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Modeling collective motion: variations on the Vicsek model
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2 Institut des Systèmes Complexes Paris Île-de-France, 57-59 rue Lhomond, 75005 Paris, France
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Abstract. We argue that the model introduced by Vicsek et al. in which self-propelled particles align locally
with neighbors is, because of its simplicity, central to most studies of collective motion or “active” matter.
After reviewing briefly its main properties, we show how it can be expanded into three main directions:
changing the symmetry of the particles and/or of their interactions, adding local cohesion, and taking into
account the fluid in which the particles move.

PACS. 64.70.qj Dynamics and criticality – 87.18.Nq Large-scale biological processes and integrative bio-
physics

Collective motion is everywhere and at every scale, from
herds of large mammals to amoeba and bacteria colonies,
down to the cooperative behavior of molecular motors in
the cell. The behavior of large fish schools and the dance
of starling flocks at dusk are among the most spectacu-
lar examples. To the physicist, they are also highly non-
trivial because they occur without any leader, external
field, or geometrical constraint: collective motion can then
be seen as the long-range orientational order following
spontaneous symmetry-breaking.

Of course, collective motion has been studied in many
fields long before statistical physicists got involved. Ethol-
ogists wonder about the signals exchanged between the
moving animals, evolutionary biologists dissert on the
benefit of moving in groups for individuals and for species.
Robotics engineers strive to design robots which can ac-
complish a cooperative task without central control. Med-
ical doctors try to understand tumor growth or wound
healing, two situations in which cells move collectively.
Because of these different motivations and viewpoints, the
resulting modeling attempts come in many different kinds,
have different goals, and often only aim at describing a
particular situation in as much detail as possible, leading
to over-parameterized models.

It is only recently (say fifteen years ago) that
physicists, in their usual abrupt manner, approached the
problem of collective motion by stripping it down to sim-
ple experiments or models having in mind the sponta-
neous symmetry-breaking picture mentioned above. On
the experimental side, shaken asymmetric granular parti-
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cles constitute the system of choice [1]. On the theoretical
side, the simple model introduced by Vicsek and collabo-
rators [2] —hereafter the “Vicsek model” (VM)— is cen-
tral because of its “minimal” character. In short, in the
VM, point particles move at fixed velocity, align locally
with neighbors, while being submitted to some noise. In
other words, an XY model in which the spins are actively
moving.

In this paper, we briefly recall the essential properties
of the Vicsek model, which have been comprehensively
studied by us recently [3]. Then, we argue that the focal
nature of the VM calls for it being extended, expanded,
along three main directions in order to account for most of
the different types of collective motion listed above. These
are

– to vary the polarity of the particles and of their inter-
action

– to introduce a attraction/repulsion pairwise interac-
tion to allow for cohesion

– to take into account the ambient fluid in which the
particles move

1 The Vicsek model

Point particles move off-lattice in a space of dimension
d with a velocity vi of fixed modulus v0 = |vi| (driven-
overdamped dynamics). The direction of motion of particle
i depends on the average velocity of all particles (including
i) in the spherical neighbourhood Si of radius r0 centered
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Fig. 1. Main properties of the original Vicsek model (d = 2, ρ = 2, v0 = 0.5, periodic boundary conditions). (a) Time-averaged
order parameter 〈ϕ〉t vs noise strength η for L = 64 (black circles) and L = 256 (red diamonds), time averages computed over
2 × 107 timesteps; Inset: corresponding Binder cumulants curves (a sharp minimum towards negative values is a signature of
a first-order-like transition [3]). (b) Asymptotic phase diagram for the transition to collective motion; Inset: Log-log plot to
compare the low density behavior with the mean field predicted behavior ηc ∼ √

ρ (dashed red line). (c) Anomalous density
fluctuations in the bandless regime (see text): Δn scales approximately like n0.8 (L = 256, η = 0.25) (The dashed line has slope
0.8). (d) Snapshot in a rectangular domain of size 1024 × 256 at η = 0.42. Only 50 000 particles are shown for clarity. The red
arrow shows the mean direction of motion.

on i. In a computer, at discrete timesteps Δt, we have:

vi(t + Δt) = v0 (Rη◦ ϑ)

