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Abstract. We have developed an experimental setup of very simple self-
propelled robots to observe collective motion emerging as a result of inelastic
collisions only. A circular pool and commercial RC boats were the basis of our first
setup, where we demonstrated that jamming, clustering, disordered and ordered
motion are all present in such a simple experiment and showed that the noise
level has a fundamental role in the generation of collective dynamics. Critical
noise ranges and the transition characteristics between the different collective
patterns were also examined. In our second experiment we used a real-time
tracking system and a few steerable model boats to introduce intelligent leaders
into the flock. We demonstrated that even a very small portion of guiding
members can determine group direction and enhance ordering through inelastic
collisions. We also showed that noise can facilitate and speed up ordering with
leaders. Our work was extended with an agent-based simulation model, too,
and close similarity between real and simulation results was observed. The
simulation results show clear statistical evidence of three states and negative
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correlation between density and ordered motion due to the onset of jamming.
Our experiments confirm the different theoretical studies and simulation results
in the literature on the subject of collision-based, noise-dependent and leader-
driven self-propelled particle systems.

Keywords: phase transitions into absorbing states (experiment), self-organized
criticality (experiment), stochastic particle dynamics (theory), stationary states
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1. Introduction

Collective motion is one of the most spectacular phenomena in nature and appears
universally in many lifeforms regardless of their level of intelligence or taxonomical
classification [1]. Herds of cows, flocks of birds [2], schools of fish [3], swarms of locusts [4]
or migrating patterns of bacteria or cells [5] all fascinate biologists, physicists and non-
scientists, too. Being such a widespread phenomenon, it has been hypothesized that the
underlying principles that generate these complex non-equilibrium ordered states are quite
simple and non-specific. To prove this, several theoretical models have been constructed
successfully over the past two decades to describe different aspects of ordering, but very
few experiments have been able to verify these results so far. In this paper we try to fill
this gap with a very simple experimental setup using a circular pool containing dozens of
radio-controlled boats. We demonstrate that inelastic collisions with the proper boundary
conditions are sufficient to generate long-term order and that a few individuals with a fixed
orientation preference can lead a whole group of particles through these collisions alone.

1.1. Theoretical models of flocking

The first successful statistical physics type model describing flocking behaviour was
proposed by Vicsek et al [6]. This model consisted of self-propelled particles (SPP)
with constant speed and variable direction, obeying nearest-neighbour-averaging rules
with added random noise in the angle updates. It was found in the simulations of this
model (which we shall refer to, following Huepe and Aldana [7], as the SVM) that the
boundary conditions and the noise level have a fundamental role in establishing long-
term order. The model became the general basis of many other extended theoretical
works on collective motion. A number of papers have been published concerning the still
ongoing debate about the order of the phase transition in the SVM model. Grégoire
and Chaté [8] introduced the so-called vectorial noise model and demonstrated that its
ordering phase transition appears to be a sudden, first-order type. Aldana et al [9, 10]
also investigated the order of the phase transition and concluded that it depends on the
intrinsic or extrinsic character of the noise in the velocity updates. Grégoire et al [11]
added adhesion to the model to force ordering in open boundary conditions. Chaté et
al [12] examined a bipolar version of the original model and observed very large density
fluctuations in their simulations.

The above mentioned and many other versions of the SVM all add complexity
to the original model to gain more insight into the details of the collective states.
In contrast, Grossman et al [13] made attempts to simplify the original concept and
changed the neighbour-averaging velocity alignment ability of the particles to the passive
communication mechanism of inelastic collisions. Quite surprisingly, they also found large-
scale vortices and coherent group migration in their simulation model.

1.2. Artificial flocking experiments with inherently self-propelled units

Flocking is principally a natural phenomenon that is based on the local communication
of living individuals, therefore human-coordinated experiments with finely tunable
parameters are quite rare.
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The most general approach for creating such a setup with many identical non-living
particles involves apolar or polar particles moving quasi-ballistically on a vibrated stage
and possibly aligning themselves through collisions. Blair et al [14] vibrated granular
rods and observed vortex patterns in a circular pool. They could also generate net motion
of the apolar rods in an annular pool due to the boundary conditions. Narayan et al
[15] used elongated apolar particles that ordered themselves in an active nematic liquid
crystalline phase, showing long-lived large number fluctuations, but the apolar mode in
the circular pool could not give rise to true net collective motion. Kudrolli et al [16] shook
polar granular rods but the most significant collective behaviour they observed was the
ordered jamming phase. Recently, Deseigne et al [17] used vibrated discs with built-in
polar weight asymmetry and were able to observe large-scale collective motion and large
number fluctuations for short periods of time. They could even adjust the amplitude of
the vibration and thus the persistence length of the particles (i.e. the noise level) to some
extent, but only in the critical region between the ordered and disordered state and not
deep in the ordered phase. They used very special boundary conditions that do not seem
to support long-term collective motion in a bounded region.

Another widely used approach for creating an artificial flock involves intelligent robots
that sense their environment, typically through proximity sensors, and communicate with
each other wirelessly. Swarms of up to 100 self-organized units have been reached so
far in 2D [18] and there are already a limited number of approaches for 3D flocks as
well [19, 20]. However, in these systems alignment and flocking is the consequence of
intelligent behaviour, not passive dynamics.

