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The development of motion sensors for monitoring cattle behaviour has enabled farmers to predict the state of 
their cattle's welfare more efficiently. While most studies work with one dimensional output with disjunct be-
haviour categories, more accurate prediction can still be achieved by including complex movements and 
enriching the sensor algorithm to detect multi-dimensional movements, i.e., more than one movement occurring 
simultaneously. This paper presents such a machine-learning method for analysing overlapping independent 
movements. The output of the method consists of automatically recognized complex behaviour patterns that 
can be used for measuring animal welfare, predicting calving, or detecting early signs of diseases. This study com-
bines automated motion sensors (i.e., halter and pedometer) for ruminants known as RumiWatch mounted on a 
Charolais fattening bull and camera observation. Fourteen types of complex movements were identified, 
i.e., defecating-urinating, eating, drinking, getting up, head movement, licking, lying down, lying, playing-
aggression, rubbing, ruminating, sleeping, standing, and stepping. As multiple parallel binary classificators 
were used, the system was able to recognize parallel behavioural patterns with high fidelity. Two types of ma-
chine learning, i.e., Support Vector Classification (SVC) and RandomForest were used to recognize different gen-
eral and non-general forms of movement. Results from these two supervised learning systems were compared. A 
continuous forty-eight hours of video were annotated to train the systems and validate their predictions. The suc-
cess rate of both classifiers in recognizing special movements from both sensors or separately in different settings 
(i.e., window and padding) was examined. Although the two classifiers produced different results, the ideal 
settings showed that all forms of movement in the subject animal were successfully recognized with high accu-
racy. More studies using more individual animals and different ruminants would increase our knowledge on en-
hancing the system's performance and accuracy. 
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open 

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
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1. Introduction 

Understanding the movements, behaviour (Fraser and Broom, 
1997), and emotional reactions (Désiré et al., 2002) of cattle animals 
will help to develop husbandry systems that support animal welfare, 
which is essential for increasing productivity (von Keyserlingk et al., 
2009). In the early years of cattle behaviour monitoring (Gary et al., 
1970; Tribe, 1950), no devices were available to enable herd-level and 
continuous animal behaviour monitoring. As technology has developed, 
zkup). 
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more and more in-depth studies (Barrell, 2019) are used to learn about 
the behaviour of ruminant animals. At first, it was only possible to rely 
on direct observation, experiential methods (Eibl-Eibesfeldt and 
Kramer, 1958), or examination of environmental factors (e.g., 
temperature, humidity, light conditions, etc.). Nowadays, sensors can 
be used to measure multiple behavioural factors, e.g., hormone levels 
and various blood parameters. In intensively kept animals, sensors can 
monitor health conditions and, thus, can be implemented to support 
their welfare (Stygar et al., 2021). 

The development of precision livestock farming (PLF) increases the 
availability of more non-invasive sensors that can be applied to farm an-
imals (Banhazi et al., 2012; Berckmans, 2017). The advantage of sensor-
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Fig. 1. The workflow of this study with three main tasks: data collection, conversion, and 
analysis. 
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based monitoring is the ability to continuously monitor an animal 24 h a 
day, providing accurate and objective information (Islam et al., 2021; 
Neethirajan, 2020; Rau et al., 2020). A sensor can be a piece of equip-
ment mounted on the cattle or an external unit, such as a camera 
installed to monitor the herd. Fan et al. (2023) used pictures taken 
with imaging equipment in their experiments on cattle pose estimation 
using deep learning algorithms. 

Motion sensors aim to detect the condition and behaviour of cattle. 
These sensors can be installed in the cattle jaw/head or legs and help 
farmers better understand animal behaviour. The forms of movement 
detected by sensors can be associated with different behaviours. Fur-
thermore, states associated with characteristic behaviour can also be 
predicted, e.g., heating (estrus), abortion, calving, and aggression. Data 
gathered can be analyzed and applied to better meet cattle needs and 
helps to detect earlier deviations from the normal physiological state, 
such as various diseases or disorders. 

Most commercially available sensors (Lee and Seo, 2021) are
equipped with software that can create new data derived from the 
collected raw data with the help of algorithms encrypted by the compa-
nies. The raw data is inaccessible to the user (Gengler, 2019). An excep-
tion is the RumiWatch, a product of the Swiss company Itin+Hoch, 
which is made for cattle research purposes. The device was initially 
developed for the early detection of animal health disorders, metabolic 
and feeding problems for dairy cows (Zehner et al., 2012). However, the 
sensor has further possibilities. Several research studies address the po-
tential use and validation of RumiWatch sensors (Li et al., 2021; 
Steinmetz et al., 2020; Zehner et al., 2017). The device comprises a 
halter with a pressure sensor complemented by a foot-mounted pe-
dometer. During the validation of the sensor, Benaissa et al. (2019) 
found no significant difference between the data from the RumiWatch 
halter pressure sensor and the data from an independent accelerometer 
mounted on the animal. The effectiveness of the RumiWatch sensors 
has been tested on grazing animals (de La Torre Capitan et al., 2016; 
Raynor et al., 2021) as well. Although the RumiWatch device was devel-
oped specifically for cattle, it has also been tested on other species, such 
as horses (Werner et al., 2014), buffalo (D'Andrea et al., 2017), and 
sheep (Werner et al., 2019). 

