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bstract

The skin-like elastic cover of a tactile-sensor array plays a fundamental role in determining how the sensor is responding to an arbitrary surface
timulus. Indeed, this cover is the first spatial–temporal sensory instruction in a tactile cellular wave-computer, or in living, neural-tactile signal-
rocessing organs. While the sensor under the elastic layer measures the local strain/stress, we are interested in the stimulating force distribution at
he contacting surface. This paper deals with the described inverse problem in the stationary case over a three-axial tactile-sensor array, measuring
hree components of the local strain tensor of the elastic cover. Our goal here is to design an interface flexible cover to enhance specific capabilities,
ensitivity and accuracy, when using the three-axial sensor array. First, on the simplest, flat rubber surface, we create a kind of tactile hyper-accuracy
y giving a simple analytical solution to the case when the cover is indented by an arbitrary point load. Second, instead of generalizing our solution
o more complex indentation profiles, we try to abolish the need for the complex inverse solution by specifying our cover’s geometry and thus

educing the complexity of the sensor’s coding mechanism. We create hemispherical bumps over the elastic surface and use a finite-element model
o show that with the bumps we can localize the (otherwise continuous) input over the taxels and detect normal and shear force components
ndependently. Finally, we confirm our theoretical results with real-time experimental data and use the measurements for sensor calibration and
exture classification.

2007 Elsevier B.V. All rights reserved.
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. Introduction

It has been known that the flexible cover plays an important
ole in tactile sensing, in biological and in artificial cases alike.
n that framework, the inverse problem of the elastic cover on top
f a tactile-sensor has been attracting the attention of scientific
roups for decades now, but it still remains an interesting and
ifficult task to deal with. The rubber-like material – even if
reated as homogeneous and isotropic – entails a quite complex
ehavior. Therefore, even the direct problem (i.e. when we know
he force distribution on the contacting surface, and we want

o find out the stress/strain distribution deep inside the rubber)
eeds special care and thus can be solved analytically only in
estricted cases.

∗ Corresponding author.
E-mail address: vasarhelyi@itk.ppke.hu (G. Vásárhelyi).
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tile-texture classification

The direct-elastic problem of tactile-sensors was first men-
ioned by Ref. [1] for describing the stress distribution in the
uman skin, using the elastic half-space model; a more detailed,
eneral contact analysis is found in Ref. [2]. The inverse prob-
em was treated by many groups, but most of them had sensors

easuring solely the normal stress/strain component; therefore,
hey constructed incomplete methods using scarce information.
or the static case of a point load Fearing and Hollerbach [3]
escribed an analytical but not practical and not completely
olved method. The same group used linear [4] and nonlin-
ar [5] inverse-filter processes to determine the curvature and
ocation of objects, but their methods are far from real-time.
hey also work in a different spatial domain—their character-

stic sizes are about one order of magnitude larger then ours.

umerical solutions using neural network training to determine
bject shapes can be found in Ref. [6], however, reliable exper-
mental data are not provided. Chen et al. [7] investigates the
nverse problem using moments and iterative algorithms, but

mailto:vasarhelyi@itk.ppke.hu
dx.doi.org/10.1016/j.sna.2007.05.028
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output. Our goal is thus to decode this continuous input from the
discrete measurements. Obviously, this inverse problem is not
an easy task; hence, we restrict ourselves first to the most basic
case—a stationary point load.
G. Vásárhelyi et al. / Sensors

hey need to combine signals from more than one sensor at once,
nd lack good experimental data again. Many other groups were
rying to extract different features from tactile data, but all of
hem missed to have a reliable and small enough tactile-sensor,

easuring at least three components of the strain/stress tensor.
aving developed these sensors, we can first concentrate on the
asic solutions again.

In the first part of the paper we investigate what we can extract
rom measurements on one single taxel and a flat cover. We
erive an analytical inverse-solution for a point load, perpen-
icular to the surface; namely, we determine the exact location
nd the amplitude of the normal load by measuring three local
train components at one point under the cover, thereby cre-
ting a kind of tactile hyper-accuracy. We support our results
ith real-time experimental data, and also extend the analytical

olution to a three-component point load, using more than one
axel.

