or GPU-optimized gradient descent (Hamer et al., 2019), bio-inspired methods such as ant 
colony optimization (Wu, 2021) or particle swarm optimization (Duan, 2013), and many oth-
ers (Zhou et al., 2020; Maity et al., 2021; Madridano et al., 2021; Mellinger & Vijay, 2011).

To the best of our knowledge, the largest UAV swarm up to now with real-time cen-
tral control for collision-free path planning is presented by Carlos E et al. (2020) with 20 
miniature drones; it uses an algorithm called Distributed Model Predictive Control, works 
indoors and relies on a high-end motion capture system to acquire the accurate position of 
the agents. The downside of central solutions—let them be a priori or real time—is that 
they have single points of failure, require very stable communication infrastructure and 
they are less scalable, generally less adaptive and more bureaucratic than anything calcu-
lated on the fly in a distributed manner.

Decentralized multi-UAV path-planning methods are also getting increasingly popular. 
Zhou et  al. (2021) and Dmytruk et  al. (2021) both show an autonomous and decentral-
ized solution for multi-UAV navigation in cluttered environments using up to three real 
drones. Quan et al. (2021) show an interesting design idea of geometric aerial highways 
that helps flying agents get organized into road-like lanes in the sky, however, this solution 
also involves severe restrictions on the free motion of the agents. Zaini & Xie  (2020) dem-
onstrate the advantages of a distributed, decentralized traffic coordination using only low-
bandwidth communication, however presents only simulation results and no actual experi-
ments on real hardware. Zehavi & Agmon  (2021) suggests a hybrid method for centralized 
global and decentralized local UTM.

Going beyond algorithm design or simulations and showing actual real-world experi-
ments with drone swarms is much harder than one thinks. There is only a rather limited 
number of groups, that we know of, who could actually demonstrate the real-time outdoor 
coordination of drones with more than a few flying agents. Contrarily, the largest drone dis-
plays by now consist of more than 5000 drones (High Great, 2021), but these entertaining 
flights are pre-programmed and contain no real-time conflict resolution. The largest autono-
mous drone swarms presented so far perform flocking or formation flights, i.e., missions 
where the task is to synchronize motion and move together (Schilling et al., 2021). The larg-
est of these we know of is our latest solution with 52 drones (Balázs et al., 2020).

Autonomous traffic differs from flocking in the sense that the task is completely dif-
ferent: instead of moving together, agents need to move on their individual paths, but in a 
coordinated manner. These two—moving together in a flock and moving independently in 
traffic—provide two of the main building blocks of coordination upon which most of the 
multi-UAV missions can be based. Regarding drone traffic, an interesting paper is given by 
Leven et al. (2011) with 5 fixed-winged aircraft that avoid conflicts by ’altitude differentia-
tion’. Large-scale demonstration of traffic coordination of UAVs include our own previous 
publication with 30 drones (Balazs & Vasarhelyi, 2018) which we exceed substantially in 
this paper, and an US Air Force marketing video with 100 miniature fixed-wing aircraft 
which move together from point A to point B and loiter there (US Air Force, 2017). Unfor-
tunately, this video provides no actual details on the coordination or control aspects and 
thus cannot be treated as a scientific result.

A major goal in both the observational and theoretical approaches to traffic is the deter-
mination of the so-called fundamental diagram (Helbing, 2009; Hamann and Reina, 2022; 
Hamann, 2013), which describes perhaps the most important feature of a traffic situation: 
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the dependence of the average flow of vehicles as a function of their average density. The 
corresponding plot starts out quite trivially, since—assuming a constant average speed in 
the absence of disturbances—the global flow is linearly growing with the density of vehi-
cles for its small values. The situation gradually changes because keeping a safe distance 
from others increasingly slows down the flow because of the non-zero reaction time of 
the drivers as well as their stopping distance. The fluctuation of these parameters results 
in instabilities and eventually results in all sorts of traffic phenomena including jamming, 
stop-and-go waves, etc. (Helbing, 2001). Such phenomena occur even along a given long 
road and the effects due to networked roads adds further difficulties to making the flow of 
vehicles efficient (Mollier et al., 2018; Zeng, 2020). Interestingly enough, similar kinds of 
fundamental diagrams can also be constructed for pedestrian traffic (Vanumu et al., 2017). 
Although pedestrians—quite like the way drones fly in a 2D layer—can, in principle, eas-
ily avoid collisions and get around each other by stepping aside while walking (they do 
not have to follow strictly defined, one way lanes), at high densities jamming and even 
disastrous accumulation of pressure within the crowd can occur, leading even to the death 
of panicking people (Helbing, et  al., 2000). Although in this case an extra dimension is 
provided for avoiding each other, the joint effect of a large density and a desired destination 
results in difficulties in maintaining a seamless flow. In part because of this, we expect that 
the flight of drones in layers assigned for them for traffic (which is a common practice for 
aerial vehicles) does not automatically guarantee that they can easily move towards their 
destinations.

2  Problem statement

In this paper we deal with the challenges of large scale open-air drone traffic that arise in an 
emergent manner when the number and the density of agents and thus the conflicts between 
them increase by orders of magnitude. The main contributions of this paper are describing 
how to manage these situations safely with a self-organizing aerial drone swarm.

We present a completely decentralized solution for unmanned traffic management with a 
combined method of path planning and detect-and-avoid that provides unprecedented effi-
ciency even in extremely dense and complex traffic scenarios. We designed our algorithms 
to work in two dimensions, as a realistic scenario for horizontal traffic, however, we also 
present how layered traffic in three dimensions can maximize the traffic flow. We show that 
our solution is scalable both in the number of agents and in the velocity space of agents, 
and can also effectively handle priorities and hierarchies among the agents. The solution is 
presented in simulation with up to 5000 agents in highly crowded traffic scenarios and also 
with 100 autonomous drones out on the field.

Our solution builds on bio-inspiration in many aspects. First of all, we provide an agent-
based velocity controller for traffic that incorporates the most important interaction terms 
of general flocking models describing the collective motion of animal herds (and pedestri-
ans): repulsion and alignment (Vicsek, 1995). This allows us to use a completely decentral-
ized mindset which is ruled by simple pairwise interactions, which gives rise to truly scal-
able systems. However, our solution goes beyond the general usage of artificial potentials, 
as we introduce an iterative optimization method for determining the path planning / self-
propelling term, which takes into account the state of other agents with dynamic predic-
tions. Moreover, we emphasise again that our traffic task is fundamentally different from a 
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flocking task, and the usage of previous flocking solutions is limited to their concept and to 
some modified interaction terms.

Second, we use evolutionary optimization (Eiben & Smith, 2015) to tune the numerous 
control parameters of the agent-based model in a realistic simulation framework similarly 
as in our previous work (Vásárhelyi et al., 2018). Third, we also deal with the structural 
requirements of large-scale natural systems (Zafeiris & Vicsek, 2018): we incorporate het-
erogeneity and allow hierarchical priority structures in our algorithms.

