Biológiai Rendszerek Statisztikus Fizikája

2015. december 17.

Technikai információk

Bevezetés

- Palla Gergely / pallag@hal.elte.hu / ELTE TTK Biológiai Fizika Tanszék, Északi Tömb, 3.90. szoba Fogadó óra: csütörtök, 10-12.
- Farkas Illés / fij@hal.elte.hu / ELTE TTK Biológiai Fizika Tanszék, Északi Tömb, 3.90. szoba Fogadó óra: kedd, 13-15.
- Az előadás fóliái letölthetők innen: http://pallag.web.elte.hu/biostat/biostat_2015.html
- További anyagok a korábbi évekből itt: http://hal.elte.hu/~vicsek/teaching/biologiai_ rendszerek_statisztikus_fizikaja/

Vizsgával kapcsolatos információk

Bevezetés

VIZSGA:

- ZH az őszi szünet után, (mindent lehet használni).
- Szóbeli a vizsgaidőszakban:
 - a ZH eredmény 1/3-os súllyal számít be,
 - aki nem írt ZH-t, annak 1 jegy levonás,
 - aki nem jár be, (nincs ott az előadások min. 67%-án), annak szintén 1 jegy levonás,
 - órai aktivitás pozitívan befolyásolja a jegyet.

Tematika

mozgása).

Bevezetés	I.	Skálaviselkedés (fázisátalakulások, kritikus pont) és a fluktuációk alaptulajdonságai, szerepe a biológiában.
	11.	Fraktálok: definíciók (dimenziók, korrelációs függvények), típusaik, dimenziók közötti összefüggések.
	- 111.	Önszervezően kritikus rendszerek modelljei és példák a biológiából.
	IV.	Baktériumtelepek geometriája I: mikrobiológiai háttér, morfológiai diagram, Fisher-egyenlet, instabilitás eredete.
	V.	Baktériumtelepek geometriája II: fraktálnövekedés modelljei (önhasonló, önaffin, irányított perkoláció).
	VI.	Szinkronizáció a biológiában: Integrál és tüzel modellek.
	VII.	A szinkronizáció Kuramoto-modellje (különböző sajátfrekvenciák és "termikus" - korrelálatlan, időfüggő - zaj esete).
	VIII.	Hálózatok I: alapfogalmak, (gráfok, szomszédsági mátrix, ritka gráf, fokszám és klaszterezettség, kis világ tulajdonság, skálafüggetlenség).
	IX.	Hálózatok II: modellek (Erdős–Rényi-modell, Watts–Strogatz-modell, Barabási–Albert-modell, konfigurációs modell, determinisztikus skálafüggetlen modellek, gráfsokaságok, topologikus fázisátalakulások).
	Х.	Hálózatok III: alkalmazások (álózatok robusztussága, terjedés hálózatokon, SIS modell, hálózati csoportkeresés, hierarchikus klaszterezés, Girvan–Newman-algoritmus, modularitás, k-klikk perkoláció).
	XI.	Kollektív mozgás: Alapjelenség, alapmodell (csoportos mozgás 1, 2 és 3 dimenzióban, fázisátalakulás, skálatulajdonságok, emberek csoportos

Órabeosztás

Bevezetés

Szept. 7.	Palla Gergely	III.
Szept. 14.	Palla Gergely	
Szept. 21.	Farkas Illés	
Szept. 28.	Farkas Illés	IIIVII.
Okt. 5.	Farkas Illés	
Okt. 12.	Farkas Illés	
Okt. 19.	Farkas Illés	
Okt. 26.	szünet	
Nov. 2.	ZH	
Nov. 9.	Palla Gergely	
Nov. 16.	Palla Gergely	VIIIX.
Nov. 23.	Palla Gergely	
Nov. 30.	Palla Gergely	
Dec. 7.	Farkas Illés	XI.

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric sca
- Skálázó eloszlások Eloszlás Skálázó eloszlá
- Példák
- Fluktuációk Biológiai példa
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter é kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

SKÁLÁZÁS (FÁZISÁTALAKULÁSOK, KRITIKUS PONT) ÉS FLUKTUÁCIÓK SZEREPE A BIOLÓGIÁBAN

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció Allometric scalir

Skálázó eloszlások

Eloszlás Skálázó eloszlá: Példák

Fluktuációk

Biológiai példáł Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter é kontrollparaméter Elsőrendű és folytonos

A kritikus pont

SKÁLÁZÁS

▲

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció Allometric scalir

Skálázó eloszlások

Skálázó eloszlá Példák

Fluktuációk

Biológiai példá Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter e kontrollparaméte Elsőrendű és folytonos

A kritikus pont

• Mi a skála?

Skálázás, fluktuációk, fázisátalakulások

Skálázás

- Definíció Allometric scalin
- Skálázó eloszlások
- Eloszlás Skálázó eloszlá: Példák
- Fluktuációk
- Biológiai példál Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter é kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

• Mi a skála?

→ Általában valamilyen fizikai mennyiség mérésénél használt egység, pl. méter, centiméter, stb.

Skálázás, fluktuációk, fázisátalakulások

Skálázás

- Definíció Allometric scalin
- Skálázó eloszlások
- Eloszlás Skálázó eloszlás Példák
- Fluktuációk
- Biológiai példá Mikroszkopiku
- fluktuációk Makroszkopikus
- fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

• Mi a skála?

→ Általában valamilyen fizikai mennyiség mérésénél használt egység, pl. méter, centiméter, stb.

• Mit jelent az, hogy valami skálázik?