Since the inverse solution can be solved only in this very
estricted case, in the second part we investigate how changes
n the surface geometry could be used to extend the informa-
ion provided via the elastic layer. The idea that the geometry
f an elastic cover should be used to enhance tactile signals is
ell known from nature. Fingerprints are present on our fin-
ers to increase the sensitivity of the tactile receptors that lie
nder them. During tactile manipulation the first contact points
n the skin will be the emerging parts, with the highest stress
alues around them. Bolanowski and Pawson [8] show that the
eissner receptors of monkeys lie mostly along the ridges of fin-

erprints. Fingerprints also modify the stress/strain distribution
nside the skin, which can be beneficial for the tactile system.
earing and Hollerbach [3] mention the stress enhancing effect
f the papillary ridges first, and calculate the locations with
aximal stress for a sinusoidal surface. Gerling and Thomas

9] investigate the “lensing effect” of the fingerprints, i.e. the
dge enhancing behavior of the ridges. Maeno et al. give a
etailed description on where the tactile receptors are located,
nd why—also including the role of ridged surfaces [10]. They
lso create a huge artificial finger skin with ridges [11] and use it
o extract some shear information from the underlying sensors to
revent slippage during grasping tasks. Instead of the direction
elective ridges, simple elastic hemispheres could also be used:
remblay and Cutkosky [12] describe in detail how hemispheres
n the elastic cover enhance gripping properties of a sensor. They
se these bumps to transfer vibrations to accelerometers when
eleased by the grip.

Here, we follow a different strategy: our goal is to design a
over geometry that enhances the capability and sensitivity of the
ntire tactile system. To achieve this, we also use hemispheres on
he elastic surface. We give a detailed finite-element analysis on
he behavior of the elastic bumps in different loading situations,
nd show that they provide a chance to avoid the solution of the
nverse problem of the cover. With measurements on the proper
over – designed according to the finite-element model – we

onfirm that the bumps can be used efficiently to localize the load
ver the taxels and code the three local indentation components
ndependently. Finally, we use our new sensor design for tactile-
exture classification, too.
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In Section 2 we give an introduction to the three-axial sensor
esign used in our work. The solution to the inverse problem of
he flat cover can be found in Section 3 with detailed mathemat-
cs, while Section 4 shows our experimental results concerning
he deduced tactile hyper-accuracy model. Section 5 introduces
he finite-element model describing the behavior of the elastic
umps on the cover surface, while Section 6 gives experimental
esults for this cover type, with a texture-classification example.
onclusions and acknowledgments can be found afterwards.

. Sensor design

Since our results are fundamentally connected to our tac-
ile arrays, we start our analysis with a short description of the
ensor design in question. Our MEMS array is developed at
he Research Institute for Technical Physics and Materials Sci-
nce (MFA) of the Hungarian Academy of Sciences. Detailed
escription of the sensor can be found in Refs. [13,14]. The
iezoresistive 2 × 2 array is made from monocrystalline silicon
y porous Si micromachining. Every taxel in the array consists
f four piezoresistors, each embedded into one of the suspension
ridges, having its reference pair on the surrounding rigid sub-
trate (Fig. 1). The three components of the load applied to the
ridge can be calculated from the four signals of the piezoresis-
ors. If the sensor is covered by an elastic layer, these components
ecome linear functions of three elements of the local strain ten-
or of the cover at the center of the bridges, at a depth of the cover
hickness.

With the protective elastic cover we invest the point-like sen-
or with a receptive field of a certain finite size, and, therefore,
e create a structure with spatially continuous input and discrete
ig. 1. SEM view of one taxel of the MEMS array without the elastic cover. The
ocation of the piezoresistors is illustrated with four white circles. The width of
he sensor is 300 �m.
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. Inverse solution for a point load

The frame of reference is the elastic half-space [2], with
omogeneous and isotropic behavior in the stationary case. The
xes x and y are taken along the rubber surface, while z points
nto the half-space. The point load at (0, 0, 0) can be described
ith its three components Q, R and F, while the three measured

train-tensor components at the sensor location (x, y, z) are uxz,
yz and uzz (Fig. 2). Note that the real cover with finite thick-
ess is approximated here with infinite size, and strain values are
aken at the given finite depth of the sensor. This simplification,
owever, does not affect the results much, because inside the
aterial stress/strain decays rapidly with space.
Our solution of the equilibrium equation in the elastic half-

pace – i.e. the strain distribution caused by an arbitrary point
oad – can be found in Ref. [2]. As a useful, but not harmful
implification, in the final equations we set the Poisson’s ratio
o 0.5. Hence, the solution takes the following form (with E
enoting the Young modulus):

uxz

uyz

uzz

⎞
⎟⎠ = 3(Qx + Ry + Fz)

