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Abstract

In these two companion papers, we introduce a new approach to the analysis of bird navigation which brings together several

novel mathematical and technical applications. Miniaturized GPS logging devices provide track data of sufficiently high spatial and

temporal resolution that considerable variation in flight behaviour can be observed remotely from the form of the track alone. We

analyse a fundamental measure of bird flight track complexity, spatio-temporal entropy, and explore its state-like structure using a

probabilistic hidden Markov model. The emergence of a robust three-state structure proves that the technique has analytical power,

since this structure was not obvious in the tracks alone. We propose the hypothesis that positional entropy is indicative of

underlying navigational uncertainty, and that familiar area navigation may break down into three states of navigational confidence.

By interpreting the relationship between these putative states and features on the map, we are able to propose a number of

hypothetical navigational strategies feeding into these states. The first of these two papers details the novel technical developments

associated with this work and the second paper contains a navigational interpretation of the results particularly with respect to

visual features of the landscape.

r 2003 Published by Elsevier Ltd.
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1. Introduction

The navigational abilities of birds are impressive, and
much has been learnt about the mechanisms involved
from more traditional experimental approaches invol-
ving the manipulation of potential cue systems, or their
sensory availability, and subsequent release from
unfamiliar sites. Indeed, it is the homing pigeon that
has provided the bulk of these discoveries. Nevertheless,
a detailed understanding of how birds navigate within
their own familiar area, where they are able to access a
familiar area map representation of some kind, has
eluded Biologists. This is for two reasons. Visual
landmarks probably play the dominant role (Guilford,
1993), yet they are effectively impossible to manipulate
meaningfully on the scale required outside the labora-
tory, especially in the kind of visually rich environments
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in which most birds live. Second, it is starting to become
clear that birds can use multiple strategies in homing,
not single mechanisms as was once thought. The
dominance of any one mechanism may vary with the
availability of the cue system during early experience
(Braithwaite and Guilford, 1995), or, more crucially,
with far more immediate factors causing strategy
switching during the homing event itself. The structure
of a bird’s homing trajectory, however, must contain
exquisite information about the complexity of each
bird’s representations and the dynamics of its naviga-
tional decision making, if only we have the methods to
observe and analyse this structure in sufficient detail.
The removal of selective availability on GPS signals

and the recent development of miniaturized ð35 gÞ GPS
logging devices small enough to be carried by homing
pigeons, has allowed for the first time their detailed
tracking (Biro et al., 2002; Steiner et al., 2000). As a
model species, the homing pigeon is of special value
because it will attempt to return directly home after
release from a site to which its has been displaced
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artificially, and is very tolerant of handling, allowing the
tracking of defined flight attempts from a known release
point to a known target goal, and under experimentally
controlled manipulations. Our prototype devices record
geographical position coordinates every second, storing
up to 100,000 positions, to within 4 m accuracy. This
extraordinary degree of resolution provides a rich
information source on the relationship between a
navigating animal’s moment-by-moment behaviour,
and its position with respect to both the external
landscape and internal factors such as the time since
release. Whilst these data are clearly potentially deeply
insightful of the bird’s navigational decision making
processes, they are far beyond what has been handled by
traditional biological approaches to studying animal
navigation systems.
Our working hypothesis is that the complex naviga-

tional behaviour of birds may be modelled around a
small set of prototype behavioural states which define
different navigation strategies. We further consider the
navigation of the birds to switch between these strategy
states due to internal or external factors. Given this
working hypothesis, we may formulate a mathematical
generative model of the observed navigation patterns
(i.e. the birds’ positional trajectories) based on a set of
hidden (latent) variables which define the unknown
navigation strategies. We believe that the separation of
these strategy states allows for a better understanding of
processes of navigational decision making and the
underlying map-like representations involved.
As our working hypothesis is that navigation requires

the formation of a set of latent (or hidden) ‘strategy’
states, extensions of hidden Markov models (HMMs)
form the basis for our investigations. The HMM is
attractive given that it is a dynamic switching state
model and hence naturally encodes the notion of time-
dependent state changes. The HMM architecture has the
added advantage that it may be drawn as an acyclic
graphical model and thus may be modelled in a fully
probabilistic manner. The advantages of probabilistic
models are well known, in particular, the principled
handling of uncertainty in data and model (Jordan,
1999). Inference in standard HMMs requires the
estimation of state transition probabilities and genera-
tive observation models for each state. The number of
states required to explain the patterns of bird navigation
is unknown. Although some clues could come from
zoological studies, this information is necessarily vague
and here we explore the observation that a fully
probabilistic approach allows the structure in the data
to direct the number of states. We, therefore, do not run
the risk of forcing a switiching-state model to the data if
the data do not support it. We return to this important
consideration later in this paper. This fully probabilistic
approach may be achieved via a sampling paradigm
(Rezek and Roberts, 2000) or, more recently, via the
computationally less demanding approach of variational
learning and it is this latter approach which we
introduce here.
The cross-disciplinary range of the current study is