Skálázás, fluktuációk, fázisátalakulások

Skálázás

- Definíció Allometric scalin
- Skálázó eloszlások
- Eloszlás Skálázó eloszlás Példák
- Fluktuációk
- Biológiai példá Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter e kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

• Mi a skála?

→ Általában valamilyen fizikai mennyiség mérésénél használt egység, pl. méter, centiméter, stb.

- Mit jelent az, hogy valami skálázik?
- → Általában egy mennyiség egy másik mennyiségtől való függésére szoktuk azt mondani, hogy "skálázik", pl. A (valahogyan) skálázik B-vel.

Skálázás, fluktuációk, fázisátalakulások

Skálázás

- Definíció Allometric scaline
- Skálázó eloszlások
- Eloszlas Skálázó eloszlás Példák
- Fluktuációk
- Biológiai példá Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter e kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

• Mi a skála?

→ Általában valamilyen fizikai mennyiség mérésénél használt egység, pl. méter, centiméter, stb.

- Mit jelent az, hogy valami skálázik?
- → Általában egy mennyiség egy másik mennyiségtől való függésére szoktuk azt mondani, hogy "skálázik", pl. A (valahogyan) skálázik B-vel.
- → A legegyszerűbb esetben ez annyit jelent, hogy a B mérésre használt egység megváltozása az A-ra kapott eredményt csak nagyon egyszerűen befolyásolja.

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció Allometric scalir

Skálázó eloszlások

Eloszlás Skálázó eloszlás Példák

Fluktuációk

Biológiai példá Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

• Hogyan skálázik egy kocka térfogata az élhosszával?

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Skálázó eloszlások

Eloszlas Skálázó eloszlá: Példák

Fluktuációk

Biológiai példá Mikroszkopikus

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter é kontrollparaméter Elsőrendű és folytonos

A kritikus pont

• Hogyan skálázik egy kocka térfogata az élhosszával?

 $V = I^3$

Skálázás, fluktuációk, fázisátalakulások

Skálázás

- Definíció Allometric scalin
- Skálázó eloszlások
- Eloszlás Skálázó eloszlá Példák
- Fluktuációk
- Biológiai példák Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter e kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

• Hogyan skálázik egy kocka térfogata az élhosszával?

 $V = I^3$

• A hatványfüggvény alakú kapcsolat következményei:

Skálázás, fluktuációk, fázisátalakulások

Skálázás

- Definíció Allometric scalin
- Skálázó eloszlások
- Eloszlás Skálázó eloszlá Példák
- Fluktuációk
- Biológiai példák Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter e kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

• Hogyan skálázik egy kocka térfogata az élhosszával?

 $V = I^3$

- A hatványfüggvény alakú kapcsolat következményei:
 - Ha / skáláját a-val szorozzuk/osztjuk, akkor a V-re kapott eredeti értéket a³-el kell osztani/szorozni.

Skálázás, fluktuációk, fázisátalakulások

Skálázás

- Definíció Allometric scalin
- Skálázó eloszlások
- Skálázó eloszla Példák
- Fluktuációk
- Biológiai példák Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

• Hogyan skálázik egy kocka térfogata az élhosszával?

 $V = I^3$

- A hatványfüggvény alakú kapcsolat következményei:
 - Ha / skáláját a-val szorozzuk/osztjuk, akkor a V-re kapott eredeti értéket a³-el kell osztani/szorozni.
 - Ha van két kockánk, melyek közül az első kocka élhossza *a*-szorosa a második kocka élhosszának, akkor az / skálájától függetlenül igaz, hogy az első kocka térfogata a³-szöröse a másodikénak.

Skálázás

Skálázás, fluktuációk, fázisátalakulások

Skálázás

- Definíció Allometric scalir
- Skálázó eloszlások
- Skálázó eloszlá Példák
- Fluktuációk
- Biológiai példál Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folvtonos
- A kritikus pont

• Mi történik, ha A és B közt nem hatványfüggvényszerű a kapcsolat?

 $\begin{array}{rcl} A & \sim & \exp(B), \\ A & \sim & \sin(B), \\ & & \cdot \end{array}$

→ Ilyenkor B átskálázása bonyolultabb, az ez által okozott változást A-ban nem olyan egyszerű megadni.

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Skálázó eloszlások

Eloszlás Skálázó eloszlás Példák

Fluktuációk Biológiai példák Mikroszkopikus

Makroszkopikus fluktuációk

Fázisátalakulások Bendnaraméter és

kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Skálázó függvény

Definíció: egy F(x) függvény **skálázik**, ha

 $F(a \cdot x) = g(a) \cdot F(x),$

azaz a függvény argumentumát megváltoztatva a függvény alakja megmarad, csak egy szorzóval változik.

A hatványfüggvények skálázók

Tegyük fel, hogy $F(x) = b \cdot x^{\gamma}$.

 $\rightarrow F(a \cdot x) = b \cdot (a \cdot x)^{\gamma} = b \cdot a^{\gamma} \cdot x^{\gamma} = a^{\gamma} \cdot b \cdot x^{\gamma} = a^{\gamma} \cdot F(x).$

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Skálázó eloszlások

Eloszlás Skálázó eloszlás Példák

Fluktuációk Biológiai példák Mikroszkopikus

Makroszkopikus fluktuációk

Fázisátalakulások

Renoparameter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Skálázó függvény

Definíció: egy F(x) függvény **skálázik**, ha

 $F(a \cdot x) = g(a) \cdot F(x),$

azaz a függvény argumentumát megváltoztatva a függvény alakja megmarad, csak egy szorzóval változik.

A hatványfüggvények skálázók

Tegyük fel, hogy $F(x) = b \cdot x^{\gamma}$.