In our non-living flocking experiments we manoeuvre between the two above
mentioned approaches. On one hand, we use simple radio-controlled swimming robots that
are truly self-propelled, on the other hand they have no intelligence at all for swarming.
Self-organizing in our case is the outcome of inelastic collisions in the annular swimming
pool, as in the rod-shaking experiments. However, one of the advantages of our method
over the non-robotic approaches is that we can easily tune the noise level of the system over
a wide range. Furthermore, our system can be extended easily with intelligent individuals
that guide the flock.

1.3. The role of leaders in group behaviour

The role of leaders in collective decision making has become a hot topic recently, based
on widespread quantitative observations of group behaviour in biological systems (see
e.g. [21] or [22]). To date, simple statistical physics models and active control experiments
involving living and non-living units have also appeared. Couzin et al [23] proposed
a good general leadership model and showed that a minority of informed individuals
in a group can affect the behaviour of the whole group, and that for larger groups,
a smaller proportion of informed individuals is enough to guide the flock. Nagy et al
[24] investigated homing pigeon flocks and found a sophisticated leadership system: a
well-defined multi-level structure in which all individuals change their direction following
the ones immediately above them in the hierarchy. Freeman and Biro [25] also found a
complex group structure among homing pigeons, however, they also demonstrated that
simple interactions are sufficient for group navigation. Yates et al [4] observed locusts
in a ringed-shaped arena—similar in shape to the pool of our experiments—and found
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that they increase the randomness of their movements for a short period of time when
changing flock direction. Although there are most probably no leaders among locusts, it
might be useful for leaders of other flocks to know that collective decision making (in the
sense of turning an ordered flock into a new direction) is possibly most efficient at the
critical noise level.

There have also been some successful attempts to control an animal group through
artificial individuals. Sumpter et al [3] used guided fish replicas and came to the conclusion
that fish can make accurate decisions without the need for complicated comparison of the
information they possess. They showed that fish need no hierarchy but simply a large
group size to make good decisions. As group size increases, the many simple individual
decisions result in a higher accuracy consensus of e.g. a new direction to turn into.
Vaughan et al [26] used a robotic sheepdog to guide ducks successfully to a predefined
point with real-time observation of the flock position and active control of the artificial
duck. Correll et al [27] electrically shocked selected cows in a herd to make them move
towards the herd centre, because of the induced stress, thereby moving the whole group
towards a predefined position. Halloy et al [28] successfully manipulated the shelter-
selection behaviour of cockroaches through socially integrated robot-cockroaches.

Guiding a robotic flock with informed individuals is a very recent issue, mostly because
robotic flocks themselves are also very rare. Most experiments dealing with swarming
robots use some kind of self-organizing intelligence to keep individuals together [29]–[32].
However, this method also works against the goal of a possible leader whose task is to
‘convince’ the others of its own decision. To our knowledge the only truly successful
attempt to guide a robotic flock through informed individuals is provided by Celikkanat
and Sahin [33].

Without the intention to provide a general control scheme for leader-driven robot
swarms, we show that even the simplest collision-based information exchange in such
a system can lead to a proper collective decision-making mechanism under specific
conditions. In our experiments we make use of the simplest possible leadership model,
consisting of simple self-propelled particles and a few leaders with well-defined directional
preferences. We show experimentally that this simple setup is sufficient to form a guided
flock. We also investigate the role of noise level in the efficiency of guiding.

2. Experimental setup

The experimental setup consists of up to 30 commercial radio-controlled boats, a plastic
pool, an industrial camera, recording and tracking software and a PC that runs the
software and controls the boats (figure 1(a)). For the experiments with actively driven
leader boats the setup has been complemented by closed-loop real-time tracking, which is
used to drive these boats (figure 1(b)).

2.1. Units—the boats

Silverlit RC Hovercraft type commercial boats were used in our experiments (figure 2(a)).
These simple, slow and small devices are capable of doing three things: (a) going forwards
(fw phase); (b) going backwards and turning in a random direction (bw phase) due to the
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Figure 1. Schematic view of the experimental setup: (a) main experiment with
passively controlled boats; (b) enhanced setup including leader boats with real-
time closed-loop drive.

Figure 2. The simple robotic units. (a) The commercial boats used in the
experiments were modified: superfluous parts removed, rudder fixed, painted
black, retroreflective stripe attached; (b) custom-made steerable leader boats
with similar properties to the normal boats, but with coloured unique barcode
IDs on top.

rudder now being in the front and making manoeuvring unstable; (c) just floating without
a propelling force (nop phase). In the experiments we used a sequence of fw–nop–bw–nop
phases to avoid a too high speed of fw-only mode and to be able to introduce random
noise into the dynamics through the bw phase. This way, the noise level could be adjusted
precisely with the length of the bw phase.

It is important to emphasize that the boats had no local control; they were completely
passive, individual units, ‘communicating’ with each other only through collisions.

To aid the tracking algorithm with enhanced contrast, the boats were painted black
and a retroreflective elongated white marker was placed at their centres. Since the boats
had only one propeller, the rudders also had to be adjusted to compensate for the torque
effect and force the boats to go straight. The boats were powered with two AA type
batteries, which were recharged after every 40 min of experiments to eliminate slower
speed runs due to the otherwise possible low battery state.
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2.2. Boundary condition—the pool

Computer simulations of collective motion usually apply open space or periodic boundary
conditions to provide enough time and space for the particles to become ordered. However,
in real experiments only strongly bounded regions can be inspected practically, where long-
term order is usually harder to achieve, partly due to the lack of time in open space to
become ordered and partly because—as a consequence of the boundary—ordered moving
states are overtaken by jamming. Deseigne et al [17] used a flower-like 2D space to
deflect particles hitting the outer bound back into the open space. This boundary shape
prevents the onset of jamming, but gives no chance for long-term ordered motion. In our
experiments we used an annular space to provide a partly jamming-free periodic bound in
two dimensions, resulting in a quasi-one-dimensional setup with a much narrower radial
space than circumferential space.