considerable with novel technical and analytical meth-
ods or their applications in both mathematics and
animal bahaviour. We, therefore, divide the study into
two companion papers, the first dealing primarily with
the mathematical approach, the second with the
biological issues and their interpretation.
The rest of this paper is organized as follows. We first

introduce the basic concepts of embedding a multi-
dimensional time series and estimating its stochastic
complexity. Various desirable properties of the stochas-
tic complexity measure are introduced and examples
given on synthetic data. An overview of the use of
variational Bayesian learning of latent state models
is given in Sections 3 and 4.2. Section 6 gives a
presentation of the results. We conclude with a summary
of this work and a discussion.
Our companion paper gives considerably more results

and details of their biological interpretation; this paper
offers ‘proof of concept’ results only. We, therefore,
suggest the following reading strategy for the biologi-

cally motivated reader: our companion paper followed
by the non-mathematical parts of Section 2, the
introduction to Section 3, Section 4 and finally Section
5.2.3. For the technically oriented reader, we suggest
reading Sections 2–4 and 6 in this paper, followed by our
companion paper.
2. Stochastic complexity

2.1. Why complexity?

There are a wide range of potential measures which
may be inferred from flight-track data sequences. It has
been observed empirically that measures based on the
tortuosity of the tracks bear some relation to hypothe-
sized navigational behaviour (Biro et al., 2002). We
argue that such measures, whilst important, are actually
attempting to measure a more fundamental quality of
the data. We argue that this is the data complexity, i.e.
the intrinsic positional variability associated with short
sections of the flight data, and that this is better
measured using alternative techniques which we intro-
duce here.

2.2. There is no absolute ‘complexity’

Many different definitions, methods and measures of
signal, or system, ‘complexity’ have been proposed.
Some are not well suited to analysis of small-sample
signals, as they are notoriously variant in the presence of
noise and non-stationarities (the classic examples being
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Fig. 1. Schematic example of forming the embedding matrix. A simple

two-dimensional trajectory (thin line) consists of a set of data vectors,

x ¼ ðx1;x2Þ
T which evolves with time. The embedding matrix, Xt; is

formed from concatenation of all x which lie within a window centred

at time t (solid rectangle). As the window slides along the data, to

t þ 1; say (dashed rectangle) so another embedding matrix, Xtþ1; is
formed.
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the correlation dimension (Grassberger and Procaccia,
1983) and the Lyapunov exponent (Wolf et al., 1985).
Several methods of assessing the ‘complexity’ of data
sequences were developed, presented and compared in
(Rezek and Roberts, 1998). The methods investigated
were: optimal model order and prediction error under
autoregressive modelling, Spectral entropy (SE) (Porta
et al., 1998), Approximate entropy (ApEn) (Pincus,
1991) and stochastic complexity based on embedding
space decomposition (ESD). On a variety of biological
and non-biological data sets, it was observed empirically
that autoregressive modelling (a general linear dynami-
cal model) failed to give a reliable estimate of system
complexity, ApEn and SE gave similar results (ApEn is
computationally very expensive—so SE was preferred
for this reason) and ESD methods gave good results
over a variety of data sequences (Rezek and Roberts,
1998). We concentrate in this paper therefore on the
ESD method, which is detailed next. We note, however,
that we do not imply this to be the canonical
representation of system, or data, complexity; merely a
robust measure.

