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294 Part 1II: Fractal Pattern Formation

Chapter 10.

EXPERIMENTS ON LAPLACIAN
GROWTH

The large number of relevant new results obtained by various the-
oretical approaches and computer simulations has stimulated an increased
interest in the experimental systems exhibiting fractal pattern formation. It
has turned out that there are many publications and unpublished results on
the desks of scientists which, in the light of the recent theoretical progress,
may represent good starting points for further investigations. In particular,
the formation of random branching structures in thin solid films was observed
some time ago in several laboratories, but it was the theoretical framework

of fractal geometry which revived the interest in the related experiments.

The majority of the latest experiments, however, have been designed
to produce data for additional theoretical research and to check the validity
of various predictions. The most suitable systems to carry out this kind of
investigation are those in which the behaviour of the growing interface is
determined by a relatively small number of well delined parameters. Viscous
fingering in the nearly two-dimensional Hele-Shaw cell is a good example for
such processes. The related results will be discussed at the beginning of this
chapter. The most studied further phenomena leading to complex interfa-

cial patterns are solidification and electrodeposition which will be treated in
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separate Scclions. IPinally, a few more types of experiments will be reviewed.

As we shall see, in the above mentioned experiments the motion of
the interface is dominated by a quantity which in various approximations
satislies the Laplace equation. They also share the property of being relevant
from the point of view of applications. For example, viscous fingering plays
an essential role in the process of secondary oil recovery, where water is
pumped into the ground through a well to force the oil to flow closer to
the neighbouring wells. Furthermore, the formation of dendritic structures
during solidilication determines the final internal texture of many alloys, in

this way strongly influencing their mechanical and other properties.

10.1. VISCOUS FINGERING

The phenomenon of viscous fingering takes place when a less viscous fluid is
injected into a more viscous one under circumstances leading to a fingered
interface. In general, the motion of the two fluids and the interface be-
tween them is described by the Navier-Stokes equation, which is a non-linear
equation containing terms depending on such factors as the gravitation, heat
diffusion or shear viscosity. Here we shall discuss experiments where the con-
ditions are such that most of the terms in the Navier-Stokes equation can be
neglected and the resulting mathematical problem corresponds to Laplacian
growth (Bensimon et al 1986).

If the fluids are embedded in a porous medium, it is the term re-
lated to viscous forces which dominates the flow. In such media the fluid
flows through narrow channels and its velocity is limited by the walls of the
channels. A similar effect occurs in the case of quasi-two-dimensional flows
without the presence of a porous medium, where instead of narrow channels

the flow is confined to a thin layer betwecen two closely placed plates.
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Figure 10.1. Schematic representation of the longitudinal Hele-
Shaw cell. Unstable, finger-like patterns are observed if the less
viscous fluid is injected into the more viscous one.

10.1.1. The Hele-Shaw cell

At the end of the last century Hele-Shaw (1898) introduced a simple system
to study the flow of water around various objects for low Reynolds num-
bers. The cell he designed consists of two transparent plates of linear size
w separated by a relatively small distance b (lypical sizes are in the region
w ~ 30 cm and b ~ 1 mm). The viscous fluids are placed between the plates
and pressure can be applied either at one of the edges (longitudinal version,
Fig. 10.1) or at the centre of the upper plate (radial version) of the cell. In
Appendix B more details are given, together with a few useful suggestions
for those who are interested in building a simple Hele-Shaw cell. Clearly, the
Hele-Shaw cell in its above described form is suitable for the investigation of
two-dimensional flows, and correspondingly, most of the results concerning

fractal viscous fingering have been obtained for d = 2.

The relation of viscous fingering to Laplacian growth can be shown by
asssuming that the plates are horizontal, and the flow in the =,y plane has
a velocity profile v(z) = [v2(2) + ﬂug(z)]lf2 which is approximately parabolic

in the direction z perpendicular to the plates
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v(z) = a(b?/4 — 2%). (10.1)

Furthermore, we assume that v, = 0 and dv./dz = dv, /0y = 0. For the

average velocity one has

i s 1 be _ab®
B(z) = 3/_6/2 v(z) = - (10.2)

If the gravitational effects can be neglected the Navier-Stokes equation has

the form

Vp = uV*V + pov /oL, (10.3)

where u is the viscosity of the fluid, p is its density, and p denotes the pressure.
For small b the first term of the right-hand side in (10.3) dominates, because
it is proportional to 1/6%. Inserting (10.1) into (10.3) (where the second term
of the right-hand side is neglected) and using (10.2) we get

b2
12405

V= Vp, (10.4)
The above equation represents the so called Darcy’s law expressing the fact
that for small b the average velocity is proportional to the local force. As-
suming that the fluids are incompressible one arrives at the Laplace equation
V2p =0 (9.1) for the pressure distribution p, from the condition that the di-
vergence of the velocity vanishes. The boundary condition (9.2) is essentially

equivalent to (10.4) evaluated at the interface.

When writing down the boundary condition for the pressure jump
Ap at the interface (corresponding to (9.4)), one has to take into account
the specific geometry of a Hele-Shaw cell. This expression contains three
terms: i) There is a relatively large pressure jump due to the parabolic
profile mentioned above. The associated surface curvature is typically about
2/b. This curvature measured in a direction perpendicular to the plates is

approximately independent of the actual position of the interface and it does
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not have a relevant eflect on the motion. ii) The contribution of the surface
curvature £ observed in the £ —y plane is proportional to the surface tension
v and to . Finally, iii) due to the wetting of the cell’s walls by the displaced
fluid, Ap is increased by a term proportional to /3 (Park and Ilomsy 1985).

Thus, for viscous fingering (9.4) has the form

2 3.8 (uv,)¥/3~1/3
Apz—g—}—’yfc%- (;,L nb) i ;

(10.5)

In a longitudinal cell of width w (Fig. 10.1) there is a single dimen-
sionless quantity which can be used as a control parameter of the problem.

In such a system

dog = —— (10.6)

is an analogue of the capillary number in (9.4). Here V' is the velocity of the
injected fluid far from the interface. The experiments to be discussed below
have demonstrated that on increasing do from a small (or negative) value
various regimes take place concerning both the dynamics and geometry of

viscous lingering.