It is interesting to note that, in quasi-one-dimensional non-equilibrium systems,
jamming is usually a consequence of particles moving in a narrow space with opposite
directions [34], however, in our system this rarely happens, because (a) the width of the
annulus is much greater than the size of the units; (b) the units are floating without
friction, therefore, zero-impulse jamming clusters in free space are not stable. In our
experiments, jamming is always present at the outer wall and it is fundamentally caused
by the stable driving forces perpendicular to the outer wall. So contrary to the previous
case, jamming in our system can be suppressed by changing the pool’s shape from circular
to annular, thereby reducing motion in the radial direction.

In our setup a simple circular swimming pool served as the outer bound for the
boats and a smaller, circular obstacle was placed in the middle to give the inner bound.
The resulting total space was 500 times the area occupied by a single particle, with a
width–length ratio of around 1:10.

2.3. Coordinate system

Since we use a circular pool, the position of the boats is always described in terms of polar
coordinates fixed to the centre of the pool. To define the orientations of the particles,
local-angle polar (LAP) coordinates are used, with the angle between the local radial
direction and the orientation of the boat in the (−π, π] range. The schematic view of the
pool with the boats and the definition of the coordinate system can be seen in figure 3.

2.4. Camera

A Basler scA1300-32gc gigE type industrial camera was placed above the centre of the
pool with a LED-line around it to illuminate the retroreflective markers on the boats.
The 800×800 pixel images resulted in 2.5 mm/pixel resolution. The image of the camera
was calibrated with a point grid to compensate for the barrel-distortion of the lens and to
give real-space coordinates for each pixel. Images were captured at 10 frame s−1 (FPS).

2.5. PC with tracking software and boat control

SwisTrack [35], an open-source multi-target tracking software was used to determine time,
position and orientation information for each boat in each video frame. Video and particle
data were saved and analysed offline.
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Figure 3. Schematic view of the pool with the boats. The local-angle polar (LAP)
coordinate system defines the representation of the positions and orientations of
the particles: r is defined as the distance from the centre of the pool, ϕ is the
angle between the local radial direction and the orientation of the boat.

The phase control of the boats was computer driven with a fixed repeated sequence in
each experiment. The control signal was sent through a parallel port and relays connected
to the common radio controller of all boats. The actual phase control information was
also saved along with each video frame to aid later analysis.

Each measurement was conducted with a constant control sequence starting from
a random initial arrangement of the boats. Measurement during varied between 8 and
16 min.

2.6. Extended setup with leader boats

In the experiments with leaders, up to four ‘intelligent’ boats were controlled individually
to align their orientation in each frame to a predefined angle (tangential clockwise
(CW) or counter-clockwise (CCW) orientation in the pool). Thus we could determine
experimentally whether a few individuals with determined orientation could (1) define
the direction of the others by driving them into a collective state; (2) increase the order
compared to non-leader-driven experiments.

The leader boats were constructed from commercial modelling components and were
designed to have similar weight, size, shape, speed and power as the normal boats. They
were separately controlled through an 8-channel analogue radio controller (Robbe-Futaba
FC-15) that was connected to the PC’s parallel port. All leader boats had an individual
steering signal and a common adjustable speed signal that was switched on in a time-
synchronized manner with the fw phase of the control signal of the normal boats.

Individual ID recognition was performed with a custom component for SwisTrack
and unique coloured barcodes painted on the leader boats (figure 2(b)). The steering
program’s driving function mapping the measured actual orientation of the boats to the
controlled orientation of the servo-rudder was linear, with a constant cut-off above 30◦ of
misalignment. This steering algorithm resulted in a smooth circular motion in open space
with high stability to perturbations and great manoeuvrability in jamming situations.
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Table 1. Experiment parameters.

Parameter Value Unit

Outer diameter of the annular
pool

180 cm

Inner diameter of the annular
pool

97 cm

Size of boats 10 × 15 cm
Total space 500 boats
Total number of boats
(including leaders) (n)

27 boats

Number of leader boats (k) 0–4 boats
RC control phase sequence
[fw nop bw nop]a

[2 1 x 1], where x ∈ [0.4, 2.8] s

Open space speed of boats in fw
phase

15 ± 5 cm s−1

Open space angular velocity of
boats in bw phase

±1 ± 0.2 rad s−1

Image size 800 × 800 pixel
Image resolution 2.5 mm/pixel
Recording frame rate 10 FPS
Measured individual parameters
in each frame

Position, orientation

Measured common parameters
in each frame

Time, control signal, video frame

Length of normal measurements 8–16 min
Length of leader measurements 1 × 8 (CW or CCW) 4 × 4

(CCW–CW–CCW–CW)
min

a noise level in the experiments is controlled through the length of the rotational bw
phase.

The leader experiments were either simple 8 min runs (CW or CCW) or a continuous
flow of four shorter 4 min runs (CCW–CW–CCW–CW), with CW and CCW denoting
the fixed preset orientation of the leader boats.

Parameters of the experimental setup are summarized in table 1.