2.3. Temporal information

It is clear that the data we investigate constitute a
time-evolving dynamical system. We would like, there-
fore, to base our understanding of its properties on these
intrinsic dynamics. Although we could formulate a
parametric model for this, we choose, in this paper, to
consider a generic approach first developed for the
analysis of chaotic systems (Broomhead and King,
1986). This approach, referred to as embedding space

decomposition is detailed in this subsection.
We first define the construction of the embedded data

matrix, X, which we obtain in the standard way using
the method of delays (Takens, 1981). We consider some
window on the data sequence as containing p samples
taken at intervals of J samples from the observed q-
dimensional time series xtARq: The elements in the
window represent components of an embedding space in
Rp�q: As the data sequence (time series) is repeatedly
windowed, the series of vectors obtained constitutes the
trajectory, or embedding, matrix. This is depicted
schematically in Fig. 1.
Defining

~xxi ¼ ðxi; xiþJ ;y;xiþðp�1ÞJ Þ
T; ð1Þ

we obtain an embedding matrix, over an N-sample
window, which may be written as

XARNp�q ¼ ð~xx1;~xx2;y;~xxN�ði�1ÞÞ
T: ð2Þ

The value p is referred to as the embedding dimension
and must satisfy

pX2d þ 1; ð3Þ
which sets the lower bound for p given a d-dimensional
manifold in the phase space. Since d is not known a
priori means that in practice the embedding dimension p

is chosen large enough such that redundancy in the
embedding results. This redundancy manifests itself as a
rank deficiency in the embedding matrix X. We may
investigate this redundancy by means of a singular value
decomposition, whereby we decompose X via Eq. (A.1)
in Appendix A.
For a noiseless system with redundancy (i.e. p is larger

than the intrinsic dimensionality of the embedded data
sequence) some singular values, si; will zero. In real-
world situations, however, the observed time series will
be corrupted by noise (including quantization noise). In
the case of white noise, this results in a shifting of the
singular values such that

s2i ’s2i þ/x2S; ð4Þ

where /x2S is the expected noise variance. Hence, no
singular value will be zero. It is noted that noise, in this
context, is taken to be any process whose dynamics is
more complex than the upper limit imposed by Eq. (3)
and hence has no preferred direction in the embedding
space, giving rise to a noise floor in the singular value
spectrum. This is in contrast to those singular values
associated with the deterministic (lower complexity)
system which will be significantly larger (see Broomhead
and King, 1986). Unless stated otherwise, all the
examples shown in this paper used an embedding
dimension of p ¼ 5 over windows of N ¼ 30 samples
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Fig. 2. Left: from top to bottom. Trajectory with Gaussian noise y-

component, linear trajectory, circular trajectory. Right: stochastic

complexity (in bits) from random (solid), linear (dash–dot) and

circular (dashed) trajectories. The x-axis in the right-hand plot is in

samples. All three sequences had the same number of samples.
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(corresponding to a window of 30 s of flight) and lag
J ¼ 1: For a more detailed discussion regarding these
parameters see Kember and Fowler (1993).
To define a measure of dynamic complexity, we note

that, as the number of apparent dynamic components1

increases, so the number of singular values above the
noise floor increases. In the limit, when the system
becomes complex enough to be indistinguishable from
any additive noise, all singular values lie on the noise
floor and have similar magnitude. We may define,
therefore, a pragmatic measure of this trend using the
entropy of the singular value spectrum (Rezek and
Roberts, 1998). We apply a normalization to the
embedding matrix, X such that each column has zero
mean and unit variance. As discussed in Section 2.4, this
ensures desirable invariancy properties for the comple-
city measure. Defining

%siðXÞ ¼ siðXÞ=
X

i0

si0 ðXÞ;

so the stochastic complexity is defined as

HðXÞ ¼ �
XN

i¼1

%siðXÞlog %siðXÞ: ð5Þ

We choose this form so that systems of decreasing
complexity will give rise to decreasing entropy measures.
We will use this entropy-based measure as an indicator
of system complexity. Note that if log2 is taken the
resultant entropy is in bits. In all the examples in this
paper we adopt this convention. Fig. 2 shows the
application of this approach to three sections of
synthetic trajectory. As expected, the entropy measures
show highest values for a random trajectory, intermedi-
1This may not, of course, be the true number of components—the

apparent number is conditional on the sample size, the embedding

dimension, etc.
ate (but low) for a circular orbit and close to zero for a
straight line.

2.4. Invariancy of stochastic complexity

All tracking data consists of arrays of coordinates. It
is clear that many consistent coordinate frames exist and
it is desirable that the measure with which we represent
the track complexity be as invariant as possible to the
precise choice of coordinate frame. In this subsection,
we show that the measure obtained for stochastic
complexity has these desired invariance properties.
Consider an embedding matrix XARNp�q: We may

decompose X into its singular value decomposition,
X ¼ USVT: The squares of the singular values hence
correspond to the eigenvalues of XTX; and it is often
algorithmically easier to deal with the eigenvalue
properties than directly with the singular values.

Theorem. The stochastic complexity measure, HðXÞ; is

invariant under translation, scaling and rotation of X.