Throughout this paper we will be considering general traffic scenarios among agents 
whose flight characteristics are omnidirectional and their speed range includes hover-
ing (such as multirotor drones). These agents will be tasked to reach their indepen-
dently assigned destinations while avoiding each other in open space in decentralized 
coordination.

3  Traffic algorithm

Our algorithm for decentralized aerial traffic is the sum of: i) a conflict avoidance strategy 
with low computational demand fitted to current on-board drone hardware capacities, and 
ii) an instinct-like sense-and-avoid behaviour based on terms migrated from autonomous 
artificial flocking with reassuring success (Vásárhelyi et al., 2018).

The on-board conflict avoidance strategy calculates a momentarily optimal velocity vec-
tor which does not intersect with the projected trajectories of the local neighbours within a 
reasonable time frame, yet drives the agent efficiently towards its destination. We call this 
vector the self-drive velocity term [ vself−drive

i
 in Eq. (1)]. Due to algorithmic simplicity, this 

momentary desired velocity term can be recalculated at high frequency, so the algorithm 
is less prone to ill-projected trajectories than more complicated, hence slower, methods. 
Regarding its concept, our approach is akin to the family of Velocity Obstacle (VO) based 
traffic solutions (Van Berg et  al., 2008; Van Den Berg et  al., 2011). Our main advance 
compared to previous work presenting centrally computed simulations only is that the VO 
concept is now suited for the physical reality of outdoor drones and the difficulties of a fun-
damentally decentralized system.

It is important to note that despite being completely decentralized, our algorithm should 
optimize each agent’s own decision in an altruistic way, according to the group interest 
within each agents’ situation awareness. In other words, being decentralized and independ-
ent in our case does not lead to individualistic or opportunistic behavior but, on the con-
trary, to both individual and group benefits, as long as the common rules are followed by 
everyone.

The sense-and-avoid method consists of pairwise repulsive and velocity-alignment 
interactions ( vrep

i
+ v

friction
i

 in Eq. (1)] based on our previously published traffic algorithm 
(Balazs & Vasarhelyi, 2018), but is now significantly enhanced in terms of effectiveness 
(almost double-fold increase of traffic throughput in certain situations) and is also general-
ized to handle hierarchical priorities between agents.

The properly balanced cooperation between the conflict avoidance strategy (planning) 
and the sense-and-avoid mechanism (akin to reflexes of animals) is crucial in our work. 
Agents do not switch discretely between these two governing rules as operational states, 
they rather combine them continuously and adaptively in a symbiotic way. The way agents 
choose their current velocity to avoid conflicts tacitly presumes that sense-and-avoid 
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interactions should be able to resolve conflicts if they arise despite their best effort. In other 
words, self-drive is neither overly cautious in preventing conflicts, nor does it have to be 
absolutely perfect in resolving them, because it can count on both the safety net function 
of, and slight corrections done by the sense-and-avoid mechanism. In the meantime, plan-
ning to avoid conflicts with self-drive significantly reduces the load on sense-and-avoid 
interactions, as dangerously close situations become very rare.

3.1  Individual behaviour in decentralized traffic

Each drone broadcasts its own position, velocity and desired destination with a reasonably 
high frequency (multiple times per second) to its neighbors, and receives the same data 
from all of them (see the Proof of concept with a drone swarm section for details about 
the communication network). Our agent-based control algorithm—executed on all drones 
in a distributed way–uses these inputs to determine a momentary desired velocity: ṽi(t) , 
where i denotes the agent. The algorithm is built up of three terms: repulsion, friction and 
self-drive:

The two pairwise interactions, repulsion and friction yield the instinct-like sense-and-avoid 
behaviour. The common form of both repulsion and friction–that facilitates many robots 
to flock together in unison (Vásárhelyi et al., 2018)–was suited before for the quite differ-
ing task of traffic where agents have arbitrary individual directions of velocity (Balazs & 
Vasarhelyi, 2018).

3.2  Repulsion

Repulsion pushes agents away if they get too close:

where prep is a linear gain, R0 is the radius of the repulsive zone, dij = |rij| = |rj − ri| , ( rk 
being the position of agent k) and ûrep

ij
 is the direction of this interaction.

Repulsion often pushes agents away from their target, significantly reducing traffic-effi-
ciency and even potentially creating global oscillations. Both effects can be mitigated by 
rotating the direction of repulsion, ûrep

ij
 , a bit away from the obvious choice of isotropic 

direction: −rij∕|rij| . The direction of this rotation depends on whether the velocities of two 
agents are roughly the same or not. In the case of agents moving in the opposite direction, 
it is better to evade each other (i.e. increase the distance mainly on the axis perpendicular 
to the axis of motion), while in the case of almost parallel velocity vectors, it seems favour-
able to form lanes—i.e. increase the distance mainly along the axis of motion (Helbing, 
2001).

For determining the direction of repulsion, we call � the angle between rij and the tar-
get direction of agent i ( ̂rti ), and we call � the angle between ûrep

ij
 and the opposite of tar-

get direction ( −r̂ti ). In the case of isotropic repulsion, commonly used in flocking models: 
� = � . Yet in the case of anisotropic repulsion:

(1)ṽi = v
rep

i
+ v

friction
i

+ v
self−drive
i

.

(2)v
rep

i
=

∑
dij<R0

prep
(
R0 − dij

)
⋅ û

rep

ij
,
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where vj ↑↑ r̂ti means less than �∕3 angular difference between the two vectors, vj ↑↓ r̂ti 
otherwise.

Numerous graphics and illustrations of the behaviour of anisotropic repulsion can be 
found in Balazs and Vasarhelyi  (2018). Throughout the simulations of this paper, we set 
the level of anistropy, A ∈ [0, 1] , to 0.42 as a result of previous evolutionary optimization 
processes and used the rounded value of 0.5 in real experiments.

3.3  Friction

This interaction—mimicking the effect of friction between physically touching objects for 
agents distant from each other—reduces the velocity difference between close-by agents. 
Doing so, it effectively increases the safety of traffic by relaxing oscillations (arising in 
crowded situations when agents get into the repulsive zone of each other) and dampening 
chaotic dynamics (induced by delays and slow reaction times) (Orosz, 2009). Friction can 
be stated as:

where � is the Heaviside step function, �i is a set of neighboring agents in relation to whom 
friction is needed (see the criteria below), unit vector v̂ji is the direction of agent j’s veloc-
ity relative to agent i’s, and vij is its magnitude, while vfrictmax is given by

where D is the smooth braking curve to decay velocity as a function of distance d, while 
explicitly taking into account the motion constraint of finite acceleration capabilities:

where a is the acceleration limit, p is a linear gain (to avoid close to infinite derivative of 
the square root function) in the v-d plane and R is a simple offset value that shifts the D(⋅) 
transfer function along its d axis.