3. Methods of analysis

Besides the detailed visual observation of the videos of the experiments we analysed the
raw data of positions, orientations, control signals and timestamps statistically, offline.
We derived two main types of results from the measurement data:

(1) averaged order parameters in every frame from the positions and orientations of the
boats to analyse the collective patterns and the transitions between them in time,

(2) probability distribution function (PDF) of the order parameters between measure-
ments of different noise levels to analyse data in the noise space.
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3.1. Data pre-processing

The object tracking algorithm had a 99.7% average recognition rate, so as a first step,
missing single data points had to be filled using linear interpolation from neighbouring
frames. After this, velocities were calculated from time, position and orientation data.
The detected [0, π] orientation of the apolar stripes also had to be projected into (−π, π]
using calculated velocities and the global assumption that in the fw phase the boats
mostly go forwards. Finally, a transformation from Cartesian to LAP coordinates had
to be applied to be able to compare individual orientations and velocities in the annular
space. From now on, unless specified, we refer to LAP coordinates.

3.2. Order parameters

Using averaged boat orientations and velocities, several order parameters were calculated
for every frame. The magnitude of the average orientation vector Ψo(t) (1) and the
orientation correlation Co(t) (2) are both normalized, continuous order parameters, with
a value of 0 indicating total disorder and 1 indicating full order:

Ψo(t) =
1

N

∣
∣
∣
∣
∣

N∑

i=1

oi(t)

∣
∣
∣
∣
∣
, (1)

Co(t) =
2

N(N − 1)

N∑

i,j=1
i�=j

(oi(t) · oj(t)), (2)

where N is the number of boats and oi(t) is the unit-length orientation vector of the ith
boat.

When the orientations of the boats are correlated, the angle of the average orientation
vector

ϕo(t) = arg

(

1

N

N∑

i=1

oi(t)

)

(3)

determines whether the ordered state (figure 4) is jammed towards the outer boundary
of the pool (ϕo = 0) or the boats are moving in flocks in the CW (ϕo = π/2) or CCW
(ϕo = −π/2) directions.

Orientation-based order parameters are not very sensitive to the changes between the
fw–nop–bw–nop phases in the control sequence, but the bw phase always decreases the
level of order slightly, thereby making the order parameters in time jagged (which also
shows that the bw phase can be used as adjustable random noise). Nevertheless, alone
they give no information about the dynamics of the collective states, therefore velocity-
based order parameters were also calculated the same way as the orientation-based ones.
The magnitude of the average velocity Ψv(t) (4) and the velocity correlation Cv (5) are
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Figure 4. Snapshots of the camera above the pool with the arrows attached to the
automatically tracked particles (pointing forwards). The following patterns could
be observed in the experiments: (a) jamming; (b) clustering (as an instantaneous
phenomenon); (c) ordered collective motion in the CW or CCW direction;
(d) disordered motion.

unnormalized order parameters:

Ψv(t) =
1

N

∣
∣
∣
∣
∣

N∑

i=1

vi(t)

∣
∣
∣
∣
∣
, (4)

Cv(t) =
2

N(N − 1)

N∑

i,j=1
i�=j

(vi(t) · vj(t)), (5)

where vi(t) is the velocity of the ith boat. The value of Ψv(t) and Cv(t) depends strongly
on the fw–nop–bw–nop changes, since in the bw phase the velocities are much smaller,
the boats go backwards slowly and rotate. Therefore, these order parameters have large
amplitude undulations with the fundamental frequency of the control sequence. Local
large velocity correlations, however, always indicate a collectively moving state, but
ordered jamming cannot be detected well with these parameters, since in the jammed
state the velocities are small and only the orientations are correlated.

Finally, the angle of the average velocity ϕv(t) (6) is defined analogously to ϕo(t):

ϕv(t) = arg

(

1

N

N∑

i=1

vi(t)

)

. (6)

4. Experimental results

From the statistics of approximately 50 measurements with 27 boats and all together 12
hours of active group motion we could clearly identify all previously simulated states of
collective motion and could observe many details regarding the transitions between them.
In the statistical analysis we used data only from the second half of the fw control phase
and the first half of the consecutive nop phase. This was the range where the boats moved
more or less ballistically due to propelling forces and inertia.
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Table 2. Characteristics of observed collective patterns.

Name of
pattern/state

Typical
noise level Regularity Stability

Jamming Low Sometimes; more at very
low-noise level

Stable

Clustering Middle Rare, only momentarily during
transitions between more stable
states

Very unstable

Ordered motion Low–middle Regular Low noise: stable;
high noise: unstable

Disordered motion High Regular High noise: stable;
low noise: unstable

4.1. Observed patterns of collective motion

The different states of collective motion that could be observed during our experiments
are illustrated in figure 4.

The main characteristics of the observed states are summarized in table 2.

4.2. State transitions in time

During the experiments we observed transitions between the jamming–ordered, jamming–
disordered and ordered–disordered states4. In general, velocity-based order parameters
have more abrupt changes during state transitions; they can change their value between
extremes during one single control phase cycle (a few seconds). The orientation-based
order parameters change more slowly but they signal the forthcoming state transitions
earlier. This is in correspondence with the visual observations that e.g. a jammed flock
can be ordered next to the boundary without notable translational motion, then very
suddenly switch state into a coherent moving flock. Order parameters of a typical case at
mid-noise level (bw = 1.4 s) can be seen in figure 5.