Though many studies exist on using motion sensors in detecting and 
understanding cattle behaviour, many unexploited potentials exist, 
such as detecting more complex behaviour and multi-dimensional 
movements (i.e., different movements happening simultaneously). For 
instance, pre-existing studies using accelerometers (Peng et al., 2019; 
Riaboff et al., 2020) could recognize forms of movement but are limited 
to only one form at a given moment or variation within the movement 
(Li et al., 2022). Meanwhile, in reality, certain behaviour can comprise of 
multiple movements occurring simultaneously, e.g., ruminating while 
lying or standing; aggression while ruminating and standing. Recogni-
tion of these multi-dimensional movements can be crucial in managing 
animal husbandry. For instance, aggression while ruminating and 
standing movements exhibited by a dairy cow can be interpreted as ag-
gressive social behaviour limiting the other dairy cow's feeding ability, 
resulting in reduced milk production (DeVries et al., 2004). 

Enriching the sensor algorithm to detect complex movements and 
the co-occurrence of multiple movements can potentially provide a bet-
ter result that reflects the actual situation. The more information gath-
ered about certain animals will result in a better understanding of 
their needs, thus increasing possibilities to improve their condition. 
This study used RumiWatch sensors mounted on a model cattle to test 
the new method of recognizing complex and multiple movements by 
answering the following questions: 

(1) What is the effect of filtering noise on recognizing different forms 
of movement? 

(2) Is the developed method suitable for recognizing more complex 
forms of movement (e.g., standing up, lying down, defecating-
urinating, licking, rubbing) compared to RumiWatch sensors 
87 
that measure only a few general forms of movement? 
(3) Is the developed method suitable for recognizing these forms of 

movement in parallel (i.e., multiple movements simulta-
neously)? 

(4) How is the effectivity of using two combinations of sensors 
(i.e., halter and pedometer) compared to individual sensors on 
detecting these forms of movement? 

The method presented in this study can recognize several specific 
movements that can be combined at a given moment since the analysis 
was done multi-dimensionally with a separate classifier model for each 
form of movement. The result of this study will enrich the algorithm of 
RumiWatch on detecting more complex and multi-dimensional move-
ments, thus increasing accuracy in predicting more complex behaviour 
of cattle that can contribute to a better understanding of providing them 
an adequate environment and as an early warning system for mitigating 
cattle-related diseases. 
2. Materials and methods 

This study generally comprises three main tasks (Fig. 1), i.e., data 
collection, conversion, and analysis. The data was collected from 
RumiWatch sensors mounted in the subject animal and video from 
cameras installed in the animal enclosure. Next, gathered data was con-
verted and time-synchronized. Then, data was loaded in custom soft-
ware (i.e., cownalyse) where the visual camera inspection can justify 
specific movement patterns recorded by RumiWatch. Last, data were 
subjected to two machine learning supervised classifications, i.e., SVC 
and RandomForest. We used these traditional learning algorithms 
since they work better with structured data with relatively small sample 
datasets (Wang et al., 2021). 



Fig. 3. Floor plan of the stable and enclosure and the location of the four cameras installed 
for monitoring. 
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2.1. Data collection 

The site of our experiment was the beef farm of Gazdatrend Ltd., lo-
cated in Várvölgy, Western Transdanubian region of Hungary. The ani-
mal subjected to observation was an 18-month-old Charolais fattening 
bull, which was housed together with its 9 companions in a 6 × 11 m 
stable and the associated 5 × 9 m enclosure. The observed bull was 
equipped with a set of RumiWatch (Itin+Hoch GmbH) devices: a halter 
attached to the head and a pedometer attached to the left hind leg of the 
animal (Fig. 2). The sensors recorded pressure, acceleration, and tem-
perature data at 10 Hz temporal resolution. The raw data were post-
processed and converted to CSV format, retaining the 10 Hz resolution, 
using RumiWatch Converter V0.7.4.13. The sensors were installed on 
the animal before the observation as an adjustment period. The sensors 
were installed for a month (29.03.2021–29.04.2021). From this time in-
terval, we selected 24 h (18/04/2021) for the study. Since some forms of 
the movement were not featured enough, the following 24 h were also 
included in the annotation material, focusing specifically on these 
movements. 

Visual observation was performed with four high-resolution, wide-
angle digital cameras (Milesight MS-C2964-PB; FW: 40.7.0.79-r7), 
which recorded video footage of the animals 24 h a day (Fig. 3). Two 
cameras monitored the stable while another two monitored the enclo-
sure. The stamp of the day and the current time were recorded in the 
upper right corner of the camera images. The recordings of the cameras 
were transmitted by Wi-Fi antennas to the data recording unit 
(Milesight MS-N1004-UC; FW: 73.9.0.14-r3) located in the central 
building of the farm. During our work, we used another central unit 
for processing stored videos (Milesight MS-N1009-UNT; FW: 
72.9.0.14-r3). The video was recorded in full-HD (1920 × 1080) resolu-
tion, 12 fps (frame per sec) VFR (variable frame rate), and 800–1300 kb/ 
s VBR (variable bit rate). 