Note that a constant deceleration yields a square-root function on the velocity-position 
plane. With the shape of Eq. (6), we force the agents to reduce their velocity-differences 
with a constant deceleration (of afriction ) and stop (relative to each other) at Rfriction distance 
from each other. Of course, relative stopping would unnecessarily keep the two agents in 
close proximity, so we allow a small vfriction velocity difference at any distance.

Friction of this form has proven to be able to synchronize a large flock of aerial robots 
outdoors (Vásárhelyi et al., 2018). But in flocking, aligning velocities is the overall task, 
while the task of traffic requires differing velocities. Thus, in traffic, agent i should not 
apply friction to each neighbour’s current velocity (i.e. the set �i in Eq. (4) does not include 

(3)𝜌 =

⎧
⎪⎨⎪⎩

(1 − A) ⋅ 𝜙 𝜙 ≤ 𝜋

2
and vj ↑↑ r̂ti

𝜋 + (1 − A) ⋅ (𝜙 − 𝜋) 𝜙 >
𝜋

2
and vj ↑↑ r̂ti

(1 −
A

2
)(𝜙 − 𝜋) + 𝜋 vj ↑↓ r̂ti

,

(4)v
friction
i

=
∑
j∈�i

𝜃
(
vji − vfrictmax(dij)

)
v̂ji,

(5)vfrictmax(dij) = max
(
vfriction,D

(
dij,R

friction, pfriction, afriction
))
,

(6)D(d,R, p, a) =

⎧
⎪⎨⎪⎩

0 d − R < 0

p(d − R) 0 ≤ d − R ≤ a

p2�
2a(d − R) −

a2

p2
a

p2
< d − R

,
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every agent within the communication range), but select them based on three criteria. The 
first two are related to whether the neighbour poses any danger of collision. It is consid-
ered to do so if it comes towards agent i and is lying between agent i and its target. If both 
hold, friction should be applied. If none hold, friction should not be applied. If one of them 
holds, then agent i considers a third criteria related to efficiency. If the neighbour’s velocity 
would drive the agent away from its goal, friction is not applied, otherwise it is. Intuitively, 
selective friction means that agent i intents to align its velocity with agent j if agent j poses 
a big threat of collision or poses a moderate threat of collision and aligning to it does not 
mean giving up too much of efficiency.

The above three criteria are defined with fixed angular thresholds: coming towards agent 
i is checked with a fixed angular threshold of ±�∕4 between rij  and vj ; lying between agent 
i and its target is checked with a fixed angular threshold of ±2�∕3 between rij and agent i’s 
target direction; neighbor’s velocity would drive agent away from its goal is checked with 
a fixed angular threshold of ±�∕2 between vj and agent i’s target direction. Illustrations of 
these criteria can be found in Balazs and Vasarhelyi  (2018).

3.4  Self‑drive

Self-driving is the key of our current algorithm. It should guide the agents towards their 
individual goal without propelling them too close to each other. If the self-driving terms of 
close-by agents do mutually well, the instinct-like sense-and-avoid interactions are barely 
in action.

With the self-driving term, we do not aim to find a mathematically optimal path. It 
would take too much computation time with the hardware available for drones on-board 
(solving traffic is an NP-hard problem), and in outdoor flights there are many reasons 
(wind, sensory noise, movement inaccuracy, temporal loss of inter-agent communication, 
unexpected modification of the desired missions) why a pre-planned route can fail. Instead, 
we construct a set of simple rules to determine a desired momentary self-drive velocity, 
which takes into account the movement of nearby agents, but doesn’t plan too much ahead 
as those agents themselves can alter their routes in time. Due to its simplicity, the self-drive 
velocity can be calculated with high frequency in the following fashion.

Since the presented iterative method can be hard to understand fully at a first glance, we 
give both a visual/geometric example and a corresponding, but more general mathematical 
description, too. A sample situation, where one can understand the challenge to be solved 
(called D1-D4 danger criteria) is presented in Fig. 1a, while the details of the geometric 
criteria (called C1-C5) that shape the solution can be seen on Fig. 1b. The geometric/visual 
explanation of these criteria is given in the caption of Fig. 1, while their mathematical for-
malization is given below.

Agents determine their momentary self-drive velocity ( vself−drive
i

 of Eq. (1)) with an iter-
ative method. For these iterations, v(s)

i
 denotes the candidate self-drive velocity of the ith 

agent in iteration-step s, while t(s)
plan

 denotes the time until we plan ahead in iteration-step s. 
Initially (in the zeroth step, i.e. with s=0) v(0)

i
 points towards the target, and it has a magni-

tude of vSPP , while we initialize t(0)
plan

 with the time the agent needs to get to its target.
In each iteration-step we call a neighbor threatening if it satisfies all the danger criteria 

below at once: 
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 D1. the two of them are on a collision course with respect to an avoidance area with radius 
Ravoid . This is the case, if the angle of the relative velocity Δv(s)

ij
≡ v

(s)

i
− vj and the 

relative position rji ≡ rj − ri ≡ djin̂ji (where n̂ji is a unit vector pointing from ri to rj , 
dji is the distance between agents i and j) is smaller than � = asin(min(Ravoid∕dji, 1)),

 D2. the relative velocity is bigger than what the agent could handle on its own safely based 
on its finite acceleration [see Eq. (6)], namely: Δv(s)

ij
n̂ji > D

(
dji ,R

avoid, pavoid, aavoid
)
,

 D3. this undesired situation can at least partly be attributed to the ith agent, i.e. it does 
move towards the other agent to some extent     v(s)

i
n̂ji > 0,

 D4. the time they get too close to each other, relative distance to be covered divided by the 
relative velocity: 

(
dji − ravoid

)
∕
|||Δvij

||| , is sooner than t(s)
plan

.

The final acceptable velocity output of the iterative method ( vself−drive
i

= v
(slast)

i
 ) gets set-

tled when there are no more threatening neighbors.
Otherwise, a new candidate velocity v(s+1)

i
 is to be calculated. If there are more than 

one threatening neighbours, we deal with the most urgent threat: the neighbour which 
would get too close first. Let this neighbour be the kth agent (for example: on Fig. 1a the 
orange neighbour is the only threatening one).