The results of another typical experiment at higher noise level (bw = 1.9 s) can be
seen in figure 6. Here correlations are much lower, averaged vector angles tending to have
greater noise and ordered states being less stable, and they exist for only short periods
of time. However, this is the critical noise range where the direction of even a coherent
moving flock can change (e.g. from CW to CCW around 8.5 min in figure 6). Changes in
the order parameters in this range are more sudden.

Using 24 normal boats and only three leader boats that change direction every 4 min
between CW and CCW fixed orientations, we can force the whole flock to order in the
direction of the leaders in every 4 min interval with high efficiency. The order parameters
(of only the normal boats) of such an experiment can be seen in figure 7.

The average time needed to achieve order from random initial conditions was
measured in 8 min experiments, either without leader boats or with three leader boats with
a common CW or CCW direction. We defined the ordered state when the orientations

4 These transitions are almost certainly the analogues of the phase transitions of similar non-equilibrium systems
of very high particle number, but with this number of experimental boats we can only call them state transitions.
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Figure 5. Order parameters during an experiment at bw = 1.4 s noise level
(midrange). Starting from random initial conditions the first coherent jamming
state (ϕo ≈ 0) peaks at 2.5 min, and then becomes a stable and smooth, long-term
CCW motion (ϕo ≈ −π/2) with high correlation5 from 5 min. Velocity-based
Ψv has an abrupt change at 5 min, while orientation-based Ψo changes more
smoothly.

Figure 6. Order parameters during an experiment at bw = 1.9 s noise level
(mid–high range). Starting from random initial conditions there is a tendency of
CW motion but without too much coherence. After some small correlation peaks
the whole flock changes direction to CCW around 8.5 min. Long-term correlated
motion cannot be observed at high-noise levels.

were highly correlated around the ±π/2 angle (CW or CCW) with the following conditions
for the order parameters of the normal boats:

2

T

∫ T

T/2

Ψo(t) dt > 0.8 Ψo(τ) > 0.8
∣
∣
∣|ϕo(τ)| − π

2

∣
∣
∣ <

π

20
, (7)

where T is the total time of the experiment, τ ∈ [0, T ] is the time of ordering.

5 Since the shapes of the correlation curves (Cv and Co) usually closely resemble the shapes of the average vector
magnitude curves (Ψv and Ψo), we shall refer to ‘high/low correlation’ in connection with the high/low range
values of both types of order parameters in order to simplify notation.
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Figure 7. Order parameters of the normal boats during an experiment at
bw = 1.8 s noise level (mid–high range) with three leader boats. The fixed
direction of the leaders is indicated in the middle of the graphs. The ordering
into the same direction as the leaders can be seen clearly from the angle graphs
in all four parts of the experiment. The correlation values are generally higher
than in the normal experiments with the same noise.

The results are depicted in figure 8. The transition time has a large standard deviation
but has a definite tendency to decrease with increasing noise level. On the other hand, the
coherence of the flock obviously decreases with increasing noise, similarly to the normal-
boat experiments.

4.3. State transitions in the noise space

Plotting the measured PDF of the order parameter values in all the experiments in a
common graph as a function of noise level, we can observe interesting state transitions in
the noise space as well. Figures 9–11 show the most interesting order parameter PDFs
from normal experiments, compared with CW-and CCW-guided leader experiments with
three leaders.

4.4. Changing the number of leaders

The behaviour of the normal boats in the critical noise level (bw = 1.8 s) was measured
in more detail as a function of the ratio of leader boats. Although the number of leader
boats in the experiments was limited to four due to the complexity of these units, even
this amount proved to be sufficient to demonstrate their effect on the collective state of
the group. The same 8 min experiments were conducted with 0–4 leaders (with CCW
direction preference) to demonstrate that increasing the number of leaders increases the
overall order as well. Results can be seen in figure 12.

4.5. Error sources

The most significant source of error in the experiments was the slightly biased CCW
tendency of the normal boats, which could not be eliminated and thus affected all results.
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Figure 8. The time needed for disorder → order transitions. Each circle is one
8 min experiment with three leader and 24 normal boats (left) and 27 normal
boats with no leaders (right). Colour indicates the average orientation correlation
after ordering. Slope and intercept parameters are shown for a linear fit. F -test
values of the linear fit (calculated with Origin R©, with the null hypothesis that
the data cannot be linearly predicted): Fleft = 7.24, pleft = 0.01; Fright = 12.97,
pright = 0.003. The transition time has a high standard deviation but significantly
decreases with increasing noise level in the range where flocking can be observed
(negative slope of the fitted lines with low p-values in the F-tests). Leaders extend
the noise range where ordering is present and in general slightly reduce the time
needed for ordering.

Nevertheless, the aligning tendency due to this biased individual motion could be overcome
by the collision-based group behaviour, especially in the critical (mid) noise region between
the ordered and disordered states. In that region the leader boats significantly increased
coherence of the flock when the leaders were guided in the biased direction and decreased
it or changed the flock direction guided in the opposite one.

Another source of error is the state of the battery, which affects the speed of the
normal boats and also the level of bias in their motion, but this could be minimized by
changing the batteries frequently.