4πE(x2 + y2 + z2)5/2

⎛
⎜⎝

−3xz

−3yz

x2 + y2 − 2z2

⎞
⎟⎠ . (1)

ur goal is now to express Q, R, F, x and y with the three strain
omponents. We introduce polar variables α and ρ on the surface,
here α can be derived simply from the strain components:

an α = y

x
= uyz

uxz

, ρ2 = x2 + y2. (2)

e also introduce a dimensionless variable A, which can be
alculated from the three measured strain components, too:

2 = u2
xz + u2

yz

u2
zz

= 9z2ρ2

(ρ2 − 2z2)2 . (3)

ince A is a measured value and z is known from the sensor
esign, (3) becomes a simple second-order equation for ρ2, with

he two solutions:

2
1,2 = z2

(
2 + 9 ± √

81 + 72A2

2A2

)
. (4)

ig. 2. Schematic view of the point load on the surface of the elastic half-space,
nd the sensor inside the material.
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nterest – within a radius of 2z around the load – is when the normal strain
akes negative values. In this case the inverse method can be based on reliable
xperimental data with high SNR.

.1. Partial solution for a normal load

From now on we take Q = R = 0 for a while (i.e. only the nor-
al load component is present), in order to analyze the solution
ore precisely. In that case three distinct regions for ρ can be

eparated depending on the uzz distribution (Fig. 3).
When ρ <

√
2z, the normal strain component (uzz) becomes

egative—basically this is the region where uzz is accurately
easurable. In this case for ρ2 we get the value:

2 = z2
(

2 − 12√
9 + 8A2 + 3

)
. (5)

f ρ = √
2z, uzz becomes zero and A goes to infinity. With ρ >

2z, uzz becomes positive, and we get:

2 = z2
(

2 + 12√
9 + 8A2 − 3

)
. (6)

t is exciting to see that with the thickness of the rubber we can
djust the radius of the region where uzz is negative and where
he properties of the force can be recovered with high precision.
owever, by thickening the rubber, we need higher force values

o give high enough strain in the rubber for the measurement.
After determining ρ and α, we can calculate x and y easily:

= ρ cos α, y = ρ sin α. (7)

he amplitude of the force is extracted from any component of
1) now (e.g. from uzz):

= uzz

4πE(ρ2 + z2)
5/2

3(ρ2 − 2z2)z
. (8)

rom one point of measurement these are all the data we can
econstruct analytically. If the loading force has more than one
omponent, (8) takes the following form:

x + Ry + Fz = uzz

4πE(ρ2 + z2)
5/2

3(ρ2 − 2z2)
. (9)
n this case we need more restricting assumptions for determin-
ng the force components. For example, if we know the friction
oefficient (μ), Q and R can be expressed with F, and hence the
ormal and tangential components can be separated.
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mately 2.4 MPa, calculated from its Shore A hardness of
45.
G. Vásárhelyi et al. / Sensors

Note that if we had sensors measuring the stress in the
aterial, and not the strain, the equations would become even

impler, and we would avoid the singularity at ρ = √
2z. Sub-

tituting strain for stress in the definition of A and α, instead of
1) and (4) now we write:

σxz

σyz

σzz

⎞
⎟⎠ = 3(Qx + Ry + Fz)

2π(x2 + y2 + z2)5/2

⎛
⎜⎝

−xz

−yz

−z2

⎞
⎟⎠ . (10)

nd

= zAσ. (11)

.2. Full solution using a sensor array

Having a rectangular array of strain sensors at a depth of z,
ith a given d distance between the neighboring sensors, we
eed to fulfill the following constraint to have at least three
ensors close enough to the point load at all times:

<
1 + √

2

2
z ≈ 1.2z. (12)

his has not yet been achieved in our sensor-array design; hence
his section so far remains a theoretical assumption. With three
ensors we have three equations similar to (9). We calculate their
ight side and name it M:

xi + Ryi + Fz = uzzi

4πE(ρ2
i + z2)

5/2

3(ρ2
i − 2z2)