Proof. For two embedding matrices, X and Z, the sets
of singular values (and hence the stochastic complexity
measure), SX ;SZ are equal if the probability density
functions gX ðXÞ ¼ gZðZÞ: It is sufficient, therefore, to
demonstrate the invariance of the stochastic complexity
measure to some operation, f on the data Y ¼def f ðXÞ
by showing that, after the normalization operation n;
Z ¼def nðYÞ the densities over X;Z are equal, i.e. gZðZÞ ¼
gX ðXÞ:

1. Translation: Let the q � 1 translation vector, acting
on each dimension of X be denoted by c. The
translation operation is then

Y ¼ Xþ 1Npc
T ¼ Xþ C;

where 1Np is an Np � 1 vector of ones and
C¼def 1Npc

T: The distribution of Y; gY ðYÞ in terms
of gX ðXÞ is then given by

gY ðYÞ ¼ gX ðXþ CÞ:

Hence, any detrending operation on the columns of
the embedding matrix Y gives

Z ¼ Y� 1Np #c
T ¼ Y� #C;

where #c is the q � 1 vector of estimated means,
#C ¼def 1Np #c

T: Hence

gZðZÞ ¼ gY ðY� #CÞ

and the distribution of Z, gZðZÞ; in terms of gX ðXÞ is
then given by

gZðZÞ ¼ gY ðY� #CÞ ¼ gX ðXþ C� #CÞ:
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Fig. 3. A graphical model representation for the standard HMM. The

set of hidden (latent) states St form a sequence which evolves under a

first-order Markov process. Each state generates an observation, Yt;
according to its observation model.
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Since, by definition, C ¼ #C; so

gZðZÞ ¼ gX ðXÞ:

2. Scaling: Let the q � 1 scaling vector, acting on each
dimension of X be denoted by d. The translation
operation is then

Y ¼ Xð1md
TÞ ¼ XD;

where D ¼def 1Npd
T: The distribution of Y; gY ðYÞ in

terms of gX ðXÞ is then given by

gY ðYÞ ¼ gX ðXDÞjDj
�m:

Hence, any variance rescaling operation on the
columns of the embedding matrix Y gives

Z ¼ Yð1m
#dTÞ�1 ¼ Y #D�1 and

gZðZÞ ¼ gY ðY #D�1Þj #Djm;

where #d is the q � 1 vector of estimated variances.
The distribution of Z, gZðZÞ in terms of gX ðXÞ is then
given by

gZðZÞ ¼ gY ðY #D�1Þj #Djm ¼ gX ðXD #D�1Þj #DjmjDj�m:

For zero mean densities #D ¼ D giving

gZðZÞ ¼ gX ðXÞ:

3. Rotation: Let R be a q � q rotation matrix. Hence

Y ¼ RX:

As the normalization operation does not affect
rotation, Z ¼ Y: The distribution of Z, gZðZÞ in
terms of gX ðXÞ is then given by

gZðZÞ ¼ gX ðR�1ZÞ ¼ jdetRjgX ðXÞ:

Since, for any rotation matrix, jdetRj ¼ 1; so

gZðZÞ ¼ gX ðXÞ:
We conclude, therefore, that with mean removal and
variance normalization, the resultant entropic complex-
ity measure on X has invariancy to shift, scaling and
rotation. These invariancies are vitally important when
analysing data which are expressed in terms of arbitrary
(but consistent) coordinate frames, such as those
obtained from maps or GPS systems.
3. State modelling—HMMs

HMMs (see Rabiner (1989) for an excellent overview)
are well-established models with a wide range of
applications. The two main components of the HMM
are its hidden state sequence, St; which encodes abrupt
changes in the data, and a set of observation models,
which model the within-state dynamics of the data. Each
state is associated with an observation model, which
generates (from the model’s perspective) the observed
data, Yt (Fig. 3). Note that this observation is of the
stochastic complexity measure, i.e. Yt ¼

def
HðXtÞ: Tradi-

tionally, the HMM parameters are estimated in the
maximum-likelihood framework (Rabiner, 1989). Max-
imum-likelihood approaches, however, suffer from well-
known problems of over-fitting (the likelihood always
increases with model complexity) and thus the number
of states in the HMM must be known a priori or
estimated by application of (possibly inconsistent)
penalty terms to the likelihood score. A full Bayesian
approach to learning avoids these problems. This paper
describes such a scheme and its application to the
analysis of biological time series.
4. Implementation—variational Bayes HMMs