Fig. 1  The self-driving term. In a position and velocity of the agents. The linearly extrapolated route of the 
blue ith agent towards its target (blue X) would not intersect with the current Ravoid avoidance area (dashed 
circle) of the orange kth neighbour. Yet it is a threat, because the relative velocity (red dashed vector) would 
drive the two too close (D1), and the projection of the relative velocity to the line between the two is bigger 
than what D(dik,Ravoid, ptarget, atarget) allows (orange dashed vector, D2). Since the blue agent would partly 
move towards the orange neighbour (D3) and is not going to reach its target before the problem escalates 
(D4), it is obligated to change its velocity. In contrary: despite the projected intersection with its current 
Ravoid avoidance area the green neighbour holds no threat thanks to its velocity. b shows the velocity plane 
and illustrates how blue agent chooses a new target velocity (solid blue) instead of the rejected one (dashed 
blue) owing to the orange neighbour’s position and velocity. The new velocity needs to be outside of the 
two hatched purple areas (C1-2 and C4) and inside of the blue circle (C3). The choice from the allowed 
(white) region is the one that has the biggest component towards the rejected velocity (C5). The two purple 
areas represent two different types of dangers to avoid. Any velocity of the purple // hatched area would 
either lead to relative velocity that intersects (C1) with the Ravoid neighbourhood of the orange agent or 
make the blue agent pass on the other side of the orange neighbour as the original velocity would have 
made it to (C2). Velocities in the purple \\ hatched area have bigger components towards the orange agent 
than it would be safe at the current distance (C4)
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The following geometric criteria define the candidate target velocity of the next itera-
tion v(s+1)

i
 : 

 C1. Δv
(s+1)

ik
 needs to be outside of the area between the two tangent lines drawn from ri to 

the Ravoid radius circle around rk , i.e. the new relative velocity must not yield a collision 
course,

 C2. Δv
(s+1)

ik
 needs to be on the same side of the line defined by n̂ki as Δv(s)

ik
 , for not shifting 

the side on which agent i passes agent k,
 C3. |||v

(s+1)

i

||| ≤ |||v
(s)

i

||| , to avoid speeding up in dangerous situations,

 C4. v
(s+1)

i
n̂ki ≤ D

(
dki ,R

avoid, pavoid, aavoid
)
 , to be able to stop before a possible collision,

 C5. v
(s+1)

i
⋅ v

(s)

i
 must be maximal for increasing overall traffic efficiency.

The velocity v(s+1)
i

 chosen according to C1–C5 is now fed back to the beginning of the 
iteration step, e.g. checked again by D1-D4. If it does not meet all the danger criteria, it is 
the choice for vself−drive

i
 . Otherwise, the iteration continues with the next s + 1 step, result-

ing in v(s+2)
i

 according to C1–C5.
Note that turning away from a potential colliding neighbour is a must in our algorithm, 

while slowing down depends on the details of the conflict. Hence, after a few iterations it is 
possible that v(s)

i
 is slower than vSPP , and it is not even moving the agent towards its target at 

all ( (xtarget
i

− ri)v
(s)

i
< 0 ). In this case the agent changes its velocity moving exactly towards 

its target with the reduced velocity magnitude of |||v
(s)

i

||| if this choice does not cause any 
trouble in the sense of the danger criteria D1-D4 introduced above.

Self-driving ends with slowing down nearby the current target of the agent. It is done 
according to the function introduced in Eq. (6), with parameters: D(dtarget, 0, pavoid, aavoid) , 
which yields a smooth deceleration and stopping at the target point.

The new concept here, in the self-driving term compared to Balazs and Vasarhelyi  
(2018) is that neighboring agents are treated as moving objects. In our previous work (Bal-
azs & Vasarhelyi, 2018), they were treated as static obstacles, and their movement was 
handled by the fact that agents calculate their desired velocity with high frequency (around 
5 Hz). Here, the movement of others is involved explicitly in calculating the desired veloc-
ity. Hence less caution is needed (for example, Ravoid can be lower) while smoother avoid-
ing trajectories are attained. This results in significant improvement in performance as seen 
in the upcoming Traffic simulations subsection. Accounting for the movement of neighbors 
while acquiring the self-drive velocity means, of course, a more complicated set of rules. 
The derivation of the described iterative method compared to our previous work using only 
static artificial potentials is also a significant methodological novelty. Meanwhile, the new 
method is streamlined enough to run live on the on-board computers of our (or almost 
any commercially available) drones as seen in our experimental demonstration later in the 
paper.

3.5  Queueing

Agents may share common target points, which requires patience from them—instead of 
rushing towards it and jostling around (Gershenson and Helbing, 2015). Therefore, we 
introduce a self-organizing queueing behavior to our algorithm.
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For that, every agent communicates its target point to all the others. Agent A queues 
up behind agent B if their targets are too close to each other ( |xtarget

A
− x

target

B
| < Ravoid ) and 

agent B is closer to its own target than agent A ( |xtarget
B

− rB| < |xtarget
A

− rA|).
Queueing up in our 2D traffic case means stopping at a distance from the target a bit 

further than the other agent. For further description of how this works, and results on how 
it leads to an emergent self-organizing 2D-queue, see Balazs and Vasarhelyi  (2018).

4  Traffic simulations

The algorithm was studied first in an agent-based simulation framework that has been 
developed by our group and has been used in most of our previous papers related to 
swarms of drones. The framework implements a realistic but fairly simple analytic model 
of the aerial environment and drone dynamics and accounts for several limitations of real-
life drones, e.g. acceleration limits, sensory noise, inaccurate rotor output, communication 
bandwidth, communication range, etc. The framework is optimized for the speedy execu-
tion of multi-agent simulations while it also provides a minimalist but handy GUI for the 
visual evaluation of the algorithms. The simulations were executed under Linux, either on 
a general desktop machine or—when thousands of parallel simulations were needed dur-
ing evolutionary optimization—on the Atlasz supercomputer cluster of Eötvös University.2 
For details of the general features of the simulation framework see Virágh (2014) or check 
the actual open-source code.3 Supplementary Table S1 summarizes the used environmental 
parameters aimed at simulating realistic noises and dynamics.

Within this framework we defined a unique new traffic algorithm as described below, 
with model parameters summarized in Supplementary Table S2.

All the simulations presented in this paper were conducted through a simple scheme of 
generating destinations for the agents. Every agent gets a random target point (indepen-
dently) on the edge of a square-shaped arena of size L × L. Once an agent reaches its des-
tination it gets a new target, randomly, somewhere along another edge. New targets closer 
than L/3 to the current target are excluded to partially reduce increased density of agents at 
the sides. For further considerations regarding the inhomogeneous density distribution of 
agents, see Discussion.

When quantifying how good any traffic algorithm is, one needs to account for two 
aspects: (i) how dangerous it is to navigate through the cloud of all the others (ii) how 
quickly the agents reach their goal.

In our evaluation, we use collision risk as a quantitative measurement of danger. We 
consider two agents under the direct risk of collision if they are closer than a given rcoll dis-
tance. The collision risk, �coll is measured as the ratio of the number of collisions over the 
number of possible pairs of agents, averaged over simulation time length T:

where N is the number of agents, and dij is the distance between agents i and j.

(7)�coll =
1

T �
T

0

1

N(N − 1)

N∑
i=1

∑
j≠i

�
(
rcoll − dij(t)

)
,

2 https:// hpc. iig. elte. hu.
3 https:// github. com/ csvir agh/ robot sim.

https://hpc.iig.elte.hu
https://github.com/csviragh/robotsim
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To measure how quick agents can reach their targets, we first use the effective velocity. 
We project the agent’s current velocity to the line that would be its optimal linear route 
between its previous ( xprev

i
 ) and next target ( xnext

i
):

where the operator N(⋅) normalizes its vector argument. The expression needs to be 
adjusted with a sign according to sgn

(
(xnext

i
− ri(t))(x

next
i

− x
prev

i
)
)
 . Within the signum func-

tion is almost always positive except when an agent runs over its current target (or starts 
backward from its previous one).