⎡
⎣∑

j∈Si

vj(t)

⎤
⎦ (1)

where ϑ is a normalization operator (ϑ(w) = w/|w|)
and Rη performs a random rotation uniformly distributed
around the argument vector: in d = 2, for instance, Rηv
is uniformely distributed around v inside an arc of am-
plitude 2π η. The positions ri are then simply updated by
streaming along the new direction as1

ri(t + Δt) = ri(t) + Δt vi(t + Δt). (2)

Given the polar nature of each particle, the natural order
parameter to monitor collective motion is just the (nor-
malized) macroscopic velocity ϕ(t) = 1

v0
〈vi(t)〉i. In most

of the following, only its modulus ϕ(t) will be considered.
The two main parameters of the VM are ρ, the den-

sity of particles, and η, the noise strength. At zero noise,
perfect alignment eventually settles in the whole system
(at least if the particles evolve in a domain with periodic

1 Note that the original updating scheme proposed by Vicsek
et al. in [2] defined the speed as a backward difference, while we
are using a forward difference, as most studies of Vicsek-style
models.

boundary conditions). At maximum noise (η = 1), par-
ticles are just non-interacting random walkers. Thus, a
transition must occur in between.

Numerical results have shown that the onset of collec-
tive motion in the VM occurs at a finite noise level ηc, i.e.
there exists a fluctuating ordered phase for 0 < η < ηc.
Extensive simulations going beyond the lengthscales con-
sidered by Vicsek et al. have shown that this transition
is discontinuous (first-order like) (Fig. 1a). The transition
line in the (ρ, η) plane, follows, for small-enough ρ values,
the scaling law expected from a simple mean-field argu-
ment: ηc ∼ ρ1/d (Fig. 1b).

The orientationally-ordered, fluctuating, collectively-
moving phase possesses remarkable features. First of all, it
shows true long-range order [4], even in two space dimen-
sions, a remarkable departure from the equilibrium case of
reference, the XY model, for which only quasi-long-range
order arises.

In a large region of parameter space bordering the
transition line, the density field is not homogeneous, but
is organized in high-density high-order traveling objects
spanning the dimensions transverse to the mean direc-
tion of motion (bands in d = 2, sheets in d = 3, see
Fig. 1d). These objects, in spite of internal fluctuations,
have rather well-defined, exponentially-localized profiles.
They are solitary structures, and do not form regular
wave-trains, and are separated by low-density disordered
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regions inside which particles essentially perform random
walks.

It is only rather far away from the transition line that
these objects disappear, leaving a spatially homogeneous
moving phase. But if order is then high everywhere, the
density field fluctuates anomalously strongly: Consider a
local sub-system containing on average n particles. Nor-
mal fluctuations of n(t), the instantaneous number of par-
ticles in the box, would be characterized by the fact that
Δn ≡ 〈(n(t) − n)2〉 1

2 , the root mean square of the fluctu-
ations scales like

√
n. Instead, here, we observed that Δn

scales like nα with α > 1
2 (so-called “giant number fluctua-

tions” (GNF), see Fig. 1c). Careful numerics in this region
also reveal that, relative to the mean motion, individual
particles undergo superdiffusive transverse behavior.

2 From polar to apolar particles
or interactions

2.1 The nematic equivalent of the VM

The particles in the VM can be considered as “polar”
(they carry a velocity vector). Motivated by the predic-
tion of GNF in active nematics by Ramaswamy et al. [7],
we introduced, a few years ago, the (uniaxial) nematic
equivalent of the VM [5] (in which each particle can be
seen as carrying a rod).

The interaction rule (1) of the polar VM involves the
local order parameter in the neighborhood surrounding
each particle. A similar rule can be defined for apolar par-
ticles, where

∑
j∈Si

vj(t) is replaced by the eigenvector of
the largest eigenvalue of the nematic tensor calculated in
the neighborhood. This eigenvalue is directly related to
the local order parameter, which, for uniaxial nematics in
two space dimensions, is |∑j∈Si

exp (2iθj(t))| (θj is the
angle defining the direction of vj , see [5] for details). To
comply fully with the nematic symmetry, the streaming
step (2) of the polar VM is replaced by

ri(t + Δt) = ri(t) ± Δt vi(t + Δt) . (3)

(The ± sign means that either direction is chosen ran-
domly with probability 1

2 .)
The change of local symmetry for both the particles

and their interaction leads to drastic changes at the col-
lective level. In particular, in two space dimensions, only
quasi-long-range order arises and the transition is of the
Kosterlitz-Thouless type, now in agreement with the XY
model. In three dimensions, true long-range order is ob-
served [6].