4.1. Why Bayesian learning?

From the perspective of fitting a model to a finite data
sequence, it is clear that the fitting error decreases with
increasing model complexity. When the model is as
complex as the data then the error reduces close to zero
but we no longer have a model in the strict sense, more a
data look-up table. From both an information-theoretic
and probabilistic learning perspective, we would like to
reduce the joint uncertainty in our representation of the
data (i.e. how well we model it) and the parameters of
the model itself (i.e. large models have many parameters
which we are unable to infer without high uncertainty).
Bayesian (or probabilistic) learning consists of a
principled approach to inference in the presence of
uncertainty (especially important when dealing with
real-world, finite and noisy data sequences) and may be
broadly seen as finding a tradeoff between maximizing
the probability of the data and the model simulta-
neously. This gives rise to a principled mathematical
encoding of Occam’s razor in which simpler models,
which still have high explanatory power on the data, are
naturally favoured. In the context of this paper, this
means that overcomplex models (i.e. with too many
assumed states) are suppressed if not supported by the
data itself. The theoretical development by which this
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approach is applied to the HMM is discussed in detail in
the following section.

4.2. Overview of variational learning

Variational inference is a relatively new method for
probabilistic inference. In this framework, integration
over computationally or analytically intractable models
is solved by minimizing the distance between an
approximate but tractable model distribution and the
exact but intractable true model distribution (see
Jaakkola and Jordan (2000) and Jordan et al. (1999)
for excellent tutorials). In this paper, the distribution to
be approximated is the full posterior probability
distribution over all hidden variables (parameters or
hidden states). By approximating the full posterior, one
can reap the benefits of Bayesian analysis, such as full
Bayesian model estimation and automatic penalties for
over-complex models thus avoiding over-fitting.2

Variational learning aims to minimize the so-called
variational free energy (Jaakkola and Jordan, 2000)
between the (intractable) model posterior P and a
simpler (analytic) approximating distribution Q: The
free energy is given as the Kullback–Leiber (KL)
divergence between Q and P; i.e.

F ¼DðQðHÞjjPðH ;V ÞÞ

¼
Z

QðHÞlog
QðHÞ

PðH jV Þ
dH þ log PðV Þ; ð6Þ

where the distribution QðHÞ is defined over the hidden
variables H; such as parameters or hidden states and V

represent the visible variables, such as the data. Since the
first term on the right-hand side is always nonnegative,
the divergence is an upper bound to the true log-
probability of the data, i.e. the evidence. Integral (6) is
maximized with respect to the individual distributions.
Given a set of hidden variables H ¼ fHig; the method

known as ‘mean field’ variational approximation
assumes that the Q-distributions factorize, i.e.

QðHÞ ¼
Y

i

QðHiÞ ð7Þ

with the additional constraint that
R

QðHiÞ dHi ¼ 1:
Under the mean-field assumption, the distributions
QðHiÞ which maximize the free energy integral (6) can
be shown to be (Haft et al., 1999)

QðHiÞ ¼
1

Z
exp

Z
Qð %HiÞlog PðHi j %HiÞ %Hi; ð8Þ

where %Hi ¼ H\Hi (the set of allH excludingHi) and Z is
just a normalization constant.
In this paper, we deviate from the mean field

approach in that, while keeping the mean field assump-
tion for all model parameters yi; we drop the assumption
2Being an approximation, the optimal model is chosen from the

class of approximated and thus suboptimal models.
for the hidden state variables which, importantly, we
wish to retain their Markov structure (the conditional
dependence on past hidden states). Thus, we assume the
Q’s to be of the following form:

QðHÞ ¼def QðSÞQðhÞ

¼
YM
j¼1

QðyiÞ

 !
QðS0Þ

YT
t¼1

QðStjSt�1Þ

 !
;

where S denote the hidden states and h the hidden
Markov model parameters.
5. Variational learning of HMMs

5.1. Definitions

The HMM free energy integral to be minimized is

F ¼
Z

QðSÞQðhÞlog
QðSÞQðhÞ

PðS;YjhÞPðhÞ
dS dh; ð9Þ

where, as before, S denotes the hidden states, Y the data,
and h the Markov model parameters. For an HMM in
which the state variables can take on M distinct values,
the model parameters consist of the initial state
probability p0; the state transition probabilities p ¼
fp1;y;pm;y;pMg; and the parameters of the observa-
tion model. Here we use K-dimensional Gaussian
observation models with mean vectors l ¼
fl1;y;lm;y;lMg and precision (inverse covariance)
matrices C ¼ fC1;y;Cm;y;CMg: Thus, the complete
data model likelihood is given by