= Mi (i = 1, 2, 3).(

rom this the general solution can be deduced using simple
lgebraic calculations:

Q = (M2 − M3)y1 + (M3 − M1)y2 + (M1 − M2)y3

(x2 − x3)y1 + (x3 − x1)y2 + (x1 − x2)y3
,

R = (M2 − M3)x1 + (M3 − M1)x2 + (M1 − M2)x3

(x3 − x2)y1 + (x1 − x3)y2 + (x2 − x1)y3
,

F = (M3x2−M2x3)y1+(M1x3−M3x1)y2+(M2x1−M1x2)y3

[(y2 − y1)x3 + (y1 − y3)x2 + (y3 − y2)x1]z
.

(14)

.3. Considerations with real sensors

When checking the validity of our theory on real sensors, we
eed to take into account that their signals are not the exact strain
ensor components but their linear functions with different slope
n the normal and shear directions. The characterizing equation
f a single taxel is as follows:

uxz

uyz

⎞
⎟⎠ =

⎛
⎜⎝

αs

αs

⎞
⎟⎠ ◦

⎛
⎜⎝

Tx

Ty

⎞
⎟⎠ , (15)
uzz αn Sn

here Tx, Ty and Sn are the three strain-like vector components
alculated from the original voltage measurements, αn and αs are
he normal and shear linear coefficients, connecting the real and

m
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he measured strain tensor elements. The value of αn and αs is
ot calculated theoretically, but Refs. [13,14] proves their linear
ehavior, and now we provide a simple method for determining
heir relative values experimentally.

Calculating with (15) we need to change the definition of A
lightly. Let us define Am (from Ameasured) in the following way:

2
m = T 2

x + T 2
y

S2
n

=
(

αn

αs

)2

A2 = 1

β2
ns

A2, (16)

here we also define βns as the normal-to-shear sensitivity of
he sensor. Substituting (16) into (5) we get:

2 = z2

(
2 − 12√

9 + 8(βnsAm)2 + 3

)
. (17)

he value of βns is obviously not one. It depends on the sensor
esign and the adhesive properties of the elastic cover. However,
t can be evaluated from a series of measurements—based on the
ollowing calculation. Let us take a look at (1) again, along the
ine y = 0. Here uzz has a minimum at x = 0, while uxz has an
xtremum at x = ±z/2. From these extrema we get:

uzz|x=0;y=0

uxz|x=±z/2;y=0

∣∣∣∣ = 1

βns

|Sn|max

|Tx|max
= 25

√
5

24
. (18)

ow, if we move a point load along y = 0 on the real sensor, and
ave the three strain components in time (see Fig. 5 in the next
ection), from the measured distribution we can calculate how
uch the ratio of the maximal values differ from (18). That will

e the βns ratio.

. Measuring tactile hyper-accuracy with a flat cover

In the following we validate the theory of the previous
ection with measurements on the real three-axial sensors. In
ddition to showing the feasibility of our model, we measure the
ate of tactile hyper-accuracy, achieved by utilizing only the flat
over and its previously introduced mathematical description.
e also investigate the boundaries of our theory by giving a list

f the possible sources of error.
For validating the previous section we constructed an

xperimental setup with the following parts (Fig. 4): (1) a
easurement table that can be tilted, and moved subtly in

wo directions; (2) a high-precision stepper motor installed
n the table, functioning in one dimension (1 mm = 320 steps,
ith further micro-stepper circuitry); (3) a loading needle

hat has a built-in strain-gauge, measuring the total loading
orce (needle diameter is 100 �m, which is a good approx-
mation of a point load); (4) a PC with specific evaluation
oftware; (5) the MEMS array, covered with a 200 �m thick
ilicon rubber1 layer, with a Young modulus of approxi-
For proving the feasibility of our theory and for deter-
ining the normal and shear coefficients of the sensor, we

1 Elastosil® RT-601.



12 G. Vásárhelyi et al. / Sensors and Actuators A 140 (2007) 8–18

Fig. 4. The experimental setup with the measurement table, the stepper motor,
the loading needle and the MEMS sensor.
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Fig. 7. Location and amplitude reconstruction of a point load, moved by a stepper
motor over one taxel along parallel lines. Each circle is one data-acquisition
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ig. 5. The three measured strain components along the centerline (y = 0). The
ormal-to-shear ratio can be calculated from the ratio of the maximum val-
es (signed with circles). The inverse equations are also based on this strain
istribution.
arried out the following basic measurement: we applied
constant normal load on the rubber (approx. 20 mN),

nd used the stepper motor to move the needle slowly
0.5 mm/s) along the surface of the sensor in parallel