As predicted by Ramaswamy et al. [7], GNF are eas-
ily observed in the ordered phase in both two and three
space dimensions (Fig. 2a). Spatial configurations in the
ordered phase consists typically of a single, macroscopic
high-density high-order elongated structure (Fig. 2b) with
ill-defined, highly fluctuating interfaces. These fluctua-
tions are strong enough to trigger the rare events of a
complete rearrangement of the dense cluster, on typical
time scales which diverge with system size.

Fig. 2. Vicsek-like model with nematic particles and interac-
tions (see text). (a) GNF in a two dimensional system of lin-
ear size L = 256 with periodic boundary conditions (ρ = 0.5,
η = 0.08, v0 = 0.5). The dashed line has slope 1, the prediction
of Ramaswamy et al. [7]. (b) configuration in the ordered phase
in three dimensions (cubic domain of linear L = 50, periodic
boundary conditions, ρ = 1/8, η = 0.05, v0 = 0.5, color code
according to local density from blue (low) to yellow (high)).

2.2 An interesting mixed case

Vicsek-style models can also be constructed in which the
symmetry of the particles differ from that of their interac-
tions. A case of particular interest is that of polar parti-
cles interacting nematically. Indeed, when thinking, say, of
shaken elongated polar granular particles, it is likely that
their inelastic collisions are rather nematic than purely po-
lar: when colliding almost head-on, they will glide along
each other rather than align. The same is true for self-
propelled rods [8,9], or for molecular filaments displaced
by motors [10].

The Vicsek-style version of this situation is as follows:
particles carry a vector, so that their streaming is done
according to (2), but their new velocity vi(t+Δt) is given
by the local nematic tensor in the neighborhood: the polar
nature of the particles is disregarded and only their axis
direction is retained to calculate the interaction. Among
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the two opposite directions corresponding to the resulting
nematic axis thus calculated, the one closest to vi(t), the
previous velocity of the particle, is chosen.

We are currently investigating this case in detail. Nat-
urally, both the polar and the nematic order parameter
have to be considered, and one main question is whether
nematic order can set in before polar order (the reverse
is trivially impossible). Some preliminary results at rela-
tively low density (ρ = 1

4 ) are shown in Figure 3. They
indicate that the isotropic-nematic transition, at least for
this density, is a discontinuous (first-order like) one. While
the polar order parameter stays near zero (no polar order),
the nematic order parameter, in the transition region,
switches randomly between order and disorder (Fig. 3a),
leading to a characteristic bimodal distribution (Fig. 3b).
Thus this case is indeed intermediate between the pure po-
lar (VM) and the pure nematic models. The ordered phase
consists, at least in the transition region, of a typically sin-
gle high-density band, with the particles circulating along
its length in both directions: it has high nematic order,
but essentially no polar order (Fig. 3c).

3 Adding cohesion

The Vicsek model, as such, cannot maintain the cohesion
of a moving group: if the particles evolve in an infinite
domain, they will eventually fly apart. In other words, it
is only at finite density that collective motion can arise.
Moreover, particles in the VM are pointlike, and thus have
no physical size. These two shortcomings are serious when
modeling cohesive motion of a fish school, a bird flock, or,
worse, cells in a tissue.

There are various ways of insuring cohesion without
resorting to global interactions, but they all more or less
amount to a classic pairwise attraction-repulsion mecha-
nism. (This is in fact what most models of animal motion
do, see in particular the seminal work of Huth and Wis-
sel [11].) The (polar) VM has been complemented along
these lines [12]. The alignment interaction term in (1)
then competes with a pairwise interaction and the noise
strength, leading to:

vi(t + Δt) = v0 ϑ

⎡
⎣α

∑
j∈Si

vj(t) + β
∑
j∈Si

fijeij + ηniz

⎤
⎦ ,

(4)
where z is a random unit vector, ni the number of par-
ticles interacting with particle i including itself, α and β
measure the relative strengths of alignment and attrac-
tion/repulsion with respect to the noise, eij = ϑ[rt

j − rt
i],

and

fij =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−∞ if rij < rc ,

1
4

rij−re
ra−re

if rc < rij < ra ,

1 if ra < rij < r0 .