The traditional experiment is carried out using two inmiscible, Newto-
nian fluids with a high viscosity ratio. For example, air can be used to displace
glycerine or oil. Injecting an inviscid fluid into a longitudinal Hele-Shaw cell
containing a viscous one results in an initial transient behaviour followed by
the development of a single finger which propagates along the channel in a
stationary way. According to the related experiments (Saffman and Taylor
1958, Tabeling and Libchaber 1986), numerical simulations (Gregoria and
Schwartz, Sarkar and Jasnow 1987) and theoretical approaches (Bensimon
et al 1986), the width of the finger A for intermediate values of dp is close
to w/2, where w is the width of the cell. In fact, theory predicts A = w/2
in the dg — 0 limit, while finger widths somewhat smaller than w/2 can
be observed experimentally and in numerical solutions of the corresponding
equations. For large V' the single finger shows rather unstable behaviour (see
Fig. 9.4).
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I'igure 10.2. Typical viscous fingering patterns obtained in the
radial Hele-Shaw cell with glycerine for (a) intermediate and (b)
large pressure of the injected air.

In the radial Hele-Shaw cell (Paterson 1981, 1985) the stabilizing ef-
fect of the side walls is absent and no steady-state fingers can develop in
the cell. Consequently, the Mullins-Sekerka instability (Saffman and Taylor
1958, Mullins and Sekerka 1963) leads to the growth of disordered interfaces
shown in Fig. 10.2. Interestingly, the question whether such viscous finger-
ing patterns become fractals in the large size limit has not been satisfactorily
answered yet. For intermediate injection rates (Fig. 10.2a) relatively sim-
ple structures can be obtained with an effective radius of gyration exponent

corresponding to a fractal dimension close to 1.8 (Rausseo et al 1987).

When large injection rates are applied (Fig. 10.2b) the growing in-
terface seems to branch randomly without forming holes of increasing size,
and the structure can be regarded as homogeneous (non-fractal) on a length
scale comparable to its diameter. In this case the surface has a geometry
analogous to the Pcano curve discussed in Section 2.3.1. Similar interfacial
patterns have been observed in other types of experiments as well, thus it
is useful to introduce a common name for these homogeneous structures.
An interface has dense radial structure (DRS) if it i) grows outward from
a centre, ii) is not a fractal, and iii) has a well defined spherical (circular)

envelope.
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10.1.2. Fractal viscous fingering

Fig. 10.2 demonstrates that fractal viscous fingering patterns are not ex-
pected to grow in the traditional Hele-Shaw cell. However, the situation is
completely changed if one introduces some kind of randomness into the exper-
iment by placing a porous medium between the two plates. The investigation
of viscous fingering in a random environment can be accomplished by using
such model media as layers of small spheres (Maloy et al 1985) or carefully
manufactured networks of channels having stochastically varying diameters
(Chen and Wilkinson 1985, Lenormand and Zarcone 1985, Lenormand 1986).

For a given random medium very different regimes of fractal growth can
be observed as a function of the applied flow rate or the wetting properties
of the injected fluid. The following micromodel (e.g. Lenormand 1986) has
been successfully used to investigate various crossovers in the shape of the
interface between two fluids moving in a network. The main part of the
model is a transparent resin plate consisting of channels and pores cast on
a photographically etched mould. The flow is restricted to the channcls by
appropriately closing the resin plate. In a typical experiment the depth of
the channels following the bonds of a square lattice is about 1mm, while their
width varies around an average value according to a given distribution. The
less viscous fluid is injected into the cell through a hole at the centre of the

upper plate.

The two basic geometries are presented in Fig. 10.3 for the case of air
displacing very viscous oil wetting the walls of the model. If the injection rate
is extremely slow (many hours per experiment), the capillary forces dominate
the motion of the interface. These forces may prevent the air from entering
very narrow channels, while the interface advances faster at places where
the channels have large cross-sections. In this limit the viscous forces and
the effects of pressure distribution can be neglected. The above conditions
correspond to the invasion percolation model with trapping (Section 5.2.),
and accordingly, the shape of the region filled with air is reminescent of
percolation clusters (the perimeter of a large percolation cluster is shown in

Fig. 5.10). The analogy is supported by an agreement between the fractal

dimension D =~ 1.82 calculated for invasion percolation with trapping and
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Figure 10.3. The black structures correspond to the channels
in which the injected air displaced oil in a radial micromodel
consisting of 250,000 capillary tubes having randomly distributed

radii. (a) Very slow injection rate: invasion percolation regime, (b)

crossover, and (c) high injection rate: in this regime the pattern is

similar to DLA clusters (Lenormand 1986).

the value 1.80 < D < 1.83 determined experimentally.

If the flow rate is considerably increased (few seconds per experiment)
the capillary forces become negligible compared with the viscous ones. In
this case, it is the non-local distribution of pressure within the more viscous
fluid which dominates the flow. The situation is very similar to that exist-
ing in an ordinary Hele-Shaw cell, except that the varying channel widths
represent local fluctuations in the parameter dy. As a result fractal viscous

fingering patterns are observed (Fig. 10.3c) having a geometry almost in-
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distinguishable from diffusion-limited aggregates (Chen and Wilkinson 1985,
Lenormand 1986). Decreasing the level of randomness in the channel widths

leads to structures analogous to noise-reduced DLA clusters (Kertész and
Vicsek 1986).

Porous media can also be modelled by placing a layer of randomly
distributed glass spheres of diameter about 1mm between the plates of a Ilele-
Shaw cell (Maloy et al 1985). In these experiments DLA type patterns have
been observed as well. The corresponding fractal dimension can be calculated
by digitizing the pictures taken from the growing structure. The application
of methods described in Section 4.2. gives an estimate D ~ 1.62 somewhat
lower than D =~ 1.71 characteristic for two-dimensional DL A clusters. In
such experiments the width of an individual finger is comparable to the
holes between the glass spheres. If the injected fluid preferentially wets the
medium, the structure of the interface remains qualitatively the same, but

the finger width becomes much larger than the pore size (Stokes et al 1986).

Cells packed with non-consolidated, crushed glass have also been used
to study viscous {ingering in three dimensions (Clement et al 1985) which rep-
resents a more important case from the practical point of view. The observed
interfaces are complex, however, it is quite difficult to obtain an accurate es-
timate for the fractal dimension from the experimental data. An elegant
three-dimensional experiment related to viscous fingering will be discussed
in Section 10.4.