 $\rightarrow F(a \cdot x) = b \cdot (a \cdot x)^{\gamma} = b \cdot a^{\gamma} \cdot x^{\gamma} = a^{\gamma} \cdot b \cdot x^{\gamma} = a^{\gamma} \cdot F(x).$

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Skálázó eloszlások

Eloszlás Skálázó eloszlás Példák

Fluktuációk Biológiai példák Mikroszkopikus

Makroszkopikus fluktuációk

Fázisátalakulások Rendparaméter és kontrollparaméter Elsőrendű és

folytonos

Skálázó függvény

Definíció: egy F(x) függvény **skálázik**, ha

 $F(a \cdot x) = g(a) \cdot F(x),$

azaz a függvény argumentumát megváltoztatva a függvény alakja megmarad, csak egy szorzóval változik.

A hatványfüggvények skálázók

Tegyük fel, hogy $F(x) = b \cdot x^{\gamma}$.

 $\rightarrow F(a \cdot x) = b \cdot (a \cdot x)^{\gamma} = b \cdot a^{\gamma} \cdot x^{\gamma} = a^{\gamma} \cdot b \cdot x^{\gamma} = a^{\gamma} \cdot F(x).$

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Skálázó eloszlások

Eloszlás Skálázó eloszlás Példák

Fluktuációk Biológiai példák Mikroszkopikus

Makroszkopikus fluktuációk

Fázisátalakulások Rendoaraméter és

kontrollparamét Elsőrendű és folytonos

A kritikus pont

Skálázó függvény

Definíció: egy F(x) függvény **skálázik**, ha

 $F(a \cdot x) = g(a) \cdot F(x),$

azaz a függvény argumentumát megváltoztatva a függvény alakja megmarad, csak egy szorzóval változik.

A hatványfüggvények skálázók

Tegyük fel, hogy $F(x) = b \cdot x^{\gamma}$.

$$\rightarrow F(a \cdot x) = b \cdot (a \cdot x)^{\gamma} = b \cdot a^{\gamma} \cdot x^{\gamma} = a^{\gamma} \cdot b \cdot x^{\gamma} = a^{\gamma} \cdot F(x).$$

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Skálázó eloszlások

Eloszlás Skálázó eloszlás Példák

Fluktuációk Biológiai példák Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások Rendparaméter és kontrollparaméter Elsőrendű és folytonos

A kritikus pont

Skálázó függvény

Definíció: egy F(x) függvény **skálázik**, ha

 $F(a \cdot x) = g(a) \cdot F(x),$

azaz a függvény argumentumát megváltoztatva a függvény alakja megmarad, csak egy szorzóval változik.

A hatványfüggvények skálázók

Tegyük fel, hogy $F(x) = b \cdot x^{\gamma}$.

 $\rightarrow F(a \cdot x) = b \cdot (a \cdot x)^{\gamma} = b \cdot a^{\gamma} \cdot x^{\gamma} = a^{\gamma} \cdot b \cdot x^{\gamma} = a^{\gamma} \cdot F(x).$

Hatványfüggvények ábrázolása

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Skálázó eloszlások

Eloszlás Skálázó eloszlás Példák

Fluktuációk

Biológiai példál Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter e kontrollparaméte Elsőrendű és folytonos

A kritikus pont

• Sokszor log-log skálán ábrázoljuk. Miért?

Hatványfüggvények ábrázolása

Skálázás, fluktuációk, fázisátalakulások

Skálázás

- Definíció
- Allometric scaling
- Skálázó eloszlások
- Eloszlás Skálázó eloszlás Példák
- Fluktuációk
- Biológiai példá Mikroszkopiku:
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Sokszor log-log skálán ábrázoljuk. Miért?
 - Hatványfüggvény: $F(x) = bx^{\gamma}$,
 - $\rightarrow \ln F(x) = \ln b + \gamma \cdot \ln x.$
 - A log-log ábrán

$$\begin{aligned} x' &\to & \ln x, \\ y &= F'(x) &\to & \ln F(x), \\ &\to y &= F'(x) &= & \ln b + \gamma \cdot x' \end{aligned}$$

 Azaz a log-log ábrán a hatványfüggvény egyenesnek látszik, γ meredekséggel.

Hatványfüggvények ábrázolása

Hatványfüggvények a biológiában?

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Allometric scaling

Skálázó eloszlások Eloszlás Skálázó eloszl

Példák

Fluktuációk

Biológiai példál Mikroszkopikus

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Hol találkozhatunk hatványfüggvényekkel a biológiában?

Hatványfüggvények a biológiában?

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Allometric scaling

Skálázó eloszlások Eloszlás Skálázó eloszlá Példák

Fluktuációk Biológiai példák Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter é kontrollparaméter Elsőrendű és folytonos

A kritikus pont

Hol találkozhatunk hatványfüggvényekkel a biológiában?

pl. "Allometric scaling".