Reflective material was mounted on the halter to identify the 
observed animal accurately during night scenes (Fig. 4). 
2.2. Time sync 

For a successful experiment evaluation, we strove for strict and accu-
rate time synchronization of the image recordings and sensor data. The 
clocks of the RumiWatch devices were synchronized to the computer's 
clock running their user interface, and the computer's clock was kept 
Fig. 2. The observed bull mounted with two Ru
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accurate by an Internet time service provider (UTC + 1:00 time zone). 
The cameras received the time from the system's central unit, which 
was not automatically synchronized and had to be manually adjusted 
from time to time. Since the clock of the central unit was constantly run-
ning fast, the two devices were not in sync. To compensate for this, we per-
formed the following procedure: 1) when recording the camera image, 
the time stamp known by the camera was displayed using the software 
that saves the video; 2) by manually comparing and matching the video 
and sensor data, the instantaneous offset between the visible clock in 
the video and the recorded time of the sensor was measured at several 
points containing characteristic movements (Fig. 5); 3) by plotting the 
value of the offset against time, we found that the difference between 
miWatch sensors, as seen from Camera 1. 



Fig. 4. Snapshot from the video used for annotation (camera 4). The subject animal can be easily and accurately identified even during the night due to the reflective halter. 
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the two clocks shows a linear increase in time with high accuracy between 
the synchronizing points (with a deviation of about 5.2 s/day, Fig. 6); 4) by 
fitting straight line segments between the measured points to the varia-
tion of the offset over time, we were able to compare the two data sets 
at a given time by taking this offset into account (fitted compensation). 

The “variable framerate” in the camera setting further worsened the 
time synchronization accuracy. The camera image recording software 
was inaccurate in storing the time stamp at the beginning of the videos 
since it shows the most recent keyframe instead of the actual starting 
point. Considering all these factors and compensation, an overall time 
sync of about 1–2 s was applied between the sensors and the camera 
data on the whole dataset. 

2.3. Data analysis 

The videos from the stored recordings were extracted using the 
Milesight CMS (2.4.0.14) software from the camera system. For annota-
tion, we used the image of the camera with the best view of the bull 
equipped with the RumiWatch devices at a given time interval. Annota-
Fig. 5. Manual determination of time synchronization at a given moment: the equipped anima
Python script was used to find the clock skew between the video and gyro data by visually obse
this case, for example, one of the clocks had to be set 19.2 s earlier for the animal to push the ca
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tion was performed using BORIS version 7.10.5 software (Friard and 
Gamba, 2016). For training and prediction, we used the cownalyse 
(1.2.2) framework we developed specifically for this task. It is a 
Python-based, platform-independent, command-line script base that 
implements automated data processing and training steps, mainly 
using the open-source Python packages numpy, scikit, sklearn, pandas, 
and matplotlib. 

The main functional modules of cownalyse are: 

• process: scan, preprocess, check, correct and filter RumiWatch halter, 
pedometer, and BORIS data. 

• learn: training the learning algorithm using RumiWatch and BORIS 
annotated video data based on the open-source classifiers: sklearn. 
svm.SVC, sklearn.svm.linearSVC, and sklearn.ensemble. 
RandomForestClassifier (Pedregosa et al., 2011). 

• predict: movement recognition mode of the trained system for any 
RumiWatch data. 

• render/plot: production of useful and unique graphical and textual 
outputs from the data set to check the quality of the training or to cal-
ibrate time synchronization manually. 
l at the trough, with the 3D gyroscope data from the sensor shown in the video. A custom 
rving the motion on the video and the corresponding spikes on the motion sensor data. In 
lf away from the trough in the video when the gyroscopes indicate the intense movement. 



Fig. 6. Time difference between RumiWatch and video recordings as a function of time. The figure has sawtooth wave characteristics. The points corresponding to offset 0 are the points of 
the manual time synchronization of the video recording system. The fitted rate of deviation is about 5.2 s/day. 

M. Biszkup, G. Vásárhelyi, N.N. Setiawan et al. Artificial Intelligence in Agriculture 14 (2024) 86–98 
The settings used in running SVC and RandomForest classifiers were 
the default settings of the Python packages mentioned above, except the 
balanced class weight and C regularization that were tuned internally. 
The same parameters were set and used for all models and movement 
types. 

2.3.1. Annotation process 
As a start, we defined 14 forms of movement, which we fed into the 

BORIS software, forming the basis of the ethogram. In addition to the 
forms of movement recognized by RumiWatch's classification 
(i.e., drinking, ruminating, standing, stepping, lying, eating), we also ex-
amined nine following movements: getting up, lying down, defecating-
urinating, play-aggression, licking, rubbing, head movement, sleeping. 
RumiWatch used a pedometer and halter to detect and classify move-
ments exclusively (Fig. 7). Our classification uses data from both sensors 
to detect and classify all movements. 