One interesting aspect of the micromodels is related to a special dis-
tribution of channel widths. Assuming that a fraction of the channels is
completely blocked, while the rest of them have the same width, one arrives
at networks of channels corresponding to percolation clusters (Oxaal et al
1987). Let us assume that the concentration of conducting channels is equal
to p. Then at the percolation threshold, p., there exists a fractal network of
open channels in the system and the model can be used to investigate the
phenomenon of viscous fingering on a fractal. The incompressibility of the
trapped fluid regions and the presence of singly connected paths gives rise to
a number of non-trivial eflects in such experimental systems. Most impor-

tantly, the fractal dimension of the viscous fingering patterns is considerably
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reduced compared with its value on networks, where each of the channels
has a finite conductivity of varying degree. Since a finger which connects
two sites on the backbone must pass through all the singly connected bonds
on the link between these two sites, the overlap of patterns obtained for in-
dependent injections is relatively high. The resulting fractal dimension is
1 =13

Fractal viscous fingering can be observed in systems without any ran-
domness imposed by stochastic boundary conditions. Using a smectic A liquid
crystal as the more viscous fluid in a radial Hele-Shaw cell it is possible to
study a fractal — non-fractal crossover in the morphology of viscous fingers
as the role of the inherent fluctuations decreases (Horvath et al 1987). Fig.
10.4 shows the patterns which are obtained if gaseous nitrogen of varying
pressure is injected into an 8CB Licrystal (BHD) at a temperature of 24°C
corresponding to the smectic phase. The experiments with liquid crystals
are usually carried out in a cell which is smaller than the standard versions.

The linear size w is typically in the region of 7-10 cm, while the distance

between the plates is about b ~ 40um.

a

Figure 10.4. Increasing the pressure of air injected into a layer
of smectic A liquid crystal results in a crossover in the global be-
haviour of the patterns. (a) For low pressures (p = 30mmllg) the
interface has a structure analogous to that of DLA clusters, while
(c) the patterns become homogeneous (non-fractal) for large pres-
sures (p = TOmmllg) (Horvdth et al 1987).

If the applied pressure is small, randomly branching interfacial pat-
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terns are observed whose open structure is similar to that of DLA clusters.
The fractal dimension associated with the bubble shown in Fig. 10.4a is close
to 1.6. However, this open geometry crosses over into a homogeneous DRS

(Fig. 10.4c) when the pressure of the injected N, is increased.

The above results can be interpreted on the basis of the specific inter-
nal structure of smectics. If the plates are not prepared to provide an ordering
of the molecules on a length scale comparable to w, the director (the local ori-
entation of the elongated liquid crystal molecules) s randomly changes within
the sample. As a result of the orientational disorder the screening effects be-
come dominant. The mechanism for the relevance of fluctuations is provided
by the fact that the shear viscosity in an anisotropic liquid is strongly orien-
tation dependent, thus the local ordering of the molecules indicates “ecasy”
or “hard” local flow directions. The application of large pressures is likely to
destroy the state in which a well defined director can be associated with the
different parts of the sample. In this case the behaviour is expected to be
analogous to that observed for isotropic fluids. Indeed, Fig. 10.2b and Fig.

10.4c are in qualitative agreement,

In addition to the above discussed examples, the structure of viscous
fingering patterns has fractal properties (Fig. 1.c) analogous to DLA if two
miscible, non-Newtonian (or shear-thinning) {luids are used in the experi-
ments (Nittmann et al 1985, Daccord et al 1986). In such a system the
surface tension is practically zero and the flow velocity is determined by the

expression
v ~ (Vp)*, (10.7)

where the exponent % is in a typical experiment, larger than 1. For Newto-
nian fluids k£ = 1 (10.4). Correspondingly, the pressure distribution satisfies
the equation V(|Vp|*~1Vp) = 0, which is also different from the Laplace
equation (9.1). Because of the (Vp)* term in (10.7), for k > 1 the preferen-
tial growth of the tips is more pronounced in the non-Newtonian case than

for Newtonian growth.

The related experiment can be carried out by injecting dyed water into
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Figure 10.5. (a) Digilized image of a fractal viscous fingering

pattern obtained by injecting water into a non-Newtonian, miscible
liquid. (b) The region of fastest growth is visualized by subtracting
the images of the same finger photographed at slightly diflerent
times (Daccord et al 1986).

a layer of aqueous solution of polysaccharide. The viscosity of the polymer
solution depends on the actual velocity, but it is usually 102 — 10* times
larger than that of the pure water. Fig. 10.5 shows the digitized image of a
representative pattern together with a picture demonstrating the preferential
growth of tips. The mecasured [ractal dimension D ~ 1.7 is close to the
DLA value in this case as well. Analogous patterns are grown if water is
injected into clay slurry (Damme et al 1986), which is a system of practical

importance.

Fig. 10.5 also indicates a possible method to calculate the mult:-
fractal spectra describing the distribution of experimental growth velocities
(Nittmann et ol 1987). These velocities can be estimated by simply sub-
tracting subsequent images of the same finger taken at slightly different times.
Then an analysis along the lines discussed in Section 3.2 and Section 9.4. can
be applied to determine the spectrum of fractal dimensions f(«). Because
of the limited available resolution it is not possible to obtain quantitatively
accurate results using this technique; however, the qualitative behaviour of

the calculated quantities has been found to be of DLA type.
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10.1.3. Viscous fingering with anisotropy

The crucial role of the anisotropy of surface tension in the formation of in-
terfacial patterns has recently been demonstrated by a number of theoretical
approaches and computer simulations (Sections 9.2.2. and 9.3.). These stud-
ies have also indicated that diverse sources of anisotropy may lead to similar
results. Lxperiments on viscous fingering in appropriately modified versions
of the radial Hele-Shaw cell represent a valuable tool for the investigation of
the combined effects of anisotropy and the driving force (pressure difference)
in real systems. In particular, the conditions leading to the stabilization or

destabilization of the tips of fingers are of special interest.

Anisotropy can be introduced into the experiments on viscous fingering
in isotropic liquids by engraving a mesh on the surface of the glass plates
of the cell (Ben-Jacob et al 1985). For a given set of grooves there are
two parameters which can be monitored in the course of an experiment.
Increasing the distance b between the two plates generally corresponds to
decreasing the eflective anisotropy, while in order to investigate the role of
driving force one changes the pressure of the less viscous fluid. In the basic
version of such experiments air is injected into an ordinary viscous liquid
(e.g. glycerine). The grooves commonly have a depth, a width and an edge-
to-edge distance about 0.5-1,0 mm. It has been demonstrated that a small
separate bubble located at and moving together with the tip of a growing
finger introduces an elfective anisotropy as well (Couder et al 19864, 1986b)
leading to interfaces analogous to one of the structures shown in I'ig. 9.3
(middle picture of Ib).