Allometric scaling Body surface

Skálázás

Definíció

Allometric scaling

Skálázó eloszlások Eloszlás Skálázó eloszla Példák

Fluktuációk

Biológiai példál Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Allometric scaling Body parts

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Allometric scaling

Skálázó eloszlások Eloszlás Skálázó eloszlá

Fluktuációk

Biológiai példák Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Allometric scaling Body parts

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Allometric scaling

Skálázó eloszlások Eloszlás Skálázó eloszlá Példák

Fluktuációk Biológiai példák Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások Rendparaméter és kontrollparaméter Elsőrendű és folytonos

A kritikus pont

Figure 15. Brain size of 200 species of vertebrates plotted against body size on a log-log graph. Primates are open squares; other mammals are solid dots; birds are solid triangles; bony fishes are open circles; and reptiles are open triangles. (After H. J. Jerison, *The Evolution of the Brain and Intelligence*, 1973)

Allometric scaling Body parts

Skálázás Definíció

Allometric scaling

Skálázó eloszlások Eloszlás

Skálázó eloszla Példák

-luktuaciók Biológiai példá Mikroszkopiku fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméte kontrollparamé Elsőrendű és folytonos

A kritikus pont

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Allometric scaling

Skálázó eloszlások Eloszlás Skálázó eloszlá

Fluktuációk Biológiai példák Mikroszkopikus fluktuációk Makroszkopikus

Fázisátalakulásoł

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Allometric scaling

Skálázó eloszlások Eloszlás Skálázó eloszlá Példák

Fluktuációk Biológiai példák Mikroszkopikus

Makroszkopikus fluktuációk

Fázisátalakulások

Hendparameter kontrollparamét Elsőrendű és folytonos

A kritikus pont

Allometric scaling

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások

Eloszlás Skálázó eloszlá Példák

Fluktuációk

Biológiai példál Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter é kontrollparaméter Elsőrendű és folytonos

A kritikus pont

SKÁLÁZÓ ELOSZLÁSOK

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások

Eloszlás Skálázó eloszlá Példák

Huktuaciok Biológiai példák Mikroszkopikus

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

• Mi az, hogy eloszlás?

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció

- Allometric scaling
- Skálázó eloszlások

Eloszlás

Skálázó elosz Példák

Fluktuációk

- Biológiai példál Mikroszkopikus
- Makroszkopikus

Fázisátalakulások

- Rendparaméter é kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

• Mi az, hogy eloszlás?

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Allometric scaling
- Skálázó eloszlások
- Eloszlás Skálázó eloszlá Példák
- Fluktuációk Biológiai példá
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

• Mi az, hogy eloszlás?

Eloszlás

- Egy változó eloszlása a különböző értékek előfordulási valószínűségeinek összessége.
- Leggyakrabban a ρ(x) sűrűségfüggvénnyel szoktuk megadni:

$$\int_{x_1}^{x_2} \rho(x') dx' = P(x \in [x_1, x_2]), \qquad \int_{-\infty}^{\infty} \rho(x') dx' = 1$$

• A $\rho(x)$ integrálja az eloszlásfüggvény:

$$F(x) = \int_{-\infty}^{x} \rho(x') dx', \qquad F(-\infty) = 0, \ F(\infty) = 1.$$

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások

Eloszlás Skálázó eloszlá Példák

- Fluktuációk
- Biológiai példál Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter é kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

 Az eloszlást (sűrűségfüggvényt) a gyakorlatban sokszor egy hisztogram segítségével adjuk meg.

Skálázás, fluktuációk, fázisátalakulások

- Skálázás
- Definíció
- Allometric scaling
- Skálázó eloszlásol
- Eloszlás Skálázó eloszlá Példák
- Fluktuációk
- Biológiai példá Mikroszkopiku:
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

 Az eloszlást (sűrűségfüggvényt) a gyakorlatban sokszor egy hisztogram segítségével adjuk meg.

Példa

• Tegyük fel, hogy a táblázatban látható cipőméreteket mértük egy 20 fős csoportban. Milyen lesz a cipőméret sűrűségfüggvénye?

méret	hány?
38-as	1
39-es	2
40-es	4
41-es	4
42-es	7
43-as	2
	∑ = 20

Skálázás, fluktuációk, fázisátalakulások

- Skálázás
- Definíció
- Allometric scaling
- Skálázó eloszlásoł
- Eloszlás Skálázó eloszlá Példák
- Fluktuációk
- Biológiai példá Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

• Az eloszlást (sűrűségfüggvényt) a gyakorlatban sokszor egy hisztogram segítségével adjuk meg.

Példa

• Tegyük fel, hogy a táblázatban látható cipőméreteket mértük egy 20 fős csoportban. Milyen lesz a cipőméret sűrűségfüggvénye?

Skálázás, fluktuációk, fázisátalakulások

- Skálázás

Skálázó eloszlásoł

Eloszlás Skálázó eloszlá Példák

```
Fluktuációk
```

Biológiai példá Mikroszkopiku

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

- Az eloszlást (sűrűségfüggvényt) a gyakorlatban sokszor egy hisztogram segítségével adjuk meg.
- Ha összesen n mintánk van, és ebből egy adott [x, x + Δx] intervallumba k darab esik, akkor ott a hisztogram magassága:

$$h \cdot \Delta x = \frac{k}{n} \quad \rightarrow \quad h = \frac{k}{n \cdot \Delta x}$$

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások

Eloszlás Skálázó eloszlás Példák

```
Fluktuációk
```

Biológiai példá Mikroszkopiku:

Makroszkopikus fluktuációk

```
Fázisátalakulások
```

Rendparaméter e kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Skálázó eloszlás

Egy eloszlás **skálázó**, ha hozzá tartozó $\rho(x)$ sűrűségfüggvény hatványfüggvény szerint viselkedik

 $\rho(\mathbf{X}) \sim \mathbf{X}^{-\alpha},$

(legalábbis egy adott tartományon).

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások

Eloszlás Skálázó eloszlás Példák

Fluktuációk

Biológiai példá Mikroszkopikus

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter e kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Skálázó eloszlás

Egy eloszlás **skálázó**, ha hozzá tartozó $\rho(x)$ sűrűségfüggvény hatványfüggvény szerint viselkedik

 $\rho(\mathbf{X}) \sim \mathbf{X}^{-\alpha},$

(legalábbis egy adott tartományon).