(5)

with rij the distance between i and j.

In addition, in [12], the neighbors have been further
restricted to those being Voronoi neighbors: the distance
criterion rij < r0 is sued first, but among these neighbors
only those belonging to the first Voronoi shell are retained.
This confers a topological nature to the interactions, much
alike what is advocated in [13], but with the difference that
if a topological neighbor (strictly Voronoi) is much further
away than the others, it will not interact with the central
particle.

An extensive numerical study of this model in two
space dimensions has allowed to sketch the asymptotic
phase diagram in the (α, β) plane (at fixed η and in the
zero-density limit). At moderate α and β values, a co-
hesive, orientationally-ordered phase exists. This “mov-
ing droplet” regime is the one of interest for real animal
groups. It was also found that at the onset of collective
motion (which is first-order, as in the VM), cohesion can-
not be maintained.

Another finding of importance is the transverse su-
perdiffusive nature of individual trajectories in the mov-
ing phase, relative to the center of mass motion. In d = 2,
the mean square displacement scales like t

4
3 , in agreement

with some calculations or Toner and Tu [4], whereas the
exponent is close to 1.7 in three dimensions (Fig. 4a).

The flock shapes obtained in three dimensions are
rather realistic when compared to typical starling flocks
(Fig. 4b). Such superficial comparison can be mislead-
ing though: recently, the Roman team of the StarFlag
project succeeded in reconstructing the three-dimensional
coordinates of real starling flocks comprising up to 2000
birds [13]. This revealed that, often, the flocks are in fact
rather flat. This flatness cannot emerge from the simple
cohesive model described above as it is built on strictly
polar particles and interactions. We are currently working
on extensions on this model in which the complete symme-
try of a “bird” is taken into account, namely the existence
of a wingplane and a possible modulation of interactions
depending on the positions of neighbors relative to it.

4 Role of the ambient fluid

In many models for collective motion (including the VM),
the fluid in which the animals or cells move, is neglected.
While this is not a problem for, say, herds of gnus, this
is debated for fish schools and bird flocks, for which the
high Reynolds number turbulent flow generated amounts
to a modified effective medium [14]. More crucially, at
the very low Reynolds numbers corresponding to bacte-
ria swimming in a fluid, the long-range hydrodynamic
interactions are probably dominant. (And for man-made
micro swimmers or self-propelled nano rods they are the
only interactions.) Recent experiments indicate that hy-
drodynamic effects influence the collective behavior of
swimming bacteria at large enough particles concentra-
tions [15]. In our view, the results of [15] show that they
prevent the emergence of long-range order, as suggested
earlier by Ramaswamy et al. [7]. In fact, freely swimming
bacteria may be interacting only via hydrodynamic effects,
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Fig. 3. Vicsek-like polar particles with nematic interactions (see text). Two dimensional system of linear size L = 256 with
periodic boundary conditions (ρ = 1

4
, η = 0.2395, v0 = 0.5). (a) Time series of the nematic order parameter in the transition

region. (b) Distribution function of the nematic order parameter from the time series of (a). (c) Snapshot in the ordered phase.
Most particles move along the high-density band, in both directions.

Fig. 4. Vicsek-like model with cohesive interactions (see text).
(a) root mean square displacement of individuals vs time in
the “moving droplet” cohesive phase (no positional order) in
three dimensions (groups of 4096 particles, α = 31.5, β =
1.5, η = 1). The dashed line has slope 1.7. (b) snapshot of a
three-dimensional cohesive flock of 16 384 particles in a similar
regime.

locally aligning in the quadrupolar field generated at short
scales by their elongated shape, while long-range dipolar
interactions may prevent large-scale collective motion.