An integral part of the ethogram table is the exclusion matrix of 
movement forms (Table 1). At a given time, the subject animal can per-
form a movement or more movements (i.e., 2–3) simultaneously. For 
instance, movements, i.e., eating, standing, stepping, getting up, lying 
down, and lying, can happen simultaneously (Table 1). In this case, 
the timing of both movements was still marked individually and parallel 
in BORIS. Note that the matrix in the table was only used for data input, 
Fig. 7. The forms of movement classified by different classifications: RumiWatch's classification (
ment and uses data for classification from the halter (red) and the pedometer (blue). This stud
tation of the references to colour in this figure legend, the reader is referred to the web versio
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and the classifiers did not consider it during the multi-dimensional pre-
diction. 

There were 77 video blocks from the 24 h of the selected day, and 21 
video blocks from the following day were loaded into BORIS, giving a 
total of 98 video blocks from two days of observations. BORIS stores 
the data (ethogram, video path, and annotation) in JSON (JavaScript Ob-
ject Notation) format. To annotate a given video block, it is essential to 
enter the exact date and time according to the time stamp on the 
video as an input parameter of the processing, with an accuracy of sec-
onds. An important criterion when annotating the various forms of 
movement during video observation is to set the actual event's exact 
start and end times. To do this, we used the “frame-by-frame” mode 
available in BORIS, which allowed us to go through the video frame 
after frame. 

During the observation, marking all movements at a given time is 
crucial. Multi-label classifiers (Tsoumakas and Katakis, 2006) can be 
used to recognize multiple movements in parallel. However, only time 
instances where the animal's activities can be accurately and completely 
identified were considered. Due to the multi-dimensional property of 
the classification, the movements not being performed must also be in-
cluded in the training data set. In other words, for each annotated mo-
ment in time, we need to know whether it is happening or not 
happening for each form of movement. 
left), this study (right), and both (middle). RumiWatch defines three types of eating move-
y used data from both sensors and analyzed them together and separately. (For interpre-
n of this article.) 



Table 1 
Exclusion matrix of the movements included in the ethogram. Movements indicated in 
green were marked parallel in BORIS. Events indicated in red are mutually exclusive and 
cannot be marked parallel. 

S Sp  G  LD  L  E  D  R  DU  P  Lc  Rb  H  Sl  
Standing (S) 
Stepping (Sp) 
Getting up/Standing up (G) 
Lying down (LD) 
Lying (L) 
Eating (E) 
Drinking (D) 
Ruminating (R) 
Defecating-urinating (DU) 
Playing/aggression (P) 
Licking (Lc) 
Rubbing (Rb) 
Head movement (H) 
Sleeping (Sl) 
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2.3.2. Length of the marked movement forms 
The number of appearances, total and average lengths of movement 

forms marked in BORIS, as well as their percentage appearance to the 
total marked time, are shown in Table 2. The data showed that the 
most frequently marked movement is ‘standing’, the longest marked 
movement is ‘lying’, followed by ‘stepping’ in the number of occur-
rences and ‘eating’ and ‘ruminating’ in length. The head movement 
has been marked very few times and for short durations. 

2.3.3. Training 
We compared supervised learning procedures (Sammut and Webb, 

2010a) for training on real input data we annotated. For the annotation 
database, we used RumiWatch's classification as a control and the 
videos we marked later. During supervised machine learning, we tune 
a “black box” (Guidotti et al., 2018) system, which, in the first round, 
tries to pair input sensor data with annotation outputs with high effi-
ciency to generate movement annotations for new sensor data. Without 
being exhaustive, the following limitations must be taken into account 
during training: 1) a good compromise must be found between memo-
rization and generalization abilities by properly parametrizing the 
learning system and creating the appropriately sized training database 
(Reid, 2010). 2) Adequate noise filtering (Sammut and Webb, 2010b) 
and time synchronization/pairing must be ensured, as mentioned 
previously. 

If the time synchronization is appropriate, then the training unit of 
the supervised learning will be the following two paired data elements: 
(1) the presence or absence of a specific movement category 
(e.g., “lying “) at a given moment, as binary data in the form of true or 
false; (2) the set of characteristics derived from the sensor data for 
Table 2 
The length of the fourteen movement forms identified in this study. 

Movement Total number 
of occurrences 

Total duration 
(seconds) 

defecating-urinating 21 511.603 
drinking 20 570.210 
eating 64 8,967.630 
getting up 20 256.684 
head movement 5 15.957 
licking 70 1,690.879 
lying 74 18,351.722 
lying down 19 211.892 
playing-aggression 54 1,004.684 
rubbing 50 1,316.252 
ruminating 34 12,497.885 
sleeping 20 2,795.463 
standing 430 16,596.071 
stepping 363 1,851.552 
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this moment, i.e., the so-called feature vector, which is calculated from 
the time window of a given size preceding the given moment. Each clas-
sifier predicts an element (a binary true or false) for the given move-
ment category, and the sum of these 1-bit binary classifiers will be the 
multi-dimensional output (Result). 