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások

Skálázó eloszlás Példák

```
Fluktuációk
Biológiai példák
Mikroszkopikus
fluktuációk
```

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter é kontrollparaméter Elsőrendű és folytonos

A kritikus pont

Skálázó eloszlás

Egy eloszlás **skálázó**, ha hozzá tartozó $\rho(x)$ sűrűségfüggvény hatványfüggvény szerint viselkedik

 $\rho(\boldsymbol{x}) \sim \boldsymbol{x}^{-\alpha},$

(legalábbis egy adott tartományon).

• Ha matematikailag precízebb definíciót akarunk adni:

$$\begin{array}{l} x \in [x_{\min}, \infty], \qquad \alpha > 1, \\ \Rightarrow \quad \rho(x) = \frac{\alpha - 1}{x_{\min}^{1 - \alpha}} x^{-\alpha}. \end{array}$$

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scalii

Skálázó eloszlások

Előszlás Skálázó előszlás Példák

Fluktuációk Biológiai példák Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Pazisatalakulaso Rendparaméter és kontrollparaméter Elsőrendű és

A kritikus pont

Skálázó eloszlás

Egy eloszlás **skálázó**, ha hozzá tartozó $\rho(x)$ sűrűségfüggvény hatványfüggvény szerint viselkedik

 $\rho(\boldsymbol{X}) \sim \boldsymbol{X}^{-\alpha},$

(legalábbis egy adott tartományon).

• Ha matematikailag precízebb definíciót akarunk adni:

$$\begin{array}{l} x \in [x_{\min}, \infty], \qquad \alpha > 1, \\ \rightarrow \quad \rho(x) = \frac{\alpha - 1}{x_{\min}^{1 - \alpha}} x^{-\alpha}. \end{array}$$

• Egy eloszlás két alap jellemzője a várható érték és a szórásnégyzet,

$$\langle x \rangle = \int x \rho(x) dx, \qquad \sigma^2(x) = \int x^2 \rho(x) dx - \langle x \rangle^2,$$

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások

Előszlás Skálázó előszlás Példák

Fluktuációk Biológiai példák Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fazisatalakulasok Rendparaméter és kontrollparaméter Elsőrendű és

A kritikus pont

Skálázó eloszlás

Egy eloszlás **skálázó**, ha hozzá tartozó $\rho(x)$ sűrűségfüggvény hatványfüggvény szerint viselkedik

 $\rho(\boldsymbol{X}) \sim \boldsymbol{X}^{-\alpha},$

(legalábbis egy adott tartományon).

• Ha matematikailag precízebb definíciót akarunk adni:

$$\begin{array}{l} x \in [x_{\min}, \infty], \quad \alpha > 1 \\ \rightarrow \quad \rho(x) = \frac{\alpha - 1}{x_{\min}^{1 - \alpha}} x^{-\alpha}. \end{array}$$

• Egy eloszlás két alap jellemzője a várható érték és a szórásnégyzet,

$$\langle x \rangle = \int x \rho(x) dx, \qquad \sigma^2(x) = \int x^2 \rho(x) dx - \langle x \rangle^2,$$

$$\begin{array}{rcl} \mathsf{Ha}\,\alpha > \mathbf{3}, & \rightarrow & \langle x \rangle < \infty, & \sigma^2(x) < \infty \\ \mathsf{Ha}\,\alpha < \mathbf{3}, & \rightarrow & \langle x \rangle < \infty, & \sigma^2(x) = \infty \\ \mathsf{Ha}\,\alpha < \mathbf{2}, & \rightarrow & \langle x \rangle = \infty & \sigma^2(x) = \infty \end{array}$$

Ā

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások

Eloszlas Skálázó eloszlás

Példák

Fluktuációk

Biológiai példá Mikroszkopiku:

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

• Miért különleges egy skálázó eloszlás?

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások

Előszlás Skálázó előszlás

Példák

Fluktuációk

Biológiai példá Mikroszkopikus

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

• Miért különleges egy skálázó eloszlás?

→ Mert nagyon INHOMOGÉN:

- Skálázás Definíció
- Allometric scaling
- Skálázó eloszlások
- Eloszlás
- Skálázó eloszlás Példák
- Fluktuációk
- Biológiai példá Mikroszkopiku:
- fluktuációk Makroszkopikus
- Fázisátalakulások
- Rendparaméter e kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Miért különleges egy skálázó eloszlás?
- → Mert nagyon INHOMOGÉN:
 - extrém nagy értékek is előfordulnak, nem elhanyagolható valószínűséggel,

- Skálázás
- Allometric scaling
- Skálázó eloszlások
- Eloszlás
- Skálázó eloszlás Példák
- Fluktuációk
- Biológiai példá Mikroszkopiku:
- fluktuációk Makroszkopikus
- fluktuációk
- Fázisátalakulások
- Rendparaméter é kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

- Miért különleges egy skálázó eloszlás?
- → Mert nagyon INHOMOGÉN:
 - extrém nagy értékek is előfordulnak, nem elhanyagolható valószínűséggel,
 - az átlag (ha egyáltalán létezik) nem ad szemléletes jellemzést.