PðS;YjhÞ ¼PðS0Þ
YT
t¼1

PðStjSt�1ÞPðYtjSt; hÞ

¼PðS0jp0Þ
YT
t¼1

PðStjSt�1;pÞ

PðYtjSt;l;CÞ:

The model parameter priors are assumed to be
conjugate and thus we use (Bernardo and Smith, 1994):

* for an initial state probability p0; an M-dimensional
Dirichlet density

Dirðp0Þ ¼
Gð
P

l klÞQ
l GðklÞ

YM
m¼1

pkm�1
0m

;

where Gð:Þ is the standard Gamma function (Press
et al., 1991);

* for the transition probabilities pm; M � M-dimen-
sional Dirichlet densities

PðpÞ ¼
YM
m¼1

Gð
P

l lml
ÞQ

l Gðlml
Þ

YM
n¼1

plmn�1
mn

;
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* for the observation model means lm; K-dimensional
Normal densities ðm ¼ 1;y;MÞ

PðlmÞpe
�ð1=2Þðl�lm0

ÞTCm0
ðl�lm0

Þ;

* for the observation model precision matrices Cm; K-
dimensional Wishart densities ðm ¼ 1;y;MÞ

PðCmÞpjCmj
am�ððKþ1Þ=2Þe�trðBmCmÞ;

where Bm is the scale hyperparameter matrix for the
distribution (Bernardo and Smith, 1994). Note that,
as the complexity measure is one dimensional, in this
application K ¼ 1 and the Wishart collapses to a
gamma distribution.

As mentioned in the previous section, we take the Q-
distributions to factorize as

Qðh;SÞ ¼ QðhÞQðSÞ;

in which, for Gaussian observation models

QðhÞ ¼ Qðp0Þ
YM
m¼1

QðpmÞQðlmÞQðCmÞ:

The distributions for QðhÞ are identical in functional
form to the priors and so, to avoid confusion, we denote
the parameters of QðhÞ with tildes, e.g. QðlmÞ ¼
Nð *lm0; *Cm0Þ:

5.2. Estimation

5.2.1. Model parameters

By taking the derivatives of the free energy with
respect to the distributions of the unknown parameters,
we obtain a set of update formulae for the parameters of
the distributions. Full update equations are detailed in
Appendix A.

5.2.2. Hidden states

The hidden variables (i.e. the state sequence) can be
estimated using standard forward–backward message
passing (Rabiner, 1989), conditioned on the data and
the expectations of the model parameters under the Q-
distributions. The use of the forward–backward recur-
sions is justified by the fact that the message passing
equations are fixed point equations of the free energy
when the Q-distributions are assumed to be of the form
given in Eq. (9) (Yedidia, 2002).

5.2.3. State space dimension

Estimation is performed over several state space
dimensions. Given a fixed state space dimension
estimation involves iterative application of forward–
backward message passing, update of the model
parameters, and estimation of the free energies. To
illustrate the profound difference in inference between
standard (maximum-likelihood) and fully Bayesian
HMMs we apply models of varying number of
hypothesized states to a synthetic data sequence in
which there are two actual states. These data are shown
in Fig. 4(a). Plots (b)–(d) show the resultant state labels,
for 2, 4 and 10 states, inferred from the (two-state) data
in plot (a) of the figure. Note that, even with 10 states at
its disposal, the variational Bayes HMM does not
overfit to the data. This result is in direct contrast to
maximum-likelihood approaches, in which data over-
fitting is not naturally penalized. This is seen in Fig. 5 in
which an M ¼ 10 HMM overfits the state transition
sequence. The data are as in Fig. 4(a).
6. Results

We present here a set of results which are intended,
primarily, as ‘proof of concept’ rather than as an
exhaustive set. Considerably more detail is presented in
the companion paper, which concentrates on the
biological interpretation rather than the technical
details.