The learning algorithm needs many precisely paired data items with 
active and inactive movement categories. Suppose the learning system 
receives enough high-quality data. It can adjust to its internal state by 
learning to categorize and separate the active/non-active states for a 
given movement for arbitrary feature vector inputs. 

2.3.4. Composition of the feature vector 
The procedure described in (Gerencsér et al., 2013) was used as a 

basis to define the feature vector. The first step is determining the size 
of the time window parameter from which the sensor data comes, typ-
ically 2–10 s long, giving 20–100 data points from the 10 Hz RumiWatch 
data. Then, the following characteristics were extracted from each raw 
(pressure, motion, temperature) and derived (scalar multiplications 
and derivatives) types of raw data: mean, standard deviation, skew, 
minimum value, maximum value, data width (max-min), number of 
peaks, spectral characteristics (real elements of discrete Fourier trans-
form; (Bochner and Chandrasekharan, 1949). We assign several derived 
characteristics to a moment in time, the sum of which becomes the “fea-
ture vector”. 

The training for different movement elements is done indepen-
dently (i.e., multi-label classification with a set of binary classifiers). 
The feature vector patterns are formed as follows: 1) All time windows 
are determined when a given movement is active or inactive; 2) They 
were numbered, and from the sequence numbers, a given quantity is 
evenly extracted from both the active and the inactive phase; 3) A par-
ticular set of data is randomly selected with a deterministic randomness 
principle (Wang et al., 2007) from this finite (but uniformly sized across 
the different movement elements) data set for training; 4) The quality 
of the training is checked on another part of the known data set, un-
known to the training algorithm. 

2.3.5. Data filtering 
Three main parameters were used to configure the feature vector 

dataset: 

• count: the number of selected training samples associated with a 
movement, selected from the entire time series by uniform sampling 
from the duration of the given movement. We aimed to obtain 1000 
sample points (time window and feature vector) per movement 
form for the experiment. The 1000 sample points were determined 
empirically by considering the appropriate balance between sampling 
density and software runtime and ensuring that different movement 
Total duration 
(h:mm:ss) 

Mean duration 
(seconds) 

% of total length 

0:08:32 24.362 0.4 
0:09:30 28.511 0.4 
2:29:28 140.119 6.2 
0:04:17 12.834 0.2 
0:00:16 3.191 0 
0:28:11 24.155 1.2 
5:05:52 247.996 12.6 
0:03:32 11.152 0.1 
0:16:45 18.605 0.7 
0:21:56 26.325 0.9 
3:28:18 367.585 8.6 
0:46:35 139.773 1.9 
4:36:36 38.596 11.4 
0:30:52 5.101 1.3 
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forms are represented identically. The number of sample points varies 
due to the multi-label property of the classifiers as well as if TS (train 
size) and VS (validation size) parameters are used. This additional set-
ting used for training and prediction is the percentage of the anno-
tated data used for training (TS, train size) and the percentage used 
for validation (VS, validation size). We set this sharing to 50–50 % so 
there is no overlap between the training and validation datasets. 
This way, the generalization ability of the trained model on unknown 
data can also be tested in a supervised manner. 

• window: the size of the time window in seconds, from which the fea-
ture vectors are averaged for a given moment (the value used was be-
tween 2 and 10 s, and the feature vector belonging to a given moment 
was always determined from the data of the window-sized time inter-
val preceding it). 

• padding: the length of the time interval cut off from the beginning 
and end of each event of a movement. When used, only the part re-
maining within the cut-off range is sampled for training so that the 
harmful noise effect of the remaining 1–2 s of temporal synchronous 
uncertainty can be filtered out with the compromise of losing part of 
our input data. 

2.3.6. Evaluation of results 
To visualize the results, we used the following performance 

indicators: Recall (Ting, 2010a), Precision (Ting, 2010b), and F1-Score 
(Sammut and Webb, 2010c). The indicators were calculated using the 
Confusion Matrix (Ting, 2010c), which contains our annotated and pre-
dicted values (see Appendix 1). The graph visualization was made with 
R version  4.2.3  (R Core Team, 2023) with  library  ggplot2 (Wickham, 
2009). 

3. Results 

3.1. Setting adjustments to obtain the best results 

In addition to the different Padding parameters, the Window sizes 
were also tested in three different settings. The Padding values were 
set between 0 and 5 s, and the Window sizes were set to 2, 5, and 
10 s. The test was performed with data from both devices (halter and 
pedometer), using SVC and RandomForest classifiers, with Count = 
1000 parameter, i.e., 1000 support points, and with a 50–50 % of training 
and validating data, so 500 learning and 500 predicting points were 
needed for a successful test. The use of padding affects the number of 
support points due to the cuts. The available support points are shown 
in Table 3. 

The lying down movements (P = 4) and the standing up and lying 
down movements (P = 5), were underrepresented due to the relatively 
short duration of the two movement forms. The data show that the get-
ting up movement is slightly slower (the animal gains momentum and 
Table 3 
The number of support points available for the comparative experiment (target: minimum 
500; marked with red: insufficient sample points; P: Padding). 