(

m
v

ig. 6. Modeled results of the 2D point-load location-reconstruction experiment on a
he normal-to-shear ratio chosen for the location and amplitude reconstruction. Ampli
hanges the homogeneous mapping of the calculated locations and load amplitudes.
oint, measured by our software at 30 Hz. The two axes show the plane of the
econstructed surface coordinates, while both the size and color of the circles
epresent the local reconstructed load amplitude.

ines over the whole receptive field of the sensor. In the
eantime we recorded the output of the sensor at about

0 fps.
With (18) and the previously described measurement we can

alculate βns easily from the measurement along the line y = 0
Fig. 5). After six measurements on the same taxel we got
ns = 1.46 ± 0.04, which means that the sensor is more sensi-

ive to normal forces than to shear ones. This is what we would
xpect taking a look at the flat sensor design. Note that there
xist several methods aiming to enhance the shear-strain trans-
ission [14,15]. It can be done by changing the sensor design,

t the price of losing the described analytical characteristics, as
e will show in detail later.
As a next result, we transformed the measured data on the

hole plane into coordinates and force amplitude using the
educed inverse equations and the determined value for βns. To
ee the pure effects of the changes in βns we modeled the results
rst on a rectangular grid of points with errorless theoretical data
Fig. 6).
Similar results can be seen in Fig. 7 reconstructed from the
easurement data, using βns = 1.5, as an approximately feasible

alue.

rectangular grid of points. The numbers above each plot represent the value of
tude is represented by the size of each point. Altering the normal-to-shear ratio
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The experimental result in Fig. 7 shows that our model is
ully functional. There is quite a bit of error far from the cen-
er of the taxel, and the mapping of the reconstructed locations
here resembles the underestimation of βns. In other words,
he deviation between the measured strain distributions and the

odel is not constant; it is a function of distance from the cen-
er of the taxel. This function is not known theoretically, but
iming at better results it can be measured point by point as
alibration data. Nevertheless, within a radius of approximately
50 �m this is not needed, because reconstructed locations and
mplitudes are reliably calculated there. Here we achieve kind
f a tactile hyper-accuracy with an approximate precision of
–5 �m.

The absolute value for the normal and shear coefficients can
e determined by comparing the known load amplitude and the
alculated one. However, the feedback from our current strain
auge in the loading needle is not reliable enough for precise
alibration.

Knowing the exact speed of the stepper motor and the data
cquisition rate, we were also able to give quantitative results.
e took the measurement points that correspond to the middle

ine of Fig. 7, and measured its slope in time (Fig. 8).
The calculated speed (0.45 mm/s) is a bit less than the real

alue (0.5 mm/s), but it can be compensated with a linear con-
tant again, which is kind of the same as raising the cover
hickness a bit in the model.

.1. Error estimation

This section is only a qualitative enumeration of the facts
hat have a possible effect on the results. There are quite a lot of
hings that could be taken into account. Here we only present the

ost significant ones. According to our knowledge, the sources
f error could be the following:

Our model is infinite, with homogeneous and isotropic behav-
ior and with a Poisson’s ratio of 0.5. The real sensor design
is finite, with some nonlinearity at high strain values. Since

modifying the model is quite a bit of a challenge, we take this
source of error as a fact, and treat the results accordingly.
The point load is a needle with finite diameter. However,
the tip of the needle was treated to be hemispheric to cause

ig. 8. Stepper motor speed calibration on the reconstructed locations along the
enter measurement line (y = 0).
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similar strain distribution to the point load (the similarity is
getting more profound anyway with increasing distance in the
material away from the indentation point).
The sensor itself also has finite size. Details about this point
can be found in Ref. [14].
The experimental testing is very delicate, because the loaded
sensor is quite sensitive to mechanical vibrations. A few
microns of dislocation in the loading needle causes huge
changes in the loading force and, therefore, in the measured
strain values, too. The deviation of the rubber surface from a
perfect plane, hence, causes the same effect.
The stepper motor’s magnetic field sometimes creates high
frequency noise in the measured data.