The types of patterns which are observed if the grooves are engraved
according to the geometry of a triangular lattice are shown in Fig. 10.6. In
this set of experiments b is fixed and the morphological changes are obtained
as a function of the increasing pressure p. For low values of p faceted growth
(a) is found. When increasing the pressure the interface becomes unstable
against tip splitting (b), and an entirely disordered structure develops in the
cell. A necdle crystal type pattern having stable tips and a sixfold symmetry
(c) is observed, if p is further increased. Finally, for the largest pressures ap-

plied, the radius of curvature of the tips is reduced and side branches appear
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Figure 10.6. These patterns are observed in a radial Ilele-Shaw
cell as a function of increasing pressure if one of the plates has a
triangular lattice engraved on it.

on the main dendrites (d). The sixfold symmetry due to the underlying mesh
is approximately conserved in this case, in analogy with the structure shown
in Fig. 9.10. Correspondingly, this pattern is likely to have a non-trivial
radius of gyration exponent. Ilowever, such measurements have not been

carried out,

A rich variety of morphological phases can also be obtained in a simpler
system, where a set of parallel grooves is etched on one of the plates (Horvath
et al 1987). A systematic serics of experiments with this geometry allows
the construction of a morphological phase diagram of the non-equilibrium
patterns observed in the system. The results are summarized in Fig. 10.7,

where the phases are indicated by their typical patterns.

This figure demonstrates the complexity of the phenomenon of viscous

fingering with anisotropy as a function of the driving force. Depending on the
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Figure 10.7. Morphological phase diagram of the interfacial pat-
terns obtained in the radial Hele-Shaw cell with a unjiaxially en-
graved plate. Varying the pressure (p) and the distance of the
plates (b) relatively sharp transitions can be observed between the
different phases denoted by characteristic patterns (Horvdth et al
1987).

value of the parameters b and p, the direction of the stable growth changes
and virtually all of the possible geometries can be achieved. The crossover
from one kind of pattern to another one is quite sharp taking place in a
narrow pressure interval. For low pressures the growth can be stable in the
“hard” direction (perpendicular to the grooves) and unstable (splitting tips)
along the grooves. This situation is reversed as the pressure is increased.

Another typical case is when stable tips grow in both directions.

The experiments with an imposed anisotropy suggest the following
picture of the interplay of anisotropy and pressure difference. It is plausible
to assume that the mechanism by which a tip growing in the direction per-
pendicular to the grooves is coupled to the channels is different from that

dominating in the case of parallel growth. The response of these mecha-
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nisms to the changes in the pressure is expected to be different; the cffective
anisotropy in the perpendicular direction decreases, while in the parallel di-

rection it increases as larger pressures are applied.

The presence of the direction dependent couplings explains the non-
trivial behaviour of the effective anisotropy as a function of  and p and this
is the reason leading to the complex phase diagrams of the type shown in Fig.
10.7. It is important to point out that the above situation is typical, because
in the real systems exhibiting pattern formation the anisotropy has several
sources. In fact, this can be taken into account by the two terms in the
boundary condition (9.4), where the equilibrium and kinetic contributions
are represented separately. I'or fast growth the anisotropy in the kinetic
coellicient 8 dominates the growth, but in the slow regime it is not expected
to play an important role. If the angular dependence of the static surlace
tension -« is different from that of 3, the competition between the anisotropies

gives rise to a rich behaviour.

In the experiments discussed above the anisotropy was imposed exter-
nally by engraving a macroscopic grid on the plates. Another alternative is
to use a liquid which is tnherently anisotropic on a microscopic scale (Buka
et al 1986). This can be achieved by placing a liquid crystal having an angu-
lar dependent shear viscosity into the cell. The anisotropic nature of liquid
crystals is manifested only if there exists a well defined local director, i.e.,
the elongated molecules are directed approximately uniformly in the given
region. In the experiments with nematic liquid crystals the flow of the liquid
itself provides the neccessary orientation. As soon as the fluid pushed by the
injected air starts flowing away from the central hole, the molecules become
radially oriented (this can be checked by crossed polarizers). Nevertheless, for
low injection rates the growing interface goes through repeated tip splittings
and one obtains a pattern characteristic for Hele-Shaw cells with isotropic
liquids (see Iig. 10.2a).

However, increasing the flow rate results in the qualitatively different
behaviour shown in Fig. 10.8. The tips become stable and the observed
structure looks like a snowflake type dendritic crystal. A further increase

of the pressure induces another morphological transition: the tip splitting
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Figure 10.8. Viscous fingering pattern obtained by injecting air
into a thin layer of a nematic liquid crystal (7A Licrystal, BDH) at
room temperalure. The radial alignment of ithe molecules and the
anisotropic shear viscosity results in stabilization of the tips (Buka
et al 1986).

mechanism is restored and the resulting patterns (FFig.10.1d) seem to be
space filling (in analogy wilh Iig.10.2b). The above described tip splitting —
dendrites — tip splitting reentrant transition can be observed as a function of
the decreasing temperalure as well (Buka ef al 1987). A possible qualitative
interpretation of the above transitions is based on the assumption that for
slow flow the molecules are not orientated enough to produce the necessary
anisotropy to stabilize the tips. On the other hand, for large pressures the
director at the interface is likely to become turbulent and the local ordering

of the molecules is lost.

Carrying out experiments with a smectic A liquid crystal can be used
to demonstrate the elfects of inherent uniazial anisotropy (Horvdth et al
1987). The local director in smectics is not dependent on the applied pres-
sure as much as in the case of nematics, therefore, it is possible to investigate
the influence of a preliminary allignient of the molecules. During such exper-
iments the temperature of the sample is increased to a value corresponding to

the isotropic phase and then an external magnctic field parallel to the plates
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b

Figure 10.9. If the molecules of the smectic liquid crystal are
preoriented by an external magnetic ficld, the interface becomes

elongated. (a) For small pressure the pattern is clongated in a
direction perpendicular to the field; (b) at p =~ 35mmllg a crossover
takes place and the fingers grow easicr parallel to the field (ITorvith

el al 1987).

is applied. The field aligns the molecules along its direclion and as the liquid
crystal is cooling down this orientation freezes in. For a given pressure of the
injected air the overall shape of the bubbles changes [romn nearly circular 1o

an elongated one as the magnitude of the magnetic field is increased.

In the case ol preoriented samples Lhe [ollowing crossover can be ob-
served. I'or very low injection rates the interface is clongated in a direction
perpendicular to the director (Fig. 10.9a). This is understandable, since
in smectic A liquid crystals the molecules are ordered into scparate layers
perpendicular to the director and these layers can slip on each other rela-
tively easily. However, when the pressure is increased, the structure of the
patterns changes qualitatively. It becomes more ramified and elongated par-
allel to the field (Fig. 10.9b) resembling DLA clusters obtained by using an
anisotropic sticking probability (Fig. 6.7). A possible explanation for {his
behaviour is that the larger pressure gradient genecrates dislocations of the

layers and these dislocations move easier in a direction parallel to the field
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(perpendicular to the layers).