- Skálázás Definíció
- Allometric scaling
- Skálázó eloszlások
- Eloszlás Skálázó eloszlás
- Példák
- Fluktuációk
- Biológiai példál Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Miért különleges egy skálázó eloszlás?
- → Mert nagyon INHOMOGÉN:
 - extrém nagy értékek is előfordulnak, nem elhanyagolható valószínűséggel,
 - az átlag (ha egyáltalán létezik) nem ad szemléletes jellemzést.
- Egy skálázó- és nem skálázó eloszlás összehasonlítása:

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric sca
- Skálázó eloszlások Eloszlás Skálázó eloszlá Példák
- Fluktuációk Biológiai példák
- Mikroszkopikus fluktuációk Makroszkopikus
- fluktuációk
- Fázisátalakulások
- Rendparaméter é kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

Vilfredo Pareto:

 A 80-20-as szabály: A föld (pénz,vagyon, stb.) több mint 80%-át az emberek kevesebb mint 20%-a birtokolja.

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric sca
- Skálázó eloszlások Eloszlás Skálázó eloszlá: Példák
- Fluktuációk
- Biológiai példá Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter e kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

Vilfredo Pareto:

- A 80-20-as szabály: A föld (pénz,vagyon, stb.) több mint 80%-át az emberek kevesebb mint 20%-a birtokolja.
- A birtokolt javak eloszlása:

$$\rho(\mathbf{X}) = \begin{cases} \frac{\alpha X_{\min}}{\mathbf{x}^{\alpha+1}} & \mathbf{X} > X_{\min} \\ \mathbf{0} & \mathbf{X} < X_{\min} \end{cases}$$

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric sc
- Skálázó eloszlások Eloszlás Skálázó eloszlá: Példák
- Fluktuációk
- Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

Vilfredo Pareto:

- A 80-20-as szabály: A föld (pénz,vagyon, stb.) több mint 80%-át az emberek kevesebb mint 20%-a birtokolja.
- A birtokolt javak eloszlása:

$$\rho(\mathbf{x}) = \begin{cases} \frac{\alpha x_{\min}}{\mathbf{x}^{\alpha+1}} & \mathbf{x} > \mathbf{x}_{\min} \\ \mathbf{0} & \mathbf{x} < \mathbf{x}_{\min} \end{cases}$$

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric sc
- Skálázó eloszlások Eloszlás Skálázó eloszlá Példák
- Fluktuációk
- Biológiai példá Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

Vilfredo Pareto:

- A 80-20-as szabály: A föld (pénz,vagyon, stb.) több mint 80%-át az emberek kevesebb mint 20%-a birtokolja.
- A birtokolt javak eloszlása:

$$\rho(\mathbf{x}) = \begin{cases} \frac{\alpha x_{\min}}{\mathbf{x}^{\alpha+1}} & \mathbf{x} > \mathbf{x}_{\min} \\ \mathbf{0} & \mathbf{x} < \mathbf{x}_{\min} \end{cases}$$

100

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric sc
- Skálázó eloszlások Eloszlás Skálázó eloszlá Példák
- Fluktuációk
- Biológiai példá Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

Vilfredo Pareto:

- A 80-20-as szabály: A föld (pénz,vagyon, stb.) több mint 80%-át az emberek kevesebb mint 20%-a birtokolja.
- A birtokolt javak eloszlása:

$$\rho(\mathbf{x}) = \begin{cases} \frac{\alpha x_{\min}}{\mathbf{x}^{\alpha+1}} & \mathbf{x} > x_{\min} \\ \mathbf{0} & \mathbf{x} < x_{\min} \end{cases}$$

Figure 1: Distribution of total wealth between households, 2008-10, GB

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlá: Példák
- Fluktuációk Biológiai példál Mikroszkopikus
- fluktuációk Makroszkopikus
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Jean-Baptiste Estoup (1868–1950), - George Kingsley Zipf (1902–1950):

> A szavak frekvenciája fordítottan arányos a gyakoriság szerinti sorrendben elfoglalt nelyezésükkel:

- a második leggyakrabb szó fele olyan gyakori, mint a leggyakrabb,
- a harmadik leggyakrabb harmad olyan gyakori,
- stb.

$$p(k) = \frac{C}{k^{\gamma}}$$

$$C=\sum_{k=1}^{N}\frac{1}{k^{\gamma}},$$

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlá: Példák
- Fluktuációk Biológiai páldá
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Jean-Baptiste Estoup (1868–1950),
 - George Kingsley Zipf (1902–1950):

A szavak frekvenciája fordítottan arányos a gyakoriság szerinti sorrendben elfoglalt helyezésükkel:

- a második leggyakrabb szó fele olyan gyakori, mint a leggyakrabb,
- a harmadik leggyakrabb harmad olyan gyakori,
- stb.

$$p(k) = \frac{C}{k^{\gamma}}$$

$$C=\sum_{k=1}^{N}\frac{1}{k^{\gamma}},$$

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlá: Példák
- Fluktuációk Biológiai példál
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Jean-Baptiste Estoup (1868–1950),
 - George Kingsley Zipf (1902–1950):

A szavak frekvenciája fordítottan arányos a gyakoriság szerinti sorrendben elfoglalt helyezésükkel:

- a második leggyakrabb szó fele olyan gyakori, mint a leggyakrabb,
- a harmadik leggyakrabb harmad olyan gyakori,
- stb.

$$p(k) = \frac{C}{k^{\gamma}}$$

$$C=\sum_{k=1}^{N}\frac{1}{k^{\gamma}},$$

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlás Példák
- Fluktuációk Biológiai példál
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Jean-Baptiste Estoup (1868–1950),
 - George Kingsley Zipf (1902–1950):

A szavak frekvenciája fordítottan arányos a gyakoriság szerinti sorrendben elfoglalt helyezésükkel:

- a második leggyakrabb szó fele olyan gyakori, mint a leggyakrabb,
- a harmadik leggyakrabb harmad olyan gyakori,

- stb.