. Finite-element model of the elastic hemisphere

In the previous sections we saw how the location and the
mplitude of a point load can be reconstructed analytically
sing the elastic half-space model. However, if the indentation
s more complex (as in any general tactile manipulation task)
nd its spatial resolution is below the receptive field size of
he taxels, this inverse problem becomes enormously difficult
o solve.

Some basic issues on what we can do in this case can be
ound in Ref. [14]. One possible solution to this problem is
he discretization of the continuous input by minimizing the
eceptive field, which can be done by elastic hemispheres on
he cover surface. With these bumps we step over the bound-
ries of the elastic half-space model. Therefore, in this section
e create a finite-element model of an elastic hemisphere, and
escribe the behavior of our newly shaped cover under different
ndentations.

Our model is an extension of the well-described elastic
alf-space, with a hemispherical bump on its surface. In the
odel we calculate with infinite size once again, and take

train/stress/deformation values from a given depth, at the point
ssumed to be homogeneous and isotropic, with a Young mod-
lus of 0.87 MPa and Poisson’s ratio of 0.499. The value of
he Young modulus is only a linear constant in the equations and

ig. 9. The finite-element model of the bump over the elastic half-space. The
at and rigid indentation touches the top of the hemisphere.
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ig. 10. Deformation caused by different loads. Components: (a) load: z, deforma
.

maller values for the Poisson’s ratio do not change the FE results
ubstantially either. We used the Cosmos Geostar 2.8 (128K ver-
ion) FE package, with a total number of 1060 elements in the
tructure (Fig. 9).

In the first run the structure was only two-dimensional, with
lain-stress approximation along the infinite third dimension
perpendicularly to the plane of this paper). This infinite size was
bviously approximated by finite thickness—large enough to
ause no change in the results (2 mm). Since the hemisphere and
he half-space are both axi-symmetric, this plane-stress approxi-

ation is only a slight simplification of the real case—analogous
o the 2D projections of a more realistic 3D model. Later, if
eeded, we will expand the model to three-dimensional.

The diameter of the hemisphere is 0.4 mm. The infinite
alf-space is approximated by a large enough finite size (one
rder of magnitude greater than the size of the bump, namely
mm c 2 mm), with zero deformation at the bottom and free
dges at the sides. Note that the absolute size of the system is
ot crucial, only relative distances are important.

The indentation is a flat and rigid object, touching the top
f the bump with infinite friction. The high surface-curvature
t the junction between the half-space and the hemisphere is
ffectively reduced with an additional element (linear, inclined
t 45 ◦) to avoid high local stress and error. The hemisphere is

pproximated with linear elements.

In the model we used two independent loads, both applied
ith the same perfectly rigid object. One acts purely in the x, the
ther in the z-direction. We assume that deformations are small,

a
r
m
i

z; (b) load: z, deformation: x; (c) load: x, deformation: z; (d) load: x, deformation:

hus in a general case the final deformation can be calculated
rom the superposition of the two basic indentation types. A
eneral deformation profile caused by an indentation of 50 �m
n the two directions can be seen in Fig. 10.

The 3D sensor is positioned at a given depth at x = 0. Note
hat along the line x = 0 in the presented cross-section, neither
he z nor the x-directional load causes deformation in the other
irection (see the vertical lines at the center of Fig. 10b and c).
herefore, if we position our 3D sensor at a given depth along
= 0, the response to the two directions will remain independent.

For determining the proper depth of the sensor we need to
ake a look at the deformation values along x = 0 (Fig. 11), and
onsider that a minimal thickness of 200 �m is needed below the
ump for applicability reasons. Obviously, the thicker the rubber,
he more we lose from the sensor’s sensitivity for both loading
ypes. As a result, in the experiments the minimal 200 �m thin
ayer is used.

The last thing needed is the characteristics of the response as
function of the load (Fig. 12).

As can be seen in Fig. 12, up to a deformation of 100 �m
which is quite a high value – all characteristics are close

o linear. The response to a normal load is steeper, therefore,
he overall normal-to-shear sensitivity of the sensor will dif-
er from one (it is about two now). Since the curves FxUz

nd FzUx are constant zero, the x and z components will
emain independent, with no cross-talk. Note that our sensors
easure the strain, not the deformation. However, character-

stics of the strain distribution are similar, thus these results
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ig. 11. Deformation values along the axis perpendicular to the surface (x = 0),

an be used efficiently to predict the functionality of the sen-
ors.