6.1. Number of states

The data set we now analyse consists of 48 precision
GPS tracks from 12 homing pigeons released from each
of four different familiar sites arranged around their
home loft at the University Field Laboratory, Wytham,
Oxford. Further details of the subjects and the training
techniques are presented in our companion paper
(Guilford et al., 2003).
Global analysis of all the data (i.e. 48 tracks) was

performed using a 10th-order model. This gave rise to
the mean state occupancy probabilities of Fig. 6. Note
that all states save for three are insignificantly visited.
This implies that, at least for the current data set, the
birds’ behaviour is naturally organized into three states.
In all further analysis, we therefore restrict the model to
M ¼ 3:

6.2. Entropy

We begin by presenting the stochastic entropy
measure, which forms the basis of our subsequent
analysis, over the local area map. This subsection also
details the approach taken in the graphical presentation
of subsequent results. Fig. 7 (left) shows the local area
map. Shown on this map are the four release sites (filled
circles) and the loft (filled square). The coordinates
shown on the map are UK grid references (Ordnance
Survey). The local area map was divided into a 50� 50
grid with linear spacing. Each grid element thus
corresponded to a 150 m� 150 m square. Bird flight
trajectories which passed through a grid element
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contributed their entropy measure (calculated at that
trajectory point) to the grid element. Each grid element
has an entropy value associated with it which is the
mean entropy of all contributing trajectories.
We subsequently apply a spatial smoothing to the

matrix of grid elements. This smoothing is achieved by a
weighted average of each 150 m� 150 m grid square
along with its eight nearest neighbours. The smoothing is
computed using a smoothing kernel, K, which is chosen
to be a 3� 3 discretized Gaussian with elements given by

K ¼
1

16

1 2 1

2 4 2

1 2 1

0
B@

1
CA:
This choice of this smoothing kernel is, of course,
arbitrary but represents a prior belief in the range of
visual influence of local features on the birds, namely
300 m in each direction.
If we denote G as the matrix of grid elements then the

smoothing operation is a convolution given by

G’G�K: ð10Þ
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Fig. 8. State 1 probability—low entropy. Left: track-by-track analysis.

Right: Global analysis.
Fig. 9. State 2 probability—intermediate entropy. Left: track-by-track

analysis. Right: Global analysis.
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6.3. State analysis

The Markov model gives explicit posterior probabil-
ities for each state on a sample-by-sample basis, namely

gtðmÞ ¼def PðSt ¼ mjYÞ:

We may calculate the mean state probabilities over each
element in the 50� 50 spatial map for all flight tracks.
Following the same arguments as in the previous
subsection, we apply spatial smoothing using the same
smoothing kernel as in Eq. (10). We present results for
the three state probabilities over the spatial map using
two different protocols. Firstly, the state analysis is
calculated on a track-by-track basis (i.e. an HMM is
inferred for each track separately) and secondly the
states are inferred from the entire 48-track data sequence
as a global data set (i.e. a single HMM is applied to all
data). These results are shown in Figs. 8–10.
We note that similar structure appears in track-by-

track and global state probability maps for all three
states. Notable is evidence of low-entropy (state 1) flight
corridors closer to the loft (in particular, in birds
released from the south-western release site) and high
entropy (state 3) close to release in all cases. A more
detailed analysis and interpretation is given in the
companion paper. There are marked differences be-
tween the state probabilities, however, for birds released
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Fig. 10. State 3 probability—high entropy. Left: track-by-track

analysis. Right: Global analysis.
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from different sites. In particular, we note that inter-
mediate state probabilities are close to zero for birds
released from the south-western site.
7. Conclusions

We have presented a model-based analysis of bird
flight tracks based on a measure of track complexity and
subsequent latent-state inference using a probabilistic
hidden Markov model. We observe marked changes in
the track complexity from release to home in all birds
and these changes appear to support the existence of
self-similar states of flight behaviour (as measured using
entropic complexity). Subsequent latent-state anlaysis
supports the existence of three states, which correspond
to high-complexity behaviour close to release, inter-
mediate complexity and low-complexity behaviour on
flight corridors leading to the loft. The main point of
this paper is to conclude that the approaches introduced
provide a powerful method for analysing a complex
set of track data. The companion paper looks at the
biological significance. The analysis detailed in this
paper is by no means restricted to the current data set,
nor to data from birds. Indeed, we have tried to make
the approach as generic as possible, making minimal use
of assumptions regarding the data. We envisage the
technique will be applicable to a wide variety of other
data in the biological domain.
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Appendix A

A.1. Singular value decomposition

We consider an arbitrary (real) matrix X (not
normally square). We may decompose any such X as

X ¼ USVT; ðA:1Þ

where U and V are orthonormal, i.e. VT ¼ V�1: The
matrix U is the matrix of projections of X onto the
eigenvectors of XXT and S is diagonal with elements
Sii ¼ si where s2i is the i-th eigenvalue of XXT and siX0:
The resultant decomposition is usually referred to as
singular value decomposition (SVD).