10.2. CRYSTALLIZATION

Non-equilibrium solidification processes are known to lead to complex geo-
metrical patterns. There are two basic types of dendritic crystallization: i)
in a pure undercooled liquid and, ii) in an isothermal liquid mixture. IHere
we used the term crystallization (instead of solidification) to express the fact
that crystals can grow in heat treated amorphous (i.e. already solid) mate-
rials as well. In the undercooled case it is the distribution of temperature
which represents the rate limiting quantity, while during isothermal crytal-
lization the concentration of the diffusing atoms dominates the phenomenon.
In the following the term diffusion will be used for the transport of both heat

and mass.

The equations describing crystallization (Langer 1980) in the limit of
large diffusion length, | = 2C/v,, and large diffusivity in the crystalline
phase are the same as (9.1-9.4), where C is the diffusion constant and v, is
the normal velocity of the interface. In many cases these assumptions are
not valid, and instead of (9.1) it is more appropriate to describe the process

by the diffusion equation expressing the conservation of heat or mass
C;Viu = du/ot, (10.8)

where u denotes either temperature or fi, and C; is the diffusion constant in
substance 7. Here & is the difference between the chemical potential x and
its equilibrium value for two phase coexistence at the temperature at which
the crystallization takes place. If the diffusivity in the crystallized phase
is not much larger than in the surrounding one, the boundary condition
(representing a continuity equation at the surface) (9.2) should be modified

to have the form

Un = [Ccryst(vu)cryat = Csurr(vu)surr]ﬁ, (10-9)
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Figure 10.10. Part of the tree-like crystalline phase growing in an
amorphous GeSeg thin film heat treated at 220°C (left). The plot
on the right gives an estimate D =~ 1.69 for the fractal dimension
of the pattern shown in part (a) (Radnéczy et al 1987).

where the subscripts indicate quantities in the crystalline and the surround-
ing phases (the latter can be either liquid or amorphous). It is important to
be aware of the fact that unlike viscous fingering the approximations leading
to the set of equations (9.1-9.4) are frequently not satisfied for crystallization.
In some cases this is the reason why the observed complex patterns are not

fractals.

Because of the regular microscopic structure of the growing phase, the
development of single crystals is typically dominated by the anisotropy of the
surface tension. Accordingly, the patterns observed in these experiments are
more or less symmetric. To obtain randomly branching fractal structures one
can study crystallization in an amorphous thin fum (Radnéczy et al 1987). In
this system, the eflects caused by the anisotropic surface tension are expected
to be small because the new phase is polycrystalline with preferred growth

directions randomly distributed.

Fig. 10.10a shows a highly ramified polycrystalline branch grown in an

amorphous GeSe; thin film. Such pictures can be obtained by heat treating
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the amorphous sample prepared by vacuum evaporation and taking trans-
mission electron micrographs of the patterns. Crystallization is observed
at 220°C, which is well below the GeSe; glass transition temperature of
265°C. Digitizing the image an estimate for the fractal dimension of the pat-
tern shown in Fig. 10.10a can be given. One counts the number of dark
pixels n(r) at a radius r from the centre of mass and assumes the scaling
n(r) ~ r2~1. From the related log-log plot shown in Fig. 10.10b the value
D =~ 1.69 is obtained (Radndezy et al 1987) which is very close to the fractal

dimension of diffusion-limited aggregates generated in two dimensions.

Fractal crystallization in the present example is likely to be due the
mechanism analogous to that occurring in the isothermal solidification of a
liquid mixture. This mechanism represents one of the ways how the Mullins-
Sekerka instability is manifested (Section 9.1.). Let us assume that the main
components are not present with their exact stoichiometric concentrations,
e.g., ¢ge > ¢ge/2. Then, if the temperature is higher than the amorphous-
solid transition temperature, crystallization of GeSe, starts at places which
are somewhat warmer or contain more nucleation centres. The crystallizing
phase expels excess Se so that the amorphous region becomes further enriched
in Se. This excess of Se must diffuse away before further crystallization can
occur. Concentration gradients are greatest at the most advanced parts of

the interface, and the corresponding instability drives the system.

To understand the phenomenon better, a few further remarks are in
order. An estimation for the velocity of the interface and for the diflusion
constant of Se in GeSes at 220°C suggests that the diflusion length ! in
the bulk is very small compared with the size of the pattern. Thus, a fractal
interface can not be formed through bulk diffusion of atoms. However, surface
diffusion coeflicients are commonly measured to be 108-101° times larger than
those of the bulk. Advancement of the crystallization front through surface
diffusion would account for the scale invariance of the observed structures.
In a solid-solid phase transition a number of additional factors are expected
to affect the results. The specific volume of the crystalline phase is smaller
than that of the amorphous state and because of this, long-range elastic

forces are created during the growth which may also play an important role
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in the fractal growth.

Interestingly, a qualitatively dillerent behaviour can be observed in a
closely related system of vacuum deposited Alg 4Gegs amorphous thin films
(Ben-Jacob et al 1986). After heat treating the sample at a temperature of
230°C dense radial structures (DRS) have been found to grow at many sites
(Fig. 1a). As revealed by electron diffraction studies the growing phase is
polycrystalline Ge, which is surrounded by an Al-rich region being a nearly
perfect crystal. One of the possible reasons for the apparent non-fractality of
the obtained patterns may be the relative shortness of the diffusion length.
The physics of dense radial growth is not completely understood yet and it
has recently been subject to intensive theoretical and experimental investi-
gations (Grier et al 1987, Alexander et al 1988, Goldenfeld 1988).

A number of further experiments on pattern formation in thin films
have demonstrated the development of complex interfacial structures. Ran-
dom dendritic structures were observed to grow in NbGe, sputter deposited
onto silica (IElam et al 1985). The skeleton of these objects was found to have
a fractal dimension close to 1.7. In some of the cases the obtained structures
have been suggested to be fractals, however, in the light of recent results on
dense radial growth it is more plausible to assume that the geometry of the
observed patterns is analogous to the dense radial structure. The complex
crystalline phosphorlipid domains growing in monomolecular layers (Miller
et al 1986) and the patterns observed in ion irradiated Ni-Mo alloy films (Liu
et al 1987) seem to fall into this category (schematically shown in Fig. 9.3,
ITa). Note, that one can call a physical object fractal if the corresponding
non-integer scaling is well satisfied at least for two orders of magnitude (Sec-
tion 2.1.). (Sometimes one makes exceptions when the scaling holds with

particularly good accuracy.)