The effectiveness of the traffic flow, veff , is given by averaging veff
i
(t) over agents and 

time. Still, this is the average of a fundamentally local quantity, akin to particle flux density.
Thus, for a bigger picture, we also use a global quantity to measure the traffic flow. That 

is the throughput—e.g. the number of agents arriving to their goals within a given unit of 
time. This can be derived as:

where < l > is the average length of direct paths between targets and N is the number of 
agents. An agent reaches a target in about every < l >/veff seconds, and there are N of them. 
The average direct path length must be measured separately in any scenario for assign-
ing targets. For the scenario we use in every simulation (square-shaped L × L arena, with 
random targets on the edge, without allowing a path that is shorter than L/3), this gives 
< l >= 0.947L . For a scenario where the new target point is randomly drawn from a circle 
of radius R, which scenario is used during the real drone experiments: < l >= 4R∕𝜋 . For 
details on how to acquire these constants, refer to Supplementary Text S1. Supplementary 
Table S2 contains the used model parameters.

Our first result (Fig. 2) shows that the new algorithm is able to govern the traffic of 
100 autonomous drones with homogeneous desired speed in a reasonably wide density 

(8)veff
i
(t) = vi(t) ⋅N(xnext

i
− x

prev

i
),

(9)Φthrough =
veff

< l >
N,

(a) No-interaction null model (b) Optimized traffic algorithm

Fig. 2  Traffic flow statistics of 100 agents as a function of density. Panel a is a null model where no agent-
agent interaction takes place, while panel b shows the optimized traffic flow. One hundred 10-minute simu-
lations were averaged at each measurement point. Standard deviations are shown with error bars, but they 
are too small for the throughput and the effective velocity to be visible. The throughput with near-to-zero 
collision risk has a maximum at 27.5 m mean free path ( 13.2 ∗ 10−4 agents/m2 ), which is a particularly 
dense traffic situation
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range. According to Fig. 2, if 100 agents are using an arena of 275 m × 275 m, their traf-
fic flow with maximum speed vSPP = 8 m/s bears a tolerably low collision risk while the 
overall throughput is optimal.

By tolerably low risk we mean that collisions are rare during a 10-minute experi-
ment (for comparison, according to Eq. (7) collision risk of 10−6 means 6 occurrences of 
agents below Rdanger with 100 agents over 10 min). Note that reducing collision risk and 
increasing traffic flow are contradictory requirements thus satisfying both at the same 
time must be a tradeoff. In the presented results we have deliberately chosen a param-
eter setup where this tradeoff is visible and collisions are not under-saturated. Secondly, 
since in real outdoor experiments (and in the simulations imitating those) stochastic 
noise is present, it is principally impossible to declare zero-risk guarantees. However, 
according to Fig. 2, one can always choose the density of agents so that the collision 
risk is tolerable for the given application in terms of the price of a single drone or the 
possible damage caused by a collision. Furthermore, if safety is a concern in real-life 
applications, the way to further eliminate collision risk is through increasing the dis-
tance of avoidance and repulsion between agents. This of course comes at a price of 
reduced overall efficiency.

Looking at a null model where agents do not interact with each other (Fig.  2a), we 
can say that the traffic algorithm presented here reduces collision risk by more than three 
orders of magnitude compared to how many dangerous route crossings would occur by the 
sheer geometry of the traffic task. (At 27.5 m of mean free path the collision risk is reduced 
by a ratio of roughly 1:2500.)

An arena size of 275 m corresponds to 27.5 m of mean free path for 100 agents (consid-
ering a simplified connection: MFP = L∕

√
N ). To put this number in context one can com-

pare it to the distance at which two frontally moving agents can stop with late reaction and 
limited deceleration. This stopping distance is only slightly smaller, 26.6 m for our realistic 
simulation case ( vSPP = 8 m/s, tdelay = 1 s, amax = 6 m/s2).

As Fig. 2 shows, providing more space for the agents results in ever-increasing effective 
velocity and practically zero risk of collisions, but flux (which is a group level measure) 
is decreasing since the speed of the agents cannot compensate for their sparseness. The 
maximum flux of 1.961 s −1 is over a double-fold gain compared to 0.96 s −1 of our previ-
ous results (Balazs & Vasarhelyi, 2018) without any extra cost in terms of collision risk. 
Furthermore, the algorithm presented by this work is demonstrated to govern significantly 
more agents both in simulation (5000 vs 100) and in reality (100 vs 30).

4.1  Scalability

The algorithm is scalable by design. Each drone uses only local information (position, 
velocity and target of neighbours) to calculate its momentary preferred velocity vector, and 
this calculation is decentralized: performed on board by every drone. To examine whether 
scalability follows from these principles, we performed consecutive simulations with up to 
5000 agents. For comparability, we kept the homogeneous desired speed and the mean free 
path (and thus density) constant. The mean free path was set to 27.5 m, which corresponds 
to the maximal flux for 100 agents.

As Fig.  3 shows, all the overall properties of the traffic flow are left practically 
unchanged even with the massively rising number of agents participating (same effective 
velocity and similar order in the number of collisions). Note that scaling the system up 
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to even more agents has no extra local computational cost: the radius of interaction of the 
agents is limited locally, so involving more agents does not increase onboard computa-
tional load or the complexity of local decisions. One limiting factor could be the tolerable 
collision risk. Even though the collision risk is decreasing in larger systems, the number of 
collisions (based on the definition of collision risk) is increasing slighlty over linear scaling 
with agent number (around 270 times more collisions with 50 times more agents at similar 
density in the comparison between 100 and 5000 agents). If needed, of course this can be 
reduced to safer levels at the price of decreased throughput.

Supplementary Movie S1 demonstrates the realistic 2D traffic with 5, 50, 500 and 5000 
simulated agents.

Besides scalability in the number of agents, scalability in the velocity space is also pos-
sible, as interaction terms count with the finite acceleration of agents. This means that the 
same algorithmic rules could apply for high-speed vehicles, and they will inherently start 
to avoid each other and reduce their velocity difference at a larger distance. Of course, 
other parameters of the algorithm, such as the range of repulsion or the range of avoid-
ance can also be raised easily if higher speed ranges require additional safety measures. 
However, agents with higher speed must be equipped with larger-distance communication 
modules to be able to detect others within their increased stopping distance. For a figure 
very similar to Fig. 2, hence demonstrating the scalability at a double-fold speed (16 m/s), 
refer to Supplementary Figure S1.