An additional unwanted noise in the system comes from the liquid medium in which
the boats move. The waves generated by the boats do not affect the motion much and
they can be treated as an additional white noise in the orientation and position ‘updates’
of the boats (the amount of which also varies with bw). One interesting issue is the net
current in the circular pool, which can significantly decrease the velocity of the boats in
the pool-fixed reference frame when the whole flock is moving in one direction and thus
pushing the water in the opposite one. The speed of this current can reach 3–5 cm s−1

even with our boats of very low speed (10–15 cm s−1). Besides modifying the dynamics
of the boats to some extent and serving as another error source due to the possibly non-
constant velocity profile, the main drawback of this effect is that it reduces the calculated
velocity correlations in the ordered state, thereby decreasing the signal-to-noise ratio of
our results.
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Figure 9. PDFs of the orientation vector angles6 (columns) as a function of noise
(horizontal axis). Left: all normal experiments; middle: all CCW-guided three-
leader experiments; right: all CW-guided three-leader experiments. High-noise
level (bw > 2 s) shows disorder on all graphs (close to uniform distribution). Mid-
noise level shows a tendency to order, but only CW in the CW-guided experiments
(ϕv ≈ π/2), CCW in the CCW-guided experiments (ϕv ≈ −π/2) and both
directions in the normal experiments (with symmetric peak probabilities of the
orientation angle distribution at π/2 and −π/2). Note that the leaders increase
the critical noise level between the ordered and disordered states from around 1.4 s
to around 2.0 s. Jamming is present occasionally at low-noise level, appearing as
a small peak at 0 angle, mainly in the non-leader-driven experiments.

5. Numerical study of state transitions

The experimental setup is very limited in terms of flock size and the length of the
experiment. To study the effect of flock density and to get a clearer picture of state
transitions, an idealized individual-based computational model of the robotic flock was
developed. In general, collision-based collective dynamics is strongly influenced by
the microscopic rules of the model used, which can be diverse in different approaches
(cf [15, 36, 37], also, [38, 13]). Hereby we used a fairly accurate, but in turn computationally
intensive model inspired by [39]. The boats were modelled as self-propelled rigid planar
objects (figure 13) moving within an annular-shaped area mimicking the pool of the
experimental setup. Contact interactions were assumed to be frictionless and perfectly
inelastic, which appears to be a reasonable approximation of the experimental setup. For
each parameter value, one run of length equivalent of 60 min of experiment was conducted.

5.1. The dynamics of individual boats

The configuration of boat i is represented by the planar position vector xi of its centroid
and an orientation angle αi in a global coordinate system. In the absence of contact with
other objects and the boundaries of the region, each boat’s position is assumed to evolve
according to two differential equations. The first equation

ẍi = c0 (v0u (αi) − ẋi) (8)

6 Since multiple peak probabilities can be present at the same noise level, instead of the order parameter ϕv we
plotted the full angle probability distribution, which gives a smoother result and shows more details.
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Figure 10. Average and standard deviation of Ψo (vertical axis) as a function
of noise (horizontal axis). Each constant noise 8 min measurement is plotted
separately as one point. Left: all normal experiments; middle: all CCW-guided
three-leader experiments; right: all CW-guided three-leader experiments. All
graphs show a nice transition between the low-noise ordered state (Ψo ≈ 1) and
a high-noise disordered state (Ψo < 0.3). In general, the guiding leaders greatly
increase coherence in the group in the mid-noise range. At critical noise level all
graphs show bistability (in the sense that during the 8 min experiments sometimes
the order, sometimes the disorder is dominant), which is most significant in the
no-leader experiments. The order of the disorder–order transition could not be
determined from these experiments and this number of boats. The presence of
the occasional jamming state on the low-noise part of the graphs decreases Ψo

and increases its standard deviation in some measurements.

governs the acceleration of the centroid. Dot means differentiation with respect to time;
u(αi) stands for a unit vector of orientation α, i.e. u(αi) = [cos αi sin αi]

T, where T is
transpose. v0 is the preferred velocity of the boat, which depends on the actual phase
(fw, nop or bw). c0 is a damping coefficient determining the rate of convergence to the
preferred velocity. The right-hand side of equation (8) can be interpreted as the sum of a
propulsive force and linear drag.

The second equation

α̈i = −c1α̇i3 +
(

c2si − c3u
T(αi)ẋi

)

α̇i + c4η (9)

incorporates variations of the angular velocity due to drag forces on the rudder and the
body of the boat. c1, c2 and c3 are positive parameters, and η is Gaussian white noise with
unit variance. The intelligent boats are actively controlled to achieve a (time-dependent)
desired orientation βi corresponding to CW or CCW motion in the pool, via the steering
variable si:

si =

⎧

⎪⎨

⎪⎩

1 if π > βi − αi > π/6,

6(βi − αi)/π if |βi − αi| ≤ π/6,

−1 if −π < βi − αi < −π/6,

(10)

while si = 0 for the rest of the boats. The right-hand side of equation (9) is an
idealization of the passive behaviour of the objects: whenever a boat moves forwards
(i.e. uT(αi)ẋi > 0), the lateral drag on the rear-positioned rudder stabilizes straight motion
without active steering (si = 0). Nevertheless straight backwards motion is unstable,

and the boats tend to prefer a certain turning rate (specifically
√−c3uT(αi)ẋi/c1) in
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Figure 11. Average and standard deviation of Cv (vertical axis) as a function
of noise (horizontal axis). Each constant noise 8 min measurement is plotted
separately as one point. Left: all normal experiments; middle: all CCW-guided
three-leader experiments; right: all CW-guided three-leader experiments. The
three main collective states can be easily distinguished: (1) disordered motion
at high-noise level with no velocity correlation; (2) ordered motion at mid-noise
level with high velocity correlation; (3) mixture of two states (highly ordered
motion and jamming) at very low-noise level with low velocity correlation again
(most significantly in the no-leader experiments). Note that the low velocity
correlation at low-noise level is generated not only by the jamming phenomena
but also by the water current driven by a coherently moving flock (for further
details see section 4.5). Current-less results will be provided through simulations
in section 5.2. The difference between the CW and CCW graph is due to the
slight asymmetry in the boat drive (see section 4.5).