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlás Példák
- Fluktuációk
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Jean-Baptiste Estoup (1868–1950),
 - George Kingsley Zipf (1902–1950):

A szavak frekvenciája fordítottan arányos a gyakoriság szerinti sorrendben elfoglalt helyezésükkel:

- a második leggyakrabb szó fele olyan gyakori, mint a leggyakrabb,
- a harmadik leggyakrabb harmad olyan gyakori,
- stb.

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlás Példák
- Fluktuációk Biológiai példái
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Jean-Baptiste Estoup (1868–1950),
- George Kingsley Zipf (1902–1950):

A szavak frekvenciája fordítottan arányos a gyakoriság szerinti sorrendben elfoglalt helyezésükkel:

- a második leggyakrabb szó fele olyan gyakori, mint a leggyakrabb,
- a harmadik leggyakrabb harmad olyan gyakori,
- stb.

$$p(k) = \frac{C}{k^{\gamma}},$$

$$C=\sum_{k=1}^{N}\frac{1}{k^{\gamma}},$$

 $(\gamma = 1)$

Zipf-törvény _{Szavak}

Zipf-törvény _{Szavak}

Skálázás

Definíció

- Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlá: Példák
- Fluktuációk Biológiai példák Mikroszkopikus fluktuációk
- fluktuációk
- Fázisátalakuláso Rendparaméter és kontrollparaméter Elsőrendű és
- A kritikus pont

Zipf-törvény Családnevek

A kritikus pont

Zipf-törvény Városok, megyék

A kritikus pont

- Skálázás Definíció Allometric sca
- Skálázó eloszlások Eloszlás Skálázó eloszlá: Példák
- Fluktuációk Biológiai példák Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter é kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

További skálázó eloszlások a biológiában

Skálázás, fluktuációk, fázisátalakulások

Skálázás

- Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlá: Példák
- Fluktuációk Biológiai példák Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

• Halrajok és egyéb állatcsoportok méreteloszlása.

- Rendszertanban adott genus-hoz tartozó fajok számának eloszlása.
- Fehérje kölcsönhatás: egy fehérje hány másikkal képes fizikai kölcsönhatásba lépni.
- Ha a tüdőbe levegőt próbálunk egyenletesen bepumpálni, a tüdő által kifejtett ellenállás időben nem egyenletesen változik, hanem ugrásokban, ezek méretének eloszlása szintén skálázó.

• ...
Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Skálázó eloszlások Eloszlás Skálázó eloszlás Példák
- Fluktuácio
- Biológiai példá Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Halrajok és egyéb állatcsoportok méreteloszlása.
- Rendszertanban adott genus-hoz tartozó fajok számának eloszlása.
- Fehérje kölcsönhatás: egy fehérje hány másikkal képes fizikai kölcsönhatásba lépni.
- Ha a tüdőbe levegőt próbálunk egyenletesen bepumpálni, a tüdő által kifejtett ellenállás időben nem egyenletesen változik, hanem ugrásokban, ezek méretének eloszlása szintén skálázó.

• ...

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlá: Példák
- Fluktuációk Biológiai példák Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Halrajok és egyéb állatcsoportok méreteloszlása.
- Rendszertanban adott genus-hoz tartozó fajok számának eloszlása.
- Fehérje kölcsönhatás: egy fehérje hány másikkal képes fizikai kölcsönhatásba lépni.
- Ha a tüdőbe levegőt próbálunk egyenletesen bepumpálni, a tüdő által kifejtett ellenállás időben nem egyenletesen változik, hanem ugrásokban, ezek méretének eloszlása szintén skálázó.

• ...

- Skálázás Definíció
- Skálázó eloszlások
- Eloszlás Skálázó eloszlás **Példák**
- Fluktuációk Biológiai példák Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulásoł Rendparaméter és kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

- Halrajok és egyéb állatcsoportok méreteloszlása.
- Rendszertanban adott genus-hoz tartozó fajok számának eloszlása.
- Fehérje kölcsönhatás: egy fehérje hány másikkal képes fizikai kölcsönhatásba lépni.
- Ha a tüdőbe levegőt próbálunk egyenletesen bepumpálni, a tüdő által kifejtett ellenállás időben nem egyenletesen változik, hanem ugrásokban, ezek méretének eloszlása szintén skálázó.

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Skálázó
- Eloszlás Skálázó eloszlás Példák
- Fluktuációk Biológiai példák Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások Rendparaméter és kontrollparaméter Elsőrendű és folytonos

A kritikus pont

- Halrajok és egyéb állatcsoportok méreteloszlása.
- Rendszertanban adott genus-hoz tartozó fajok számának eloszlása.
- Fehérje kölcsönhatás: egy fehérje hány másikkal képes fizikai kölcsönhatásba lépni.
- Ha a tüdőbe levegőt próbálunk egyenletesen bepumpálni, a tüdő által kifejtett ellenállás időben nem egyenletesen változik, hanem ugrásokban, ezek méretének eloszlása szintén skálázó.