Fig. 3  Scalability of traffic flow. Agents reach almost exactly the same effective velocity—and the same 
throughput due to fixed density—across orders of magnitude of change in their number. The collision risk, 
as the ratio of actual and all possible collisions is decreasing as more agents are involved, which corre-
sponds to a slightly increasing collision number compared to linear scaling with agent number. One hun-
dred 10-minute simulations were averaged at each measurement point. Mean free path is 27.5 m in each 
setup (equals to 13.2 ∗ 10−4 agents/m2 density). Standard deviations are shown with error bars, but most are 
too small to be visible
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4.2  Heterogeneous traffic

In practical applications it is very important to be able to treat heterogeneous agents in 
coordinated traffic. Our solution can handle both fundamental sources of heterogeneity: 
(i) differences in dynamic properties (e.g., speed, acceleration); (ii) differences in priority 
(i.e., hierarchical traffic).

4.2.1  Heterogeneity in agent dynamics

Considering the previous result that the solution can be scaled up in the velocity space well 
due to the dynamic model of the algorithm, heterogeneity in the desired speed of agents 
becomes a triviality. In fact, it is equivalent of simply slowing a fraction of the agents down 
from the maximum speed (analogy: cars are not allowed to exceed the speed limit but can 
always go slower on the road).

If physical or dynamic properties of agents (e.g., velocity, acceleration, size etc.) differ, 
the only important thing is to communicate these locally to each other to be able to take 
them into account when predicting the motion of others. Keeping ourselves to the road traf-
fic analogy, this is similar to visually observing and understanding different dynamics of 
different vehicle types on the road (e.g. cars, buses, trucks, chariots, bicycles).

Supplementary Movie S2 shows the realistic simulation of a traffic scenario with 
30 agents, where traffic conflicts are resolved smoothly when a different travel speed is 
assigned to each agent (linearly from the 2-32 m/s range). The typical effective velocities 
for the agents based on 100 simulations are shown in Supplementary Figure S2.

4.2.2  Hierarchical priorities

In practical applications it is similarly important to be able to treat priorities of vehicles 
during traffic conflicts (consider e.g. the case of ambulance cars or fire trucks). We have 
achieved this formally by varying the radius of avoidance of agents.

Hierarchy is defined in a pairwise fashion, with time-independence and binary rela-
tions for the sake of simplicity. In each pair of agents we can prioritize one of them, or 
let the two be equal. These relations need to be prescribed previously and left fixed in this 
approach. (But as far as application on the drone fleet is concerned, it is easy to generalize 
to time-dependence if drones can agree on a method how to communicate and agree on 
new priorities).

Equality means that both agents apply the self-driving term to each other with the same 
Ravoid safety distance. But if one of the agents is prioritized, it will not apply the prudent 
self-drive term with the normal Ravoid ∼ 12 m safety distance, but with a smaller Rdanger ∼ 
5 m danger distance, and it will also not apply friction interaction anyhow to its subdomi-
nant pair. Hierarchy leaves repulsion intact, because if the two really get closer than the 
repulsion distance, it means that due to some other limitations (inertia or lack of possibili-
ties left open in the current traffic situation) the self-driving term could not deliver on its 
duties, so the primary interaction for safety needs to act.

Solidarity shown by the boss in the given pair, however, is required to avoid catastro-
phes, after which both involved would feel indignant. The boss can only pay less atten-
tion (shrink the zone-to-avoid around the subordinate from Ravoid to Rdanger ) if the collision 
course is not entirely his fault; in other words, the boss agent can only behave as such if the 
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subordinate agent has a non-zero velocity component towards him. With this condition we 
can prevent situations when the subordinate and the boss are moving in the same direction, 
but the subordinate is slower, and the boss rushes into it from behind.

Note that if a trajectory conflict is resolved in the way the self-driving term dictates it, 
the minimal distance of any two agents passing by each other will be the maximum of the 
distance they try to keep from each other. This is always Ravoid ! The fact that one (and never 
both) of them might use Rdanger distance in the self-driving term merely encodes that the 
other, subordinate one will make much more of an effort to always keep the Ravoid distance.

To study the reaction of the system to pairwise priorities, we ran simulations of the 
strongest possible hierarchy compared to the egalitarian rules of avoidance. The strong-
est hierarchy, from a traffic point of view, is when agent 0 has priority over everyone 
else, agent 1 has priority over everyone except agent 0, agent 2 has priority over everyone 
expect agents 0 and 1, and so on. Equivalently: when the hierarchical graph is the complete 
directed acyclic graph, and the hierarchical matrix is an upper-triangle one.

Figure 4 shows the expected effect of hierarchy when the desired travel speed is kept 
equal for all agents. Bosses are moving more directly towards their targets, while subor-
dinate agents are doing more evasive maneuvers to keep the flow collision-less, hence are 
losing efficiency. Note that Fig. 4 shows the two extremes of the possible priority distribu-
tions: egalitarian and completely hierarchical cases. In practice any other required domi-
nance scenario can be mixed as priority is a pairwise attribute.

Finally, note that in practical situations the heterogeneity of desired travel speed and pri-
ority can both enhance the final asymmetry of agent effectiveness, so the effects of Fig. 4 
and Supplementary Figure S2 can support each other.

4.3  Layered traffic in 3D

Three dimensional space is very sparse. To challenge our traffic algorithm, we examined 
purely two dimensional (planar) cases first, as with a given number of agents it is easier 
to increase the density and thus the number of conflicts to resolve in 2D. However, when 
the final goal is to maximize flux, one can extend the two dimensional solution to the third 
dimension as well. For this, we introduced separate planar layers of traffic upon each other 

Fig. 4  Effective velocity as a 
function of agent rank in the 
strongest hierarchy (full cycle-
free, FullCF) and when no hier-
archy is introduced (egalitarian). 
Agents with lower label-number 
are bossing a lot of their peers 
(e.g. rank 0 corresponds to the 
highest boss), which means 
they make avoiding maneuvers 
less frequently, which enhances 
their effectivity. Agents with a 
lot of bosses (higher ranks) are 
compensating this, hence are 
losing effectivity. Both curves are 
averaged from 100 simulations 
each, at desired speed 8 m/s
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with a small but safe vertical distance between them and forced agents to choose from the 
layers based on their desired ideal direction of motion between the last and next target.

The cost of having more layers is that it takes extra time and energy to switch layers ver-
tically before heading to destination and at arrival.

The benefit first of all is that the average density over a horizontal area in one layer will 
be reduced as more vertical space can be utilized above. Besides, with more layers the 
desired direction of the flow in each one will be more aligned and thus the possibility of 
frontal or lateral traffic conflicts will decrease.

In simulation we compared the case of 1, 3 and 5 layers, with a base layer and possible 
other layers above and below symmetrically. Since target points remained in the base layer, 
the trajectories were broken down into three stages: (1) reaching the layer of motion verti-
cally; (2) moving towards the target horizontally; (3) going back to the base layer vertically. 
Note that 2N layers have similar costs (time spent with elevation and descent) but less ben-
efit (decrease of density) than 2N + 1 , thus even numbers of layers got excluded from the 
quantitative investigation.