Support points P=0 s P=1 s P=2 s P=3 s P=4 s P=5 s 
standing 2958 2842 2778 2698 2643 2573 

stepping 727 606 532 488 487 489 

getting up (max. P4) 492 512 516 492 469 266 

lying down (max. P3) 486 486 596 497 284 123 

lying 1871 1851 1806 1826 1875 1870 

eating 969 938 900 910 854 824 

drinking 511 510 515 514 518 510 

ruminating 906 922 912 907 881 852 

defecating-urinating 511 501 539 523 513 502 

playing-aggression 608 564 562 547 548 517 

licking 563 556 518 544 545 539 

rubbing 523 521 523 506 516 552 

head movement (0) 77 29 4 0 0 0 

sleeping 582 580 576 577 597 573 
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then gets up), but the lying down movement was done in a few seconds. 
As it turned out, the “head movement” (i.e., the right and left swinging 
and shaking head) occurred infrequently and for such a short period 
during the 24 h. Therefore, we renounced further use and recognition 
of this movement form in our present study. The deviations in the pos-
itive direction from the 500 support points are due to the multi-label 
property of the classifiers: where the animal performed several anno-
tated activities simultaneously. The system uses all the annotated 
movements for both training and prediction. This is why the standing 
and lying events have many more support points, since in addition to 
the getting up and lying down movements, the other movements of 
the bull also involve either standing or lying. While processing the 
tests, the movement forms were ranked according to the percentage re-
sults averaged from the achieved values. The results below are part of 
the multi-dimensional analysis, so the independent forms of movement 
are recognized parallel by the classificators. 

The tests performed with the SVC classifier (Fig. 8) showed that  the  
recognition with the weakest setting (P = 0; W = 2) still produces a re-
call value above 75 %. However, the correct recognition rate 
(i.e., precision) for the stepping was only 35.3 %, indicating a high incor-
rect prediction of stepping. The second most misrecognized movement 
is rubbing, with a recall value of 61.3 %. By changing the settings, the 
most powerful improvement can be seen in stepping movement, with 
a recall value of 97.8 % (P = 5; W = 10). 

The tests performed with the RandomForest classifier (Fig. 9) 
showed the worst results from the P = 0 and W = 2 settings, while 
the P = 5 and W = 10 values showed the best results. Thus, increasing 
P value and the W size improves the quality of training. However, if we 
consider that increasing the P value results in data loss (because the be-
ginning and end of the marked movement forms were cut off), we are 
not certain to use the P = 5 setting. Based on the results, the setting of 
W = 10 and P = 3 gives satisfactory results. All but 3 movement 
forms (stepping = 94.5 %; rubbing = 94.5 %; licking = 94.8 %) scored 
above 95 % with these settings. Increasing P values resulted in a small 
improvement in training and prediction accuracy. 

3.2. Comparison of SVC and RF classifiers 

The recognition values for the best settings (P = 3 and W = 10) 
showed that the RandomForest classifier recognizes all movement 
forms with a performance above 90 % with the selected setting 
(Figs. 10 & 11). For the SVC classifier, the precision scores were slightly 
below 90 % for the eating. They performed even worse at stepping, 
defecating-urinating, and rubbing movements, indicating a relatively 
high incorrect movement classification. Further increasing the P value 
in stepping, eating, and rubbing resulted in a precision score above 
90 %; however, even with the highest tested values (P = 5; W = 10), 
defecating-urinating rises only to 83.4 %. (precision values: stepping 
P = 4: 89.6 %, P = 5: 97.8 %; eating P = 4: 92 %, P = 5: 90.4 %; rubbing 
P = 4: 87.7 %, P = 5: 90.1 %). 

The different recognition success of the two classifiers (Fig. 12) 
showed that the SVC classifier produces a high recall value (weakest: 
eating, 94.9 %) and a low precision value (weakest: stepping, 79.9 %). 
This ratio is the opposite of the RandomForest classifier (weakest recall: 
eating, 91.5 %, weakest precision: stepping, 95.8 %). Based on these re-
sults, the SVC classifier is more permissive but misses more. On the 
other hand, RandomForest predicates a movement more restrainedly, 
but it does very precisely. Using the harmonic averages as a basis (F1 
Score), the RandomForest classifier performs better than the SVC. 

3.3. Comparison between both sensors to individual sensors with SVC and 
RF classifiers 

Based on our experience, the local cattle farmers purchase only one 
type of sensor for their animals. Based on this, we performed tests with 
the two sensors separately for the movements to be recognized and 



Fig. 8. F1 score, precision, and recall results of SVC classifier from the different Padding (P) and window (W) treatments in 14 complex movements. The treatment sequence shown was 
arranged based on the lowest to highest values. 

Fig. 9. F1 score, precision, and recall results of RandomForest classifier from the different Padding (P) and window (W) treatments in 14 complex movements. The treatment sequence 
shown was arranged based on the lowest to highest values. 
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Fig. 10. Precision and recall values of SVC classifier with the optimal settings (Padding = 3, Window = 10, Train size = Validation Size = 0.5). 
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then compared the results with those when we used the data from both 
sensors. This test was performed with settings of Padding = 3, Win-
dow = 10, and Training Size = Validating Size = 0.5 with SVC and 
RandomForest classifiers. 