Randomly branching, fractal dendritic growth of single crystals can
be produced by introducing fluctuations ezternally (Honjo et al 1986). Con-
sider a supersaturated solution of NH4Cl between two smooth parallel plates
separated by a small distance of ~ 5um. In this system the anisotropy of
the surface tension causes very regular dendritic growth. Strong random

perturbations can be imposed by replacing one of the plates with another
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Figure 10.11. (a) Superimposed picture of a growing NH4Cl
crystal taken at 20-sec intervals. The growth is confined between

glass plates separated by 5um. (b) Estimating the fractal dimension

of the pattern (a) from the dependence of the crystal’s area on its

radius of gyration (D =~ 1.67) (IHonjo et al 1986).

one having a rough surface. This experiment is related to those designed
to study viscous fingering in random media. On the other hand, it repre-
sents an opposite approach to engraving on the surface of the Ilele-Shaw cell
a regular lattice (Section 10.1.2 and 10.1.3.). There, anisotropy had to be
introduced because the fluid had an isotropic surface tension, while in the
present case one intends to get rid of the anisotropy by scratching the plate.
It should be noted that for very large undercoolings some of the dendrites
can grow in a direction dilferent from the crystallographic one even in a cell
without randomness. In such cases spontaneous splittings of the tips have

been found.

Fig. 10.11a shows a typical pattern obtained with a plate having a
characteristic length of roughness approximately equal to 7.5 gm. The de-
velopment of the structure is indicated by superposing the digitized pictures
corresponding to subsequent stages of the process. As in DLA, those are
only the tips which advance significantly. The width of the fingers is roughly
the same as the mean length of the roughness. The interface is very similar

to the small scale viscous fingering patterns observed in Hele-Shaw cells with
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randomness, and is also reminiscent of the computer simulation shown in Fig.
9.13. The dependence of the crystal’s area on the radius of gyration is dis-
played in Fig. 10.11b. Although fractal scaling with an exponent D ~ 1.67 is
found on a length scale somewhat less than a decade, the data points follow
a straight line with a surprising accuracy. This suggests the continuation of

similar behaviour to considerably larger sizes.

The overlapping patterns shown in Fig. 10.11a provide a suitable
basis for the multifractal analysis of the growth velocities (Ohta and Honjo
1988). Let us define the growth probability distribution as a set of normalized
velocities p; = v;/ ), vj, where v; is the normal velocity of the interface at
the jth pixel point. Then the f(a) spectrum can be determined using the
method discussed in Chapter 3., Section 6.1.4. and at the end of Section 9.4.

There are several ways to determine the set of v;-s. One possibility
is to calculate the velocity of the interface directly by measuring the length
of the interval which is perpendicular to the surface and is bounded by two
successive perimeter positions. The boundary condition (9.2) can be used for
an indirect determination of the interfacial velocity through the knowledge of
the temperature gradients at the surface. These gradients are calculated by
numerically solving the Laplace equation. This is the same procedure which
was used to study the multifractal properties of the growth site distribution

of off-lattice diffusion-limited aggregates.

The results for n(p) and f(«) are displayed in Fig. 10.12, where n(p)dp
is the number of places with a growth probability between p and p + dp.
Fig.10.12a demonstrates that the direct determination of the growth veloc-
ities is rather limited by the resolution. Thus, this method does not allow
the calculation of f(a) for a > 1, because this is the region in which low
growth probabilities give the dominant contribution. The f(«a) spectrum de-
termined from the calculated gradients is in good agreement with the related
results obtained for DLA clusters. The limiting cases Dg =~ 1.63, D; ~ 1.13,
O_oo =~ 9.4 and oy = 0.6 are in reasonable accord with the corresponding
numerical and the following theoretical results for DLA: Dy = 5/3, D; = 1
and ag = 2/3.
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Figure 10.12. (a) The distribution functions, n(p), obtained from
determining the velocity of the interface of the experimental pattern

shown in Fig. 10.11a. The velocities were both measured directly

(V) and calculated from the corresponding temperature gradients

(V). (b) The spectrum of fractal dimensionalities (f(«)) deter-
mined from the calculated data for the temperature gradients (Ohta

and Honjo 1988).

10.3. ELECTROCHEMICAL DEPOSITION

In a typical experiment on electrodeposition two elecrodes are immersed into
an ionic solution and one observes the structure made of metal atoms de-
posited onto the cathode. The anode and the cations are of the same metal
and a stationary concentration of the cations is maintained by the dissolution
of the anode itself. The most common experimental setup (Matsushita et al
1984) is similar to that of the radial Hele-Shaw cell: the electrolite is kept
between two close glass plates with a circular anode surrounding the cathode
located at the centre. The typical sizes are 10 cm (diameter) and 0.5 mm
(distance of the plates), while the applied voltage is in the range of 1 to 20
Volts.

The growth of electrodeposits involves a number of sinultancous pro-
cesses which lead to a quite complicated behaviour of the system as a function

of the applied voltage and chemical concentration. As a result, the experi-
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mentally observed morphological phase diagrams are rich (Grier et al 1986,
Sawada et al 1986) and do not entirely coincide even for the same values of
the above parameters. Deviations from a purely Laplacian growth are ex-
pected to occur due to the following problems: i) the transport of the ions
is affected by convection of the fluid, ii) at high voltages gas evolution takes
place because of electrolysis of water, iii) the ion can be driven both by the
concentration gradient and the electric field, and iv) the actual voltage drop
within the electrolite is unknown (unless reference electrodes are used), be-
cause of the voltage drops within the deposit and in the surface layer of the

electrodes.

To see the relation of electrochemical deposition to Laplacian growth
one first assumes that the elfects of convection can be neglected on a length
scale much larger than the distance between the plates. Furthermore, let us
suppose that only one kind of the ions (having a local concentration c) is
electroactive. The total current of this ion j (due to both diffusion and drift
in the field) is proportional to the gradient of the associated electrochemical
potential (e.g. Kessler et al 1988)

p=A(T) + kT Inc + q¢, (10.10)

where A(T') is a temperature dependent constant, k is the Boltzmann factor,
q is the electric charge per ion and ¢ is the electric potential. Next we
introduce the dimensionless diffusion field v = p/gV (with V denoting the
applied voltage), and note that in the quasi-stationary limit the divergence

of the total current vanishes, i.c., Vj ~ V2u = 0.