When more than one layer is used, we still insist the target points be reached on only one 
of them: on the base layer. An agent having just reached its previous target at the base layer 
gets a new target randomly. Based on the direction of the straight route relative to the North 
and the number of layers, the agent knows which layer it needs to use to get to the next 
point. In the case of 3 layers for example, 0–120◦ : layer 0, 120–240◦ : layer 1, 240–360◦ : 

Fig. 5  Fundamental traffic diagram comparing simulations with one (dotted lines), three (dashed lines) and 
five (solid lines) layers. Agents select different layers depending on their direction of velocity. Figure shows 
the average effective velocity (blue), the average throughput (green) and the average collision risk (red) of 
100 simulations at each density value. The optimal number of layers (i.e. the one with highest throughput 
at the given density section) is marked at the top of the figure. If density increases, more layers provide 
higher throughput. The throughput has maximum at middle density. The effective velocity value of the field 
experiment with 100 drones is also added to the plot for reality gap comparison. Simulation parameters: 
100 drones, 8 m/s travel speed, square-shaped arena with side length between 150 and 600 m. Experiment 
parameters: 97 drones, 6 m/s travel speed, two layers, circular arena with 125 m radius. Note that the differ-
ence between the experimental and simulated data disappears once the exact same parameters are set: two 
layers, 97 agents, 6 m/s travel speed simulations give 3.52±0.02 m/s effective velocity as compared to 3.57 
m/s in real flight. Different parameters for this figure are plotted because odd numbers of layers are shown 
to be more effective and 8 m/s is still quite a safe speed—even though none of these two are exploited in 
our proof-of-concept field experiment
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layer −1. Then it starts its elevation (or descent) as a separate phase from trafficking. Until 
the vertical position of the desired level is reached, vself−drive

i
 of Eq. (1) is solely vertical. 

Repulsion and friction interactions are still working, being applied to any two agents that 
have a vertical distance less than hlayer�layer−overlap , where hlayer is the layer height difference 
(in our case: 10  ms) and �layer−overlap is the extent of overlapping of the layers (must be 
between 0 and 1, in our case: 0.5). This way, even if the entry point of an agent is some-
what crowded at the new layer, it is getting cleared up by the repulsion interaction.

When the new layer is reached, the agent starts its 2D traffic movement, only taking into 
account agents that are closer than hlayer�layer−overlap vertically. Once the target position is 
reached, agents ascend or descend to the base layer (in the same way as described above) 
to finalize their mission and get a new target. If the agent gets a bit pushed away from the 
target during vertical motion, it needs to re-reach the target on the base layer before getting 
a new one.

Figure 5 summarizes the simulation results for one, three and five layers, while Supple-
mentary Movie S3 shows the actual simulated traffic for 1–4 layers.

It is clear from the simulation results that raising the number of layers from 1 to 3 is 
beneficial when a single layer gets too crowded. Collision risk also decreases with the new 
layers introduced. However, it is also clear that raising the number of layers further adds 
less benefit than before. The main reason for this is that new layers do not raise the extent 
of the takeoff/landing areas, which still remain a bottleneck. For more thoughts about this 
geometrical limitation see Discussion.

5  Proof of concept with a drone swarm

A field demonstration of the decentralized traffic algorithm has been conducted with a fleet 
of 100 drones.

We used the drone fleet and the expertise in large-scale drone-swarm deployment of 
CollMot Robotics Ltd. These quadcopters use a PixHawk1 type autopilot with slightly 
customized ArduCopter code,4 a U-blox M8P RTK-compatible GNSS receiver, an IBSS-
compatible 2.4 GHz Odroid WiFi module 0 and a 433 MHz ISM-band SIK radio. The traf-
fic algorithm was running on an on-board Odroid C1+ companion computer, which sent 
velocity control commands to the autopilot at 20 Hz.

RTK corrections were sent through both the WiFi and ISM bands from a ground station 
running Skybrush.5 RTK corrections have been actively used throughout the experiment to 
increase positional accuracy, however, from the algorithm’s structural point of view correc-
tions are not required, they simply reduce the allowable minimum distance between drones 
during flight. Without RTK corrections one needs a larger repulsion radius and stopping 
distance between the drones and thus in general a larger available flight area.

Drones communicated with each other through an ad-hoc (IBSS) WiFi network with 
non-directional (isotropic) antennas. In the network UDP status messages were broadcast 
at 10 Hz, containing a timestamp, one’s ID, current position, velocity, target position and 
general health and administrative status. The low output power of the WiFi modules and 
the broadcast-type UDP protocol allows for good scaling of the communication network, 
as packets are typically received from only closeby neighbors [reception typically starts 

4 available at https:// github. com/ skybr ush- io/ ardup ilot.
5 https:// skybr ush. io.

https://github.com/skybrush-io/ardupilot
https://skybrush.io
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to degrade above 80 m, see a comprehensive analysis about the measured communication 
network quality in Fig. 8. of Vásárhelyi et al. (2018)], hence the network never really gets 
flooded. Anyhow, the theoretical maximum reception bandwidth required for 100 drones, 
less than 100 byte status packets at 10 Hz is  100 kByte/s, which can be handled easily by 
any state-of-the-art WiFi modules.

During the experiments we required stable GPS reception and in general conditions for 
normal flight operation. The drones had a complex onboard fail-safe mechanism which—
depending on the severity of any detected error—forced the drones to return to home at a 

Fig. 6  Post-processed image of the raw video footage of the field experiment with 100 drones perform-
ing autonomous decentralized traffic in two layers. The image was created iteratively, by adaptively averag-
ing consecutive video frames into a background image, and then getting the pixel-level lighter color values 
from the current background and the new frame. The light indicator attached to each drone shows the status 
of the algorithm: green means free motion, blue means the drone is avoiding others, purple means the drone 
is queueing, white flash indicates that the target has been reached

Fig. 7  Statistical output based on a 400 s stationary section of the flight logs of 97 drones performing dense 
self-organized traffic. The y axis of the figure is common for all quantities numerically, while the unit of 
each one is shown in the figure legend. The absolute average of all quantities is marked at the right side of 
the figure with the same color as the corresponding timeline. The 3 m collision risk distance used in simula-
tions is also plotted with a gray dashed line for reference. Even though the 3 m safety distance is violated 
a few times, drones never got closer to each other than 1.5 m, and the results show an overall stable and 
efficient trafficking motion
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safe altitude individually or land immediately, without endangering the safe operation of 
others.

The experiment used two layers for the traffic spaced 14  m above each other. Travel 
speed was set to 6 m/s horizontally and 1.5 m/s vertically, therefore, the selected 10 Hz sta-
tus update resulted in maximum 0.6 m positional ambiguity from neighbors, while times-
tamp comparisons were also used for a linear extrapolation of position since last received 
packets. This update frequency proved to be high enough in general for all our autonomous 
drone experiments in the past years as well, not just this one. Traffic targets were selected 
randomly from the edge of a circle with 125 m radius. Note that using a circle instead of 
a rectangle (such as in the presented simulations) had no specific reason; it was an instan-
taneous choice for the sake of diversity as according to (not presented) simulations it has 
no major effect on the outcome. Other parameters of the algorithm are fairly similar to the 
optimized simulations (see Supplementary Table S2 for the detailed parameter setup).