The F1 Score values from the SVC classifier showed that the two sen-
sors performed close to or above 90 % in all cases (Fig. 13), with the low-
est being stepping at 88.3 %. The movements related to legs 
(i.e., standing, stepping, standing up, lying down, lying) were more 
Fig. 11. Precision and recall values of RandomForest classifier with the optimal 
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successfully determined from the pedometer data. However, the paral-
lel use of the halter data improved the recognition efficiency in all cases. 
More head-related movements (i.e., eating, drinking, ruminating, 
playing-aggression, licking) were determined more correctly from the 
data coming from the halter. However, the combined use of the two 
sensors also produced more accurate results in these forms of move-
ment. The halter performs slightly worse than the pedometer for leg-
related movements (e.g., standing up, pedometer: 98.3 %, halter: 
settings (Padding = 3, Window = 10, Train size = Validation Size = 0.5). 



Fig. 12. Recall and precision values of SVC and RandomForest classifiers for different forms of movement with settings Padding = 3; Window = 10 and Train size = Validation Size = 0.5 
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91.7 %). Meanwhile, pedometer performs much worse for head-related 
movements (e.g., drinking, halter: 97.4 %, pedometer: 61.1 %). 

Compared to SVC, RandomForest showed a more successful recogni-
tion of leg and head-related movements from the halter (Fig. 14). The 
combined use of the two sensors produces the best results in all cases, 
with all F1 Score of RandomForest values. Moreover, excluding the rec-
ognition of eating from the pedometer, RandomForest also recognizes 
over 90 % of all movement forms with separate sensors. Interestingly, 
it predicts the stepping more effectively with the halter than with the 
pedometer data. 

Based on these results, the RandomForest classifier is more effective 
at recognizing movement forms and generalizing better with data from 
one sensor or both. 
Fig. 13. F1 Score values of SVC classifier with different sensors: both sensors (BS), Noseband (N)
size = 0.5. Most movements were recognized better with Noseband than Pedometer. 
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4. Discussion 

The use of motion sensors in monitoring the health and welfare of 
livestock animals is increasingly advanced due to their accuracy. In 
this study's case of the typical domesticated farm animal, such as a 
bull, changes in their behaviour due to diseases, stress, or compromised 
welfare are often subtle. Monitoring their movement using a motion 
sensor enables the farmer to see these changes that simple observation 
might have missed. Enriching the number of movement forms, includ-
ing co-occurring ones in the motion sensors algorithm, will further in-
crease our understanding of the cattle's well-being and thus increase 
the system's accuracy. This particular information can interest motion 
sensor manufacturers as they develop their commercially available 
, and Pedometer (P) with settings Padding = 3; Window = 10 and Train size = Validation 



Fig. 14. F1 Score values of RandomForest classifier with different sensors: both sensors (BS), Noseband (N), and Pedometer (P) with settings Padding = 3; Window = 10 and Train size = 
Validation size = 0.5. Most movements were recognized better with Noseband than Pedometer. 

M. Biszkup, G. Vásárhelyi, N.N. Setiawan et al. Artificial Intelligence in Agriculture 14 (2024) 86–98 
sensors by incorporating more complex movements for a better and 
more accurate way of predicting the state of the cattle's welfare. For in-
stance, the increased frequency of movements “defecating/urinating”, 
“lying down”, or  “sleeping” might be an indication of compromised wel-
fare or disease. An increase in “playing/aggression” can be interpreted as 
the heat period in bull and would indicate an excellent timing to collect 
semen for artificial insemination. 

The results of this study showed that the method used to detect 
multi-dimensional, overlapping independent movements has success-
fully recognized 14 different complex movements. The procedure used 
(Gerencsér et al., 2013) worked well to define the feature vector. How-
ever, we did find a limitation of this method: we can only measure 
forms of movement with a duration above 8–10 s and occurring repeat-
edly. Therefore, short-duration movements such as coughing and head 
movements were excluded. A high level of accuracy in time synchroni-
zation between video recordings and sensor data is essential for moni-
toring and data processing. Despite all the effort put into achieving the 
best synchronization, training was positively affected by cutting 3 s 
from the beginning and end of the marked scenes and increasing the 
size of the samples to be processed (10 s). Short-duration movement, 
such as coughing, might be more appropriate to be identified using 
sound pattern recognition (Ferrari et al., 2010). 

When comparing between classifiers, the result depends on the na-
ture and quality of the data. The result of this study showed a better ac-
curacy of the RandomForest classifier over SVC. Indeed, a recent study 
(Watanabe et al., 2021) also showed that the RandomForest classifier 
performs better than the SVC when using accelerometer data. 