A.2. Update equations

In the following we make use of the notation
introduced in Rabiner (1989), specifically
gtðmÞ ¼def PðSt ¼ mjYÞ and xtðm; nÞ ¼def PðSt ¼ n;St�1 ¼
mjYÞ:
For Gaussian observation models we have for the

posterior means qðlmÞBNormalð *lm0; *Cm0Þ;

*lm0 ¼ ð%gm *am
*B�1

m þ Cm0Þ
�1ð%am

*B�1
m

%Ym þ Cm0lm0Þ;
*Cm0 ¼ ð*gm *am

*B�1
m þ Cm0Þ;

in which %Y ¼
PT

t¼1 gtðmÞYt and %gm ¼
PT

t¼1gtðmÞ: For the
posterior precisions qðCmj*am; *BmÞBWishartð*am; *BmÞ;

*am ¼ 1
2 %gm þ am;

*Bm ¼
1

2

XT

t

gtðmÞðYt � *lm0ÞðYt � *lm0Þ
T þ

1

2
%gm

*C�1
m0 þ Bm:

The posterior initial state and transition probabilities
are Dirichlet distributed with parameters, respectively,

*km ¼ gt¼1ðmÞ þ km;

*lmn
¼
X

t
xtðm; nÞ þ lmn

:

A.3. Variational free energy

The free energy, F ; is given by

F ¼ �HðSÞ �LAvg þ DðQðhÞjjPðhÞÞ; ðA:2Þ
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where HðSÞ is the negative entropy of the hidden (state)
variables, i.e.

HðSÞ ¼ HðSt¼0Þ þ
XT

t¼1

HðStjSt�1Þ

and Lavg is the average log-likelihood under the Q-
distribution,

Lavg ¼
X

m

gt¼0ðmÞðCð *kmÞ �C
XM
l¼1

*kl

 !

þ
X
t;m;n

xtðm; nÞ Cð*lmn
Þ �C

XM
rs

*lrs

 ! !

þ
1

2

X
t;n

gtðmÞ
XK

k¼1

C
1

2
ð2*am þ 1� kÞ � logj *Bmj

� 

�
K

2
logð2pÞ � trð*am

*B�1
m

*C�1
m0Þ

� ðYt � *lm0Þ
T *am

*B�1
m ðYt � *lm0

�!
;

where Cð:Þ is the standard digamma function (Press
et al., 1991). The term DðQðhÞjjPðhÞÞ in Eq. (A.2) is the
sum of all the KL-divergences between the Q- and the
prior distributions, which for Gaussian densities are

DNðQjjPÞ ¼
1

2
log

jCQj
jCPj

� K þ trðCPC
�1
Q Þ

�

þ ðlQ � lPÞ
TCPðlQ � lPÞ

�
for K-dimensional Wishart densities,

DWiðQjjPÞ ¼
XK

k¼1

log
Gð1
2
ð2am þ 1� kÞÞ

Gð1
2
ð2*am þ 1� kÞÞ

þ ð*am � amÞ
XK

k¼1

C
1

2
ð2*am þ 1� kÞ

� �

þ *am log
j *Bmj
jBmj

þ *amðtrðBm
*B�1

m Þ � KÞ

and for M-component Dirichlet densities,

DDirðQjjPÞ ¼ log
Gð
PM

m¼1 *amÞ

Gð
PM

m¼1amÞ

 !

þ
XM
m¼1

ð*am � amÞ Cð*amÞ �C
XM
m¼1

*am

 ! !

þ
XM
m¼1

log
GðamÞ
Gð*amÞ

:

Algorithm
The algorithm may be written in pseudocode as
initialize (using K-means for example);
repeat until convergence (e.g. free energy change o
threshold)
estimate S using forward–backward recursions;

estimate *Cm0 and *lm0 using
*Cm0 ¼ ð
PT

t¼1 gtðmÞ*am
*B�1

m þ Cm0Þ
*lm0 ¼ *C�1
m0ð*am

*B�1
m

PT
t¼1 gtðmÞYt þ Cm0lm0Þ
estimate *am; *Bm using
*am ¼ 1
2

PT
t¼1 gtðmÞ þ am
*Bm ¼ 1
2

PT
t¼1 gtðmÞðYt � *lm0ÞðYt � *lm0Þ

T

+1
2

PT
t¼1 gtðmÞ *C�1

m0 þ Bm
estimate *km and *lmn
using
*km ¼ gt¼0ðmÞ þ km
*lmn
¼
PT

t¼1 xtðm; nÞ þ lmn
end
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