The simplest way to introduce such interactions in a
Vicsek-like model is to introduce a fluid velocity field U(r)
advecting the swimming particles which, in turn, generate
the velocity field. In two spatial dimensions, a proxy for
the experimentally relevant case of bacteria swimming in
a fluid film, confinement acts as a sink for momentum
perturbations generated by the swimmers, while only mass
displacement plays a role in the far field [16]. Moreover,
many-body screening effects cancel out, and long-range
interactions can be computed as a linear superposition of
elementary dipoles: U(r) =

∑
i ui(r) with

[ui(r)]‖ = v0
x2 − y2

(x2 + y2)2
; [ui(r)]⊥ = v0

2xy

(x2 + y2)2
(6)

where [ui]‖ is the component along vi, [ui]⊥ the transver-
sal one, x = [r− ri]‖, and y = [r − ri]⊥. Note that U(r)
is irrotational, and thus only advective: it does not rotate
the swimmer’s orientation. In this approximation, hydro-
dynamic interactions are indeed long-range and decay as
1/r2. In practice, the dipoles are screened-off below the
(short) interaction range of the VM: When |r − ri| < r0,
the denominators in (6) are replaced by r4

0 , and the VM
alignment dominates (it can be thought of mimicking the
quadrupolar component mentioned above in this context).

With this advecting field thus constructed, the stream-
ing step of the VM is replaced by:

ri(t + Δt) = ri(t) + Δt [vi(t + Δt) + γU(ri(t))] . (7)

where γ controls the strength of the long-range interac-
tions.

Preliminary results indicate that long range hydrody-
namic interactions can indeed destroy coherent motion
(Fig. 5). The band structure can resist some amount of
long-range interactions (Fig. 5b), but polar order is de-
stroyed at higher γ values (Fig. 5c). Surprisingly, at still
larger values of γ however, order is restored, but typical
configurations reveal high-density high-order blobs rather
than bands (Fig. 5d).
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Fig. 5. Vicsek-like polar particles with hydrodynamic long
range interactions (see text). Two dimensional system of linear
size L = 256 with periodic boundary conditions (ρ = 1/8,
η = 0.3). (a) Time-averaged order parameter as a function of
hydrodynamic interaction strength. (b–d) Snapshots of particle
positions and orientations for three different values of γ (as
indicated in (a)). The red arrows point to the mean direction
of motion.

Beyond, further work is clearly needed to clarify the
behavior of this model. A “real” fluid need to be in-
troduced in order to tackle the full problem. Several
groups are currently studying the collective dynamics of
“Stokeslets” [17], but this approach will remain numeri-
cally limited in the number of swimmers that can be con-
sidered.

5 Conclusion

We hope the results presented here may help put the Vic-
sek model in perspective. Clearly, much remains to be
done to explore the avenues only sketched here. The vari-
ations on the Vicsek model presented here remain sim-
ple enough that one stays away from the dangers of over-
parameterization, and very large groups can still be stud-
ied (something desirable in view of the strong finite-size
effects of the original VM). Yet, they allow to approach
many interesting situations of current interest in physics
and beyond.

Particularly intriguing is the emergence of “giant
density fluctuations” in many of the cases considered,
provided the spontaneous segregation between high-
density/high-order regions and low-density/disordered re-
gions takes place. This is similar to the clustering insta-
bility in granular particles colliding inelastically: indeed,
the alignment in VM-style models can be seen as an effec-
tive description of two-body inelastic collisions. We stress
that this non-equilibrium effect, in particular in the case
shown in Figure 2a, is striking: the rms of the fluctuations
scales then like the mean density: a local measurement of
density is thus impossible!

At the theoretical level, reliable, faithful mesoscopic
descriptions of the situations described here are needed
before one attempts to apply field-theoretical techniques
to them. Some progress has recently been recorded to-
wards this [18], but we are still missing stochastic descrip-
tions including the relevant noise terms (which we believe
to be important, especially in view of the strong density
fluctuations).

Finally, model experiments dealing with large numbers
of self-propelled or swimming objects are needed. In this
respect the recent findings on shaken rod-like objects [1]
are encouraging.

Part of this work was funded by the European StarFlag and
the French ANR Morphoscale projects.
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