Figure 12. Ψo and its standard deviation as a function of the number of leader
boats at critical noise level (bw = 1.8 s). Each point represents the average
of one 8 min long experiment with fixed leader-boat orientation (CW or CCW).
Parameters of a linear regression are shown in the upper left corner. F -test values
of the linear fit (calculated with Origin R©, with the null hypothesis that the data
cannot be linearly predicted): F = 13.53, p = 0.002. Order at a given noise
level undoubtedly increases with increasing number of leaders (positive slope of
the fit with low p-values in the F -test) even though the number of leaders in the
experiments is only 5–10% of the whole flock.
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Figure 13. Rigid body model of an individual boat. The outline is composed of
two semi-circles and two line segments.

Table 3. Parameters of the computational model. The radius of gyration does
not show up in equations (8) and (9) yet it affects the joint motion of objects in
contact.
Name Role Value Unit

n Number of boats Varied between 20 and 50 —
k Number of leaders 0 or 0.2n —
r Size of boat 5 cm
p Shape of boat 0.5 —
ρ Radius of gyration of boat 4.74 cm
v0 Preferred velocity of boat fw phase: 15 cm s−1

nop phase: 0 cm s−1

bw: phase: −15 cm s−1

c0 Convergence rate of velocity 1 s−1

c1

Parameters of the dynamics of the
angular velocity

1 s
c2 0.1 s−1

c3 1 s cm−1

c4 0.1 s−2

either direction. Active steering (si �= 0) has no effect on a stopped boat, however, it
leads to the preference of some nonzero turning rate for moving ones. Measurements on
the experimental setup and the data summarized in table 1 were used to estimate the
parameter values of the actual simulation (table 3).

Upon object–object or object–wall contacts, additional contact forces, and
instantaneous impulses modify the dynamics of the objects. The outcome of the perfectly
inelastic and frictionless interactions is determined by a standard variational method.
Details of the simulation method as well as a sketch of the implementation are summarized
in an appendix.

5.2. Simulation results

Similarly to the experiments, the simulations reveal ordered motion in one (with leaders)
or in both directions (without leaders) for low-noise levels (figure 14).
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Figure 14. PDF of orientation vector angles (vertical axis) as a function of noise
(horizontal axis). Top row: n = 20 objects with k = 0 (left) and k = 0.2n (right)
leaders moving CW. Bottom row: same with n = 50. The vertical asymmetry
of the diagrams on the left is due to the fact that only one long simulation was
conducted at each noise level and the ordered states are stable, not changing
direction frequently. For comparison with corresponding experimental results,
see figure 9.

As the length of the bw phase is increased, the degree of ordering drops (figures 15
and 16). The transition from order to disorder appears to be at a lower backwards
motion time (approximately 0.6–0.8 s) than in the experiments. This difference could be
eliminated by tuning the parameters ci (table 3). The order of the transition is not clear
from the simulation results but it seems quite smooth.

Jamming is observed occasionally in the experimental setup (figure 4) yet it is not
frequent (and durable) enough to leave a significant imprint on the PDFs of the order
parameters. The same is observed in the simulations if n = 20. However by increasing the
density of the simulated flock, jamming becomes more important. If n = 50, Cv remains
low at low-noise levels (figure 16), especially without leaders. This is accompanied by a
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Figure 15. Top row: average and standard deviation of Ψo (vertical axis) as a
function of noise (horizontal axis) for n = 20 boats with (right panels) or without
(left panels) 0.2n leaders. Bottom row: the same with n = 50. Each point
corresponds to one simulation. For comparison with corresponding experimental
results, see figure 10.

peak in the distribution of orientation vector angles near zero (figure 14), which is a clear
indicator of the jamming state.

To study the jamming–ordered transition, the number of objects was systematically
varied between n = 20 and 50 with backwards motion time = 0 (figure 17). Both φ0 and
Ψo show a sharp transition between jamming and ordered motion with bistability. The
PDFs suggest that the transition from jamming to ordered motion is probably first-order.
A solid confirmation of this fact would however require simulations with much larger
flocks.

Due to the sensitivity of the jamming behaviour to flock density, there is negative
correlation between the density and the maximum ordering achievable by tuning the noise
parameter. This finding is contrary to the fact confirmed by several works that ordering
by contact forces is promoted by sufficiently high density [8, 13, 40] in the case of periodic
boundary conditions. Yet our finding is in line with the observation that jamming often
suppresses other states if the boundary conditions are not periodic [16, 17].
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Figure 16. Top row: average and standard deviation of Cv (vertical axis)
as a function of noise (horizontal axis) for n = 20, with or without leaders.
Bottom row: same with n = 50. Each point corresponds to one simulation. For
comparison with corresponding experimental results, see figure 11.

6. Summary

We conducted real SPP experiments with radio-controlled boats, communicating through
only inelastic collision in an annular pool, and the experiment was accompanied by
computer simulation of the system. Our setup had two unique features that provided
a step forward from the state of the art. First, we could adjust the noise level of the
system. Second, we introduced uniquely driven leader boats to induce specific collective
states.