Figure 6 shows a section of the raw video footage of the field experiment blended 
into a single image.

Supplementary Movie S4 is our video abstract that also contains video footage about 
the fleet performing decentralized self-organizing traffic. Supplementary Movie S5 is a 
three-minute sample from the experimental tape.

An interactive visualization of the recorded flight logs (97 out of 100 could be retrieved) 
is also available.6

Figure 7 shows statistical output from the available real flight logs. The results show 
stable and efficient traffic behaviour, and we confirm that the whole flight was performed 
without collisions. Nevertheless, if we or the readers ever need to repeat such a complex 
experiment, it is advised to take into account the reality gap and raise the radius of avoid-
ance to completely eliminate the occasional dangerous spikes in the minimum distance 
between drones.

6  Discussion

We have presented a decentralized control strategy for many cooperating autonomous 
agents with independent tasks that require coordination and continuous conflict resolution 
while moving in a common airspace.

Our system has been designed with all the conceptual guiding rules and benefits of self-
organization in mind, as described in Gershenson (2020): (i) it is inherently adaptive and 
robust due to its distributed nature; (ii) it shows signs of antifragility in frontal pairwise 
conflicts where positional noise facilitates decisions about which direction to avoid each 
other; (iii) our altruistic traffic rules act as efficient mediators to minimize pairwise con-
flicts in the traffic flow; (iv) polite queueing behaviour builds on the slower is faster effect; 
and finally, (v) heterogeneity is treated thoroughly to provide a solid base for future emer-
gent complexity of autonomous traffic.

The communication demand of our traffic algorithm is relatively low: agents require 
only local information to be received from interacting neighbors, such as their position, 
velocity, and most importantly, their destination. This last piece of active information as 
part of the situational awareness of agents is crucial for achieving a certain efficiency; 
without this agents would not be capable of predicting each others motion well enough 

6 https:// share. skybr ush. io/s/ traffi c- layers/.

https://share.skybrush.io/s/traffic-layers/
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and their reaction to the motion of others would be slower and less accurate. This message 
is perfectly in line with the results of our latest article about flocking (Balázs et al., 2020), 
where actively communicating one’s own will turned out to be the key for sidestepping the 
strict tradeoff between persistance/stability and responsivity/reactivity.

The primary advantage of our decentralized approach is that the overall self-organized 
traffic flow will not only be efficient and stable, but also completely scalable to masses of 
vehicles. This comes in a package with easy implementation: our algorithm is also very 
easy to program to real drones and requires only local low power communication infra-
structure. These two facts together make our approach a good candidate to aid autonomous 
flights, or to become even part of a global standard in decentralized Unmanned Aircraft 
System Traffic Management.

Regarding real-life applications, our solution also easily extends to vehicles with diverse 
dynamic properties, such as their acceleration or speed range, while it can also handle any 
possible (static or dynamic) priority distribution or hierarchy within the coordinated air-
space. This latter property is actually equivalent to handling size heterogeneity with simply 
changing the radius of avoidance at the individual’s level. All in all, handling heterogeneity 
and priorities of agents is very helpful for the interoperatibility between different UAV sys-
tems and for future UTM + ATM integration purposes.

Our solution for multi-UAV coordination is first presented for the more dense case of 
strictly two-dimensional traffic. It is also extended to a layered three-dimensional struc-
ture, which consumes rather small vertical space (suitable for the typically low-altitude 
UAV flights), enhances the overall efficiency, but interestingly, not as much as we predicted 
beforehand. The reason for this can be revealed by investigating the nature of bottlenecks 
when large number of drones commute between pre-assigned positions. The decrease of 
efficiency here is rooted more in the congestion at the departure/arrival zone than out in 
open-air space—the destination points are along a lower dimensional part of space (in our 
case line segments) than the quasi-two-dimensional area in which the drones move away 
from the terminals. In fact, this evidence is also observable in (i) one-dimensional road 
traffic, where the usual constraint is arrival to central points with zero dimension (e.g. entry 
points of a city); (ii) two-dimensional human traffic in conference halls while queueing for 
food along one-dimensional outlines of tables; (iii) current air traffic, where the throughput 
of airports is a stronger bottleneck than airspace availability above. This observation draws 
the attention to the need of careful planning of future smart cities with dense unmanned 
aerial traffic requirements, where traffic throughput will only be able to expand above a 
certain limit if unmanned airports will use the third dimension also (e.g., having equiva-
lent, well-separated landing spots on all floors of high buildings).

In the present article, we focused on the challenges arising in open-air traffic, where 
drones avoid each other based on absolute position data actively transmitted from other 
agents. Several practical applications—such as smart cities—shall demand general passive 
obstacle avoidance capabilities as well for resolving traffic in confined spaces. Even though 
this direction lays outside the scope of the present paper, once drones get equipped with 
proper sensors to detect static objects around them (Soria et al., 2021), the methods pre-
sented here shall provide a solid base for handling general object avoidance as well as a 
special case (static objects are virtually agents with zero speed and in the simplest case dif-
ferent radius of avoidance). This could be the focus of future research.

There are also several options for extending our algorithm to non-layered 3D motion. A 
quick extension is to keep all interaction terms in 2D and force interactions for all agents 
that are close either horizontally or vertically (this is what actually happens already at tar-
gets, while changing layers). Another direction could be to generalize all interaction terms 
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for a full 3D case. This is straightforward for repulsion and friction but not that trivial for 
the self-drive term, and also brings in questionable requirements for the dynamics from a 
practical point of view (raising altitude consumes more energy in the air due to gravity and 
the gained potential energy cannot be recovered during descent).

Last but not least, our decentralized traffic algorithm is currently optimized for multi-
rotor type vehicles, which is demonstrated on the field with a swarm of 100 autonomous 
quadcopters. If needed, the philosophy of the approach and a substantial portion of the 
algorithm can be used for fixed wing aircraft as well. However, one has to be highly cau-
tious about how to keep the fixed-wing’s speed above its stall speed. This surely requires 
modifications in the queueing behaviour (e.g., circular loitering instead of hovering) and 
adds extra restrictions to the instantaneous selection of the self-drive term.

The range of applicability of our results is wide. Aerial missions with more than a single 
drone involved require coordination between the cooperating agents, which can be solved 
now with our algorithm. As mentioned above, an extended version of our collision avoid-
ance strategy can also be part of a global UTM solution if autonomous agents get equipped 
with the proper communication devices and onboard DAA control units running the algo-
rithm. But due to its low computational cost, the decentralized traffic model can also be 
used in a centralized way in air traffic management as an automated planner or recommen-
dation system for human air traffic controllers.
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