As an extension of the above conservation law to the interface one
obtains the boundary condition concerning the velocity of the interface
Un ~ N ] ~ AVu in accord with (9.2). It is less straightforward to specify
the boundary condition prescribing the value of u on the growing interface.
It can be shown that in the limit of small growth rate this last boundary
condition becomes analogous to (9.4) (without the kinetic term). In general,
however, the condition of local thermodynamic equilibrium is not satisfied in

electrodeposition processes and the kinetics of charge transfer at the interface
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results in a relation for u on the surface more complicated than (9.4). On the
other hand, in the far-from-equilibrium limit the interface acts as a perfect
absorber and this condition corresponds to the situation characteristic for
DLA. It has also been argued that in the case of dense radial growth the
potential at the interface is determined by the resistivity of the filaments (in

other words by the voltage drop across the deposit).

The above mentioned complez reaction kinetics at the interface is likely
to be the reason for the rich behaviour of electrochemical deposition. In
fact, it is only in the process of electrodeposition that the three basic types
of patterns (homogeneous, random fractal and dendritic) can be observed
without changing the conditions of the experiment qualitatively (Grier et
al 1986, Sawada et al 1986). This is demonstraled by the bollom row of
Fig. 1., where zinc metal deposits of various morphologies are displayed.
These rather different patterns were obtained as a function of the ZnSO,
concentration and the applied voltage only. For the homogeneous or dense
radial structure D =~ 2, while the value D ~ 1.65 obtained for the random
fractal patterns (Matsushita et al 1984) is in good agreement with the DLA
result. Estimates for the fractal dimension of the observed dendritic patterns

have not been reported,

The differences in the macroscopic geometrical properties of the ob-
served patterns is in a close relation to their microscopic structure. This
can be shown using electron microscopy and x-ray diffraction for examin-
ing the deposits. Transmission electron micrographs suggest that during the
dendritic and tip splitting modes of growth the structures are dilferent on
the microscopic level as well (Grier et al 1986). In Fig. 10.13a a small part
of a DLA-like, random fractal deposit is displayed. The isotropic rings in
the inset (which is a selected area diflraction pattern from such a region)
demonstrate that there is no long range ordering of atoms in the tip splitting
deposits. On the other hand, micrographs taken from the dendritic tips (Fig.
10.18b) suggest that they are characterized by large, rounded crystal facets.
In addition, the corresponding dillraction patterns (inset in Fig. 10.13b)

consist of well defined diffraction peaks indicating long range order.

As in the case of diffusion-limited deposition models (Section 6.2.)
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20004

Figure 10.13. Transmission electron micrographs and diffraction
patterns of electrodeposited zinc. (a) Picture of a tip observed in
the DLA-type regime. The diffuse rings in the diffraction paliern
(inset) indicate amorphous microstructure. (b) Dendritic growth
with crystalline microstructure (demonstrated by the superlattice
diffraction pattern shown in the inset) (Grier et al 1986).

studies of electrochemical deposition onto linear electrodes provide further
information about the growth. In particular, this arrangement is practical
for carrying out three-dimensional experiments (Brady and Ball 1984). More
importantly, in this approach an ensemble of separate metal trees is found to
grow during the process of deposition (Fig. 10.14) (Matsushita et al 1986).
This feature of the experiment is helpful to strengthen the analogy between
DLA and electrodeposition. To describe the distribution of trees in a quanti-
tative manner, the picture of the deposit is digitized, and the size of a given
tree is defined as the number of pixels s belonging to it. Then n, the num-
ber of trees of size s is determined making an average over several forests of

approximately the same size.

Assuming that for intermediate s the tree-size distribution scales as
ng ~ s~ the estimate 7 ~ 1.54 can be obtained for the exponent describing
the algebraic decay of n,. This value is in remarkable agreement with the re-
lated result for 7 determined from large scale simnulations of diffusion-limited

deposition (see the end of Section 6.3.).

Flectrochemical polymerization of conducting polypyrrole has also
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Figure 10.14. Representative picture of a forest of zinc metal
trees deposited along a linear carbon cathode. The actual size of
this part of the sample is about 6cm (Matsushita et al 1985).

been shown to exhibit rich behaviour (Kaufmann et al 1987). An impor-
tant difference between these experiments and electrochemical deposition of
metal ions is that the polypyrrol monomer is a ncutral species. Polypyrrol is
grown by the removal of two electrons from pyrrole monomers and the subse-
quent polymerization with loss of alpha hydrogens. In addition, the pyrrole
chains are oxidized with about one hole, and one counterion, for every three
monomer units. Because of the neutrality of the pyrrol monomers the experi-
ment is subject to a smaller number of side eflects of electrical origin than the
electrodeposition of metal ions. This could be the reason for the observation
that in the polymerization experiment an increase of the voltage produces
a dendritic — tip splitting crossover, while in the case of depositing ions,

increasing V results in a tip splitting — dendritic morphological transition.

10.4. OTHER RELATED EXPERIMENTS

In this Section two more examples for Laplacian growth will be described. i)
Dielectric breakdown represents a typical random growth process. It occurs
whenever the electric field is strong enough to generate a conducting phase
within an insulator. Lightning is the best known version of this phenomenon.

ii) The other example is concerned with the formation of dissolution patterns
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I'igure 10.15. Time-integrated images of diclectric breakdown
patterns. (a) I'ractal structure obtained in a quasi-three-dimensional
experiment (Niemeyer et al 1984) and (b) a dense branching struc-
ture observed under two-dimensional boundary conditions (cour-
tesy of N. Allen).

in a porous medium. The nature of these experiments allows one to produce
three dimensional objects which can be preserved for later studies of their

fractal properties.

i) Fractal dielectric breakdown patterns can be studied by inducing
a two dimensional radial discharge. To obtain a leader surface discharge
(Lichtenberg figure) one can use the following arrangement (Niemeyer et al
1984). A starter electrode is brought into contact with an insulating (glass)
plate. The other side of the plate is covered by a grounded conducting
material, and the whole system is kept in compressed SFgs gas of pressure
0.3 MPa. Applying a voltage pulse 30kV x1us at the starter clectrode a
propagating discharge pattern can be observed. Fig. 10.15a shows a typical

time-integrated image of such structures.

To estimate the fractal dimension of the pattern displayed in Tig.
10.15a one counts the number of branches n(r) at a given distance {rom the

centre. FFor a fractal of dimension D this number should scale as n(r) ~
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dN(r)/dr ~ rP~1, where N(r) is the total length of all branches (or the arca
measured with a given resolulion) inside a circle of radius r. The branches
are supposed to be extremely thin, and their thickness does not grow with the
size of the object. (The apparent thickening of the branches in Fig. 10.15
is just an optical effect which is due to the number of carriers that have
passed through a given branch.) In fact, there are more branches visible
on the original negative, because the thinnest ones are lost in the course of
reproduction. A careful counting of n(r) suggests a value D ~ 1.7 (Niemeyer
et al 1984) in agreement with the diclectric breakdown model for n = 1
(Section 6.3.).