We observed three main states in the collective motion of the boats. The dynamics is
dominated by jamming at very low-noise level. For long-term ordered motion some noise
is needed, while too much noise turns the ordered motion into disordered one. With a
constant noise level, the system may switch between states from time to time. Specifically,
we observed smooth state transitions from order to disorder and very sudden ones in the
case of jamming–ordered transitions. The long-term dynamics is typically dominated by
one or two of these states, depending on parameters such as noise level and flock density.
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Figure 17. PDFs of (a) Ψo and (b) ϕo (columns) as a function of density with
k = 0 and tr = 0. Three runs were conducted for each parameter value, each of
length equivalent to 60 min of the experiment.

The state transition in parameter space between the ordered and disordered states is
smooth in the simulations and is accompanied by bistability at the critical noise level in
the experiments. The jamming–order transition is sharp.

The introduction of a small fraction (5–10%) of leader boats has notable effect on the
collective dynamics of the system. They control the orientation of the ordered state with
high reliability, increase the order at every noise level and, therefore, also increase the
critical noise level at which the order–disorder state transition occurs. They are also most
efficient at the critical noise level in pushing the whole system into a dynamic collective
state.

With the limited number of boats in our experiment and in the simulations, we
cannot precisely determine the order or other properties of the observed state transitions.
Nevertheless, we believe that the observed phenomena are the imprints of rich collective
dynamics with multiple phases and phase transitions of large non-equilibrium SPP
systems.
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Appendix

The appendix is devoted to the presentation of two variational principles that are used to
implement the computational model.
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A.1. Two variational principles

In the case of object–object or object–wall contacts, the system is subject to non-
penetration constraints. These can be incorporated by adding the appropriate contact
forces and impulses as well as their momenta to the right-hand sides of equations (8)
and (9). Alternatively, the constrained dynamics can be determined without the explicit
calculation of contact forces and impact momenta, using two closely related variational
principles:

• According to the principle of least constraint (PLC) [41], the values
{ẍi, α̈i i = 1, 2, . . . , n} yielded by equations (8)–(9) are valid whenever they obey the
constraints of the dynamics (i.e. if they do not lead to overlapping objects). Other-

wise, the actual accelerations {ẍ(c)
i , α̈

(c)
i i = 1, 2, . . . , n} of the constrained system are

the minimizers of the quadratic function

U1 =
∑

i=1,2,...,n

(ẍ
(c)
i − ẍ1)

2 + ρ2
∑

i=1,2,...,n

(α̈
(c)
i − α̈i)

2 (A.1)

subject to the constraints of the system; in the formula, ρ stands for the radius of
gyration of the objects. Assuming that the objects are of uniform density leads to
ρ = 4.74 cm.

• Redon et al [42] proved that in case of a frictionless, plastic impact, the post-
impact velocities {ẋ+

i , α̇+
i i = 1, 2, . . . , n} can be obtained from the pre-impact values

{ẋ−
i , α̇−

i i = 1, 2, . . . , n} by minimizing the function

U2 =
∑

i=1,2,...,n

(ẋ+
i − ẋ−

i )2 + ρ2
∑

i=1,2,...,n

(α̇+
i − α̇−

i )2 (A.2)

subject to the non-penetration constraints.

The simulations of this paper are based on the variational approach, which has also
been used e.g. in [32].

A.2. Implementation of the variational principles

In the simulations, a simple, fixed time step ODE integrator was combined with quadratic
optimization in each time step to simulate the full dynamics of the interacting objects.
Due to the analogous forms of the two variational principles, one single optimization
scheme implements both of them. Below we summarize the main steps of the integration:

(1) At the beginning of the time step, xi(t), αi(t), ẋi(t), α̇i(t) are known, and our goal is
to determine them at time t + Δt.

(2) Equations (8) and (9) are used to obtain ẍi(t), α̈i(t), and the following updated
values:

ẋi(t + Δt)
def
= ẋi(t) + Δt · ẍi(t), α̇i(t + Δt)

def
= α̇i(t) + Δt · α̈i(t),

xi(t + Δt)
def
= xi(t) + Δt · ẋi(t), αi(t + Δt)

def
= αi(t) + Δt · α̇i(t).

(A.3)

(3) If the new configuration xi(t + Δt), αi(t + Δt) obeys the constraints (i.e. no objects
are overlapping), it is accepted.
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(4) If not, the non-overlapping constraints are linearized about the point xi(t), αi(t),

(5) and the function
∑

i=1,2,...,n

(x
(c)
i − xi)

2 + ρ2
∑

i=1,2,...,n

(α
(c)
i − αi)

2 (A.4)

is minimized, subject to the above linear constraints to obtain the correct updated

configuration x
(c)
i (t + Δt), α

(c)
i (t + Δt).

(6) The updated velocities are obtained by

ẋ
(c)
i (t + Δt) = [x

(c)
i (t + Δt) − xi(t)]/Δt,

α̇
(c)
i (t + Δt) = [α

(c)
i (t + Δt) − αi(t)]/Δt.

(A.5)

Step 5 is a standard quadratic optimization problem, for which many commercial
solvers are available. In our simulations, the medium scale quadprog algorithm of
Matlab [43] was used. Due to its high computational complexity, this solver can handle
up to approximately 100 boats.
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