. Texture classification example using the bumpy cover

In this last section we once again use our three-axial MEMS
ensors and restrict ourselves to the analysis of the signal of
ne single taxel, as in the previous sections. The array prop-
rties of the same sensors are also investigated in Ref. [16]
uring a robotic manipulation task. There one smooth object
as held between two fingers of a robot arm. Both fingers were

quipped with one 2 × 2 sensor array. The continuous signal
f the two shear components of each taxel in the 2 × 2 arrays
as reduced to the binary direction (+ or −), still resulting in

8×2 = 65,536 possible classifiable tactile events, used for tactile
eedback for the robot arm. If we enlarge the number of taxels
n the array even more, use more than one bit signals and inves-
igate the spatial–temporal response of complex object profiles
as in any of our own general biological tactile-manipulation

asks), any analysis of these complex, multi-dimensional sig-
al arrays will demand high-speed, possibly parallel processing.
ne ideal cellular-wave-computer for this task is the CNN
niversal machine [17] that could be our signal-processing hard-

ig. 12. Deformation values at the 3D sensor location (x = 0; z = 200 �m) as a
unction of indentation amplitude. FiUj represents the deformation component
under a load in the i direction (i = x, z; j = x, z).

w
b
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t
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F
c

indentation of 50 �m. (a) Load: z, deformation: z; (b) load: x, deformation: x.

are in the future on more extended tactile arrays and tasks.
p to now, we have only 2 × 2 sized arrays, but as we said
e restrict ourselves even more and first we take a look at the

patial–temporal multi-bit signal of one single taxel on textured
bjects.

To show the functionality of the sensors now equipped with
he newly designed bumpy cover, we measure the response of
ifferent material types pulled over the hemispheres, and extract
imple features from the spatial–temporal signals for a basic
exture classification.

We created the described elastic cover again from Elastosil®

T-601, which is a commercially available silicon rubber, with
roperties described in the previous section. The diameter of the
umps is 400 �m, as in the finite-element model. The mould for
he rubber was made by a silicon wafer. The negative bumps were
onstructed with simple isotropic etching. Our 3D sensors are
rranged in a 2 × 2 array hence four bumps were created with the
ould (Fig. 13). The taxel-to-taxel distance in the 2 × 2 MEMS

rray is 1.5 mm.
For the first basic experiments four materials were selected

ith different texture and roughness. They were pulled over the

umps in all directions, many times within a relatively narrow
peed range, but with different amplitude. The characteristic
hree-axial response to these four materials measured by one of
he taxels is shown in Fig. 14.

ig. 13. The 2 × 2 MEMS array with four elastic hemispheres on the interface
over. The distance of the bumps is 1.5 mm.
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Figs. 14 and 15 show that the three-axial signals coded with
the elastic hemispheres represent the object’s texture properties
with high fidelity, and even our two extracted features give us
ig. 14. Characteristic three-axial response of a taxel with a bump to four diffe
he dotted ones are the two shear components. The four materials: screw, smoot

As can be seen in Fig. 14, the three-axial response of the taxel
epresents the one-dimensional texture of the materials with
haracteristic features. The changes in the normal component
orrespond to the fine structure of the surface, while its aver-
ged amplitude shows how much the object was pressed against
he sensor. Motion direction can be extracted from the ratio
f the shear components, while the ratio of the shear and nor-
al components determines the friction coefficient. The overall

aggedness of the signals corresponds to the surface roughness,
tc.

Our aim in the first run was to extract a few simple fea-
ures from these signals that are available only in three-axial

easurements and are insensitive to motion direction and the
verall force applied. We selected two features to create a sample
wo-dimensional classification. One is the friction coefficient,
veraged on the last T discrete measurement points at time t:

¯ (t) =
t∑

i=t−T

μ(i) =
t∑

i=t−T

√
Tx(i)2 + Ty(i)2

Sn(i)2 . (19)

he other one is an arbitrarily chosen, but good descriptive
actor of the surface roughness that is defined as the normal-
zed standard deviation of the instantaneous friction coefficient,

alculated again on T values:

(t) = 100

μ̄(t)