The physics of dielectric breakdown is quite complicated. During the
growth of a discharge pattern a conducting phase is created as the inter-
face advances. The channels consist of non-equilibrium plasma with mobile
electrons produced by a critical electric field T, through electron impact
ionization. The phenomenon can be described by the standard equation of
electrodynamics: —V2¢ = Q and & = — V¢, where ¢ is the electric potential
and =g Zk,a onk(o) is the density of total charge with nk(o) denoting the
density of charge carriers of charge ¢ e. In the insulating phase Q is equal
to zero, however, within the discharge pattern charge is created, annihilated

and transported according to the expression

dng(o) /0t = Di(o)nk(o), (10.11)

where Dy (0) is a local but non-lincar operator depending on T and ny (o). In
the dielectric breakdown model (DBM) all the details represented by (10.11)
are ignored by simply assuming that ¢ = Constant within the pattern. (This
is a trivial solution of the Laplace equation for a conducting object.) Thus
the charge density is assumed to be different from zero only at the inter-
face, which is consistent with the observations. In addition to the above
assumption, in the dielectric breakdown model the apparent stochasticity of
the process is taken into account by selecting surface sites for occupation

randomly.

In the original simulations of DBM it is assumed that the phenomenon
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is essentially two-dimensional. Correspondingly, as a boundary condition for
the potential (9.3) is used, i.e., ¢ is supposed to be constant along a large
circle. IHowever, the experiment is quasi three-dimensional, and the conduct-
ing material attached to the bottom of the glass plate provides a constant
potential on the surface of a disc being at a small distance from the discharge
in the third dimension. The simulations with 7 = 1 and boundary condi-
tions corresponding to this situation resulted in nearly homogencous clusters
with a dimension close to 2 (Satpathy 1986). On the other hand, the fractal
dimension of the simulated patterns agrees well with the experimental value

if an exponent n = 4 is used in the calculation of the growth probabilitics.

The complexity of the problem is further emphasized by Fig. 10.15b,
where a discharge pattern obtained in a two-dimensional ezperiment (Allen
1986) is shown (with a circular electrode in the same plane with the pattern).
In this case the structure scems to be dense (D = 2) (Niemeyer et al 1986),
while DBM gives D =~ 1.7. Since on physical grounds one expects n = 1,
one concludes that to make the DBM become a realistic model for dielectric
breakdown a number of such additional effects have to be taken into account
as the existence of a threshold field and the internal resistance of the plasma

channels.

ii) Chemical dissolution of a porous medium involves the flow of a liquid
in the medium coupled with a chemical reaction. In this sense the process is
similar to viscous fingering in a random environment, with the difference that
with the motion of the interface part of the medium is removed (dissolved).
The main idea of the experiment (Daccord and Lenormand 1987, Daccord
1987) is based on the phenomenon that plaster (hydrated calcium sulfate) is

slightly soluble in pure water.

The related investigations can be carried out in a three-dimensional
sample with a characteristic linear size ~ 5 cm. The plaster is prepared by
mixing 10 parts of pure water with 11 parts of CaS04-0.5H,0. Initially the
sample is saturated with water so that the system is in chemical equilibrium.
Then pure water is pumped through one of the faces at a constant rate,
displacing the saturated water and subsequently dissolving some of the plas-

ter. The resulting three-dimensional dissolution pattern is displayed in Fig.
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Figure 10.16. Three-dimensional trees obtained at the end of an
experiment on chemical dissolution. These structures are made of
Wood’s metal which was used to fill the channels previously etched
by water injected into plaster (Daccord and Lenormand 1987).

10.16 which is obtained by the following method. The channels etched by
the water are filled with melted Wood’s metal, and after cooling the plaster

is completely dissolved.

The structure shown in Fig. 10.16 (and those obtained in the two-
dimensional version of the experiment) reminiscent of the geometry of DLA
clusters. To interpret this analogy one notes that the process of chemical
dissolution shares many features with viscous fingering in a porous medium
which, together with DLA, is governed by the Laplace equation. In ordinary
viscous fingering there is a sharp increase in the viscosity (mobility) at the
interface due to the high viscosity ratio of the fluids, and the motion of the
interface is determined by the pressure distribution in the more viscous phase.

In the experiments on chemical dissolution the injected reactive fluid and the
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saturating displaced fluid has the same viscosity. However, at the interface
(the reactive front), the permeability jumps from a low value in the porous
medium to a much larger value in the etched channels. This corresponds
to a considerable change in the effective viscosities. The randomness of the

medium is provided by the porous structure of the plaster.

At places with high pressure gradient the flow is faster. In these re-
gions the dissolution of plaster is more eflective (its rate is proportional to the
amount of incoming pure water), thus the geometry of the network of chan-
nels follows the flow of injected water. The elfects of injection rate are rather
complex in this experiment, but can be taken into account by appropriate

rules in the related computer simulations (Daccord 1987).

It is far from trivial to give a reliable estimate for the fractal dimension
of the obtained three-dimensional macroscopic objects. One possibility is to
cut out quasi two-dimensional sections from the structure and evaluate the
digitized image of these cross-sections. This procedure destroys the pattern.
An alternative method based on capillary elfects has recently been suggested

to determine D for the type of objects produced by chemical dissolution.

The principle of the technique (Lenormand et al 1987) is to cover the
fractal with a layer of wetting flurd. The structure is first immersed into the
wetting fluid and next slowly lowered into a non-wetting one. Because of cap-
illary effects the wetting fluid remains around the object. The characteristic
radius of curvature I? of the interface between the two fluids is determined
by a balance between capillary and hydrostatic pressures. To evaluate the
fractal dimension one needs to measure the volume of the wetting fluid V (R)
for various R. This can be achieved by using different pairs of fluids. Then
the fractal dimension is obtained using the expression V (R) ~ 3L which is
the same as Eq. (4.9). Application of this method gives an estimate DD ~ 1.8
for the dimension of the dissolution patterns obtained by drilling a thin tube

into the original sample and injecting the water radially from this central
hole.

With the two examples presented in this Section we close the discussion

of phenomena related to fractal growth governed by the Laplace equation.
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Of course, there are numerous further growth processes leading to fractal
structures. Many of these involve mechanisms which are related to, but are
more complex than those reviewed in the present Part. Some of the biological
patterns (trees, roots, blood vessels) (Mandelbrot 1982) or networks of eracks
(Louis and Guinea 1987) in solids can be regarded as examples for growing

fractals as well.
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