Hatvány fgv. vs lognormális

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scal

Skálázó eloszlások Eloszlás Skálázó eloszl

Példák

Fluktuációk Biológiai példá

Mikroszkopiku fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Lognormális eloszlás

Definíció: A ξ valószínűségi változó eloszlása **lognormális**, ha az $\eta = \ln \xi$ változó eloszlása normális:

$$\rho_{\eta}(y) = \frac{1}{\sqrt{2\pi\sigma_0}} e^{-\frac{(y-\mu_0)^2}{2(\sigma_0)^2}}, \qquad y = \ln x, \qquad x = e^y, \qquad \frac{dy}{dx} = \frac{1}{x},$$

$$\to \quad \rho_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma_0}x} e^{-\frac{(\ln x-\mu_0)^2}{2(\sigma_0)^2}},$$

$$F_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma_0} \int_{-\infty}^{x} e^{-\frac{(\ln x' - \mu_0)^2}{2(\sigma_0)^2}} \frac{1}{x'} dx' = \sum_{-\infty}^{z = \frac{\ln x' - \mu_0}{\sigma_0}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{\ln x - \mu_0}{\sigma_0}} e^{-\frac{z^2}{2}} dz,$$

$$F_{\xi}(x) = \Phi\left(\frac{\ln x - \mu_0}{\sigma_0}\right) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{(\ln x - \mu_0)}{\sqrt{2\sigma_0}}\right)\right],$$

(azaz a ξ eloszlása logaritmikus skálán normális.

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric sca

Skálázó eloszlások Eloszlás

Skálázó eloszlá Példák

- Fluktuációk Biológiai példáł Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Lognormális eloszlás

Definíció: A ξ valószínűségi változó eloszlása **lognormális**, ha az $\eta = \ln \xi$ változó eloszlása normális:

$$\rho_{\eta}(y) = \frac{1}{\sqrt{2\pi\sigma_0}} e^{-\frac{(y-\mu_0)^2}{2(\sigma_0)^2}}, \qquad y = \ln x, \qquad x = e^y, \qquad \frac{dy}{dx} = \frac{1}{x},$$

$$\to \quad \rho_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma_0}x} e^{-\frac{(\ln x - \mu_0)^2}{2(\sigma_0)^2}},$$

$$F_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma_0}} \int_{-\infty}^{x} e^{-\frac{(\ln x' - \mu_0)^2}{2(\sigma_0)^2}} \frac{1}{x'} dx' = \stackrel{z = \frac{\ln x' - \mu_0}{\sigma_0}}{\to} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\ln x - \mu_0} e^{-\frac{z^2}{2}} dz$$
$$F_{\xi}(x) = \Phi\left(\frac{\ln x - \mu_0}{\sigma_0}\right) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{(\ln x - \mu_0)}{\sqrt{2\sigma_0}}\right)\right],$$

(azaz a ξ eloszlása logaritmikus skálán normális.

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric sca

Skálázó eloszlások Eloszlás

Példák

- Fluktuációk Biológiai példák Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakuláso Rendparaméter és kontrollparaméter Elsőrendű és folytopos
- A kritikus pont

Lognormális eloszlás

Definíció: A ξ valószínűségi változó eloszlása **lognormális**, ha az $\eta = \ln \xi$ változó eloszlása normális:

$$\rho_{\eta}(y) = \frac{1}{\sqrt{2\pi\sigma_0}} e^{-\frac{(y-\mu_0)^2}{2(\sigma_0)^2}}, \qquad y = \ln x, \qquad x = e^y, \qquad \frac{dy}{dx} = \frac{1}{x},$$

$$\rightarrow \quad \rho_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma_0}x} e^{-\frac{(\ln x - \mu_0)^2}{2(\sigma_0)^2}},$$

$$F_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma_0} \int_{-\infty}^{x} e^{-\frac{(\ln x' - \mu_0)^2}{2(\sigma_0)^2}} \frac{1}{x'} dx' = \overset{z = \frac{\ln x' - \mu_0}{\sigma_0}}{\to} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{\ln x - \mu_0}{\sigma_0}} e^{-\frac{z^2}{2}} dz,$$
$$F_{\xi}(x) = \Phi\left(\frac{\ln x - \mu_0}{\sigma_0}\right) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{(\ln x - \mu_0)}{\sqrt{2\sigma_0}}\right)\right],$$

(azaz a ξ eloszlása logaritmikus skálán normális.)

Skálázás Definíció Allometric sca

Skálázó eloszlások Eloszlás Skálázó eloszlá Példák

Fluktuációk Biológiai példák Mikroszkopikus fluktuációk

fluktuációk

Rendparaméter és kontrollparaméter Elsőrendű és folytonos

A kritikus pont

A lognormális eloszlás sűrűségfüggvénye:

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Allometric scaling

Skálázó eloszlások Eloszlás Skálázó eloszlá Példák

- Fluktuációk
- Biológiai példál Mikroszkopikus
- fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

Hol fordul elő?

- Biológiában:
 - szövetekben pl. sejtmag méret eloszlás,
 - haj, köröm, fogak hosszúsága,
 - vérnyomás,
- Tőzsdei árindexek,
- (Rekurzív) törési folyamatoknál a kapott darabok méreteloszlása,
- stb.

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Allometric scaling

Skálázó eloszlások Eloszlás Skálázó eloszlá Példák

- Fluktuációk
- Biológiai példáł Mikroszkopikus
- fluktuációk Makroszkopikus
- Rendparaméter és kontrollparaméter Elsőrendű és
- A kritikus pont

Hol fordul elő?

- Biológiában:
 - szövetekben pl. sejtmag méret eloszlás,
 - haj, köröm, fogak hosszúsága,
 - vérnyomás,
- Tőzsdei árindexek,
- (Rekurzív) törési folyamatoknál a kapott darabok méreteloszlása,
- stb.

Skálázás, fluktuációk, fázisátalakulások

Skálázás

Definíció

Allometric scaling

Skálázó eloszlások Eloszlás Skálázó eloszlá Példák

- Fluktuációk
- Biológiai példál Mikroszkopikus
- Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Hol fordul elő?

- Biológiában:
 - szövetekben pl. sejtmag méret eloszlás,
 - haj, köröm, fogak hosszúsága,
 - vérnyomás,
- Tőzsdei árindexek,