√∑t
i=t−T (μ̄(t) − μ(i))2

T − 1
. (20)

F
3
s
i

aterials pulled over the surface in a straight line. The solid line is the normal,
d, fine textile, and rasp.

n the definition of R(t) the multiplicative factor of 100 is used
o push the values of the parameter into the integer range. In the
xperiments T was set to 128. Since the scanning time between
he frames was 15 ms, the averages at a time were taken from
he preceding 2 s, accordingly. The result of the classification on
hese two parameters, with around 3000 data points can be seen
ig. 15. Result of the first basic texture classification. Each of the approximately
000 points represents one measurement of the two properties. Although the
tandard deviation of the properties of each material is huge, the classification
s applicable even in this case.
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relatively separable parameter space for texture classification.
ntroducing some more newly defined characteristic features, the
arameter space can be extended to a lot more dimensions and
ence the classification can be improved essentially. Neverthe-
ess, this classification is only an example of the many uses of the
ew three-axial signals. They can be used in many other fields
oncerning tactile manipulation, texture identification, robotic
rip tasks or medical applications, where shear information can
mprove the quality of the data gained from the tactile-sensors.

. Conclusions

In this paper the effects of the elastic cover on three-
xial tactile-sensors were investigated in order to enhance the
actile-event detection capabilities of the overall sensor struc-
ure. The cover can be treated as the first spatial–temporal
ignal-processing layer in tactile tasks—in that framework we
nvestigated how we can benefit from the geometrical design of
he elastic layer.

On a flat cover we solved the inverse problem of the
ontinuum-mechanical model of the rubber, namely, we gave
n analytical solution for reconstructing the location and the
mplitude of an arbitrary point load over the surface of the
lastic cover of the tactile-sensor. Although there are many a
riori simplifying assumptions in the model, experimental qual-
fications prove its feasibility. Using only one taxel we were
ble to achieve a kind of tactile hyper-accuracy—we recon-
tructed the location of a normal, point-like load with around
�m accuracy over an area of 300 �m × 300 �m, with reli-
ble amplitude values, too. Without experimental validation
e gave the inverse solution to 3D point-loads, too, and we

ould also use the same continuum-mechanical framework to
alibrate our sensors and determine their normal-to-shear sensi-
ivities.

Proceeding to more complex indentation profiles we broke
ith the attempt for an analytical inverse-solution, instead we

hanged our cover geometry from flat to bumpy. With a finite-
lement model we investigated the information-coding behavior
f elastic hemispheres on the cover surface. We found that
hey code normal- and shear-load components independently,
ith linear behavior, abolishing the need for a complex inverse-

olution. In addition, they concentrate the spatial load above the
ensors, thereby enhancing the overall functionality and grip of
he sensory structure.

In the future we are about to extend our investigations from
he analysis of one taxel to a tactile array, using a cellular-wave-
omputer for signal-processing and our new 8 × 8 element,
hree-axial tactile-sensor array.
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niversity, Multidisciplinary Technical Sciences Doctoral School, Budapest,
ungary. Main research fields are tactile-sensor arrays and tactile applications
n CNN chips.
alázs Fodor was born in Csorna, Hungary, in 1985. He is currently a student at
he Hungarian Technical University of Budapest (he is in his fourth year). Main
esearch fields are FEM analysis of composite structures and nonlinear FEM
nalysis.



1 and A

T
e
1
t
H
m
A
A
a
S
v
o
m

r
a
T
a
E
i
T
t

8 G. Vásárhelyi et al. / Sensors

amás Roska was born in Hungary in 1940. He received his MSc degree in
lectrical engineering from the Technical University of Budapest, Hungary, in
964 and the PhD and DSc degrees in 1973 and 1982, respectively. From 1964
o 1970, he was with the Measuring Instrument Research Institute, Budapest,
ungary.From 1970 to 1982, he was with the Research Institute for Telecom-
unication, Budapest, Hungary. Since 1982, he has been with the Computer and
utomation Institute, Hungarian Academy of Sciences, where he is Head of the
nalogic and Neural Computing Research Laboratory. Since 1989, he has been

visiting scholar at the Department of Electrical Engineering and Computer
ciences and the Electronics Research Laboratory each year and was recently a
isiting research professor at the Vision Research Laboratory of the University
f California at Berkeley. He is also the founder Dean of the Faculty of Infor-
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