The RumiWatch devices and the method described can detect more 
complex movement patterns, including parallel movement, with a de-
tection rate of over 90 % compared to commercially available sensors 
today. RumiWatch's own classification detects only one form of move-
ment in the given moment. It recognizes forms of movement linked to 
the head from the halter, while a pedometer detects foot-related move-
ments. In our experiment, however, all forms of movement were tested 
individually on both sensors and using the sensors together. Indeed, the 
results confirmed that, when testing the individual sensors, head-
related movements were more accurately detected by the halter and 
foot-related movements by the pedometer. Using the two sensors effec-
tively detected all movement patterns, as more data allowed more 
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accurate predictions. Indeed, a study in sheep mounted with a jaw, 
neck, and leg inertial measurement unit device (Jin et al., 2024) showed  
higher accuracy in classifying six behaviour when data from two sensors 
(jaw and leg) combined. When using one device, the halter alone pro-
duced better results than the pedometer when considering all forms 
of movement. A possible explanation is that the animal's head conveys 
movements with the legs more strongly than its legs do with the head 
(e.g., when it stands up, its head also moves, but when it lies and rumi-
nates,  its legs rest).  

Furthermore, the accelerometer in the halter is complemented by a 
pressure sensor, so more data are available to generate the feature vec-
tor. Considering that the most crucial indicator of cattle health is rumi-
nating (in case of a health problem, the time spent ruminating time 
drops very quickly), using a neck or ear transponder is recommended 
for practical use. A pedometer is better at detecting changes in the fre-
quency of leg movement or locomotion, such as lameness. Accordingly, 
the combined use of both sensors extends the range of movements that 
can be detected and, thus, the recognition of diseases. 

4.1. Future plans 

As mentioned, this study aims to test the novel method of recogniz-
ing complex and multi-dimensional movements. Therefore, the next 
step would be conducting studies to validate the results using more 
comprehensive datasets, e.g., more replication to capture individual var-
iability, different classifiers, and different animal or dairy cow subjects. 

Additional classifiers can be implemented in the processing software 
to continue the analysis using other algorithms, e.g., Naive Bayes and Lo-
gistic Regression. As a continuation of the experiment, it is worth exam-
ining the feature vectors of the classifiers using ROC analysis (Fawcett, 
2006). This method can recognize which sensor, which value, and 
which of its derived data can recognize the best movement form. 
When data quality is sufficient, it may be possible to recognize the 
movement from a single or only a few feature vector components. 

The success of movement forms recognition can also be tested on 
different animals - as individuals have different behaviours and reac-
tions to environmental effects. We can do this with animals of different 
ages and sexes as well. For instance, examining the cow's behaviour 
around estrus or calving is vital, especially in farms with conventional 
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reproduction (with bulls) or low-input production farms without 
hormone synchronization, where accurate calving and fertilization 
prediction are challenging (Fadul et al., 2017; Minegishi et al., 
2019). If the classifiers find similar behavioural patterns, such as 
rumination and resting before calving or estrus, it would be possi-
ble to predict it. 

Further ethological studies can also provide information on animal 
welfare and health status from physiological movements. Health status 
is closely related to the animal's productive capacity and animal welfare, 
where healthier animals will produce better. Previous studies showed 
promising results in detecting behavioural changes in young bulls in-
fected with parasite Ostertagia ostertagi (Szyszka et al., 2013), young 
calves suffering from neonatal calf diarrhea (Lowe et al., 2019), cattle in-
fected with bovine respiratory diseases (Wottlin et al., 2021), and dairy 
cattle faced with health and welfare issues (Cerqueira et al., 2017). 
However, a better algorithm with richer movement types can improve 
the results by detecting subtle behavioural changes, allowing early de-
tection before clinical symptoms appear. 

Using non-invasive sensors on animals can help to get the most ac-
curate picture of the animal's current condition. This will allow unfavor-
able changes to be detected at a stage when they can still be successfully 
corrected. At the same time, the beneficial effects of the interventions 
can be seen, which can then spread throughout the herd. 

5. Conclusions 

Our results show that the tested method can effectively identify 
complex and multi-dimensional movement forms that are important 
for animal health and welfare. Filtering the noise and using two combi-
nations of sensors increase the accuracy. The system can be extended to 
recognize additional movement forms, which will help to get an even 
more accurate picture of animal behaviours. 
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Appendix A. Appendix 1 

The Confusion Matrix is used in machine learning and within super-
vised learning to visualize the results (Fig. 7). The top row contains the 
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yes scores we annotated, the bottom row contains the no scores, the left 
column contains the no scores predicted by the classifier, and the right 
column contains the yes scores. The squares contain the following 
values for the given movement form: 

• False negatives: a marked movement but not recognized by the 
classifier 

• True positives: a marked movement and recognized by the classifier 
• True negatives: an unmarked movement and correctly identified as 
not occurring by the classifier 

• False positives: an unmarked movement and falsely identified as 
occurring by the classifier 
Structure of the Confusion Matrix. 
Recall is the percentage of the two upper horizontal numbers; how 

much of the total number of movements that actually happened was 
recognized by the classifier: 

Recall 
True positives 

True positives False negatives 

Precision is the percentage of the two vertical numbers on the right; 
how much of the movements that have happened are recognized cor-
rectly: 

Precision 
True positives 

True positives False positives 

F1-Score is the harmonic mean of recall and precision: 

F1 
2∗Recall∗Precision 
Recall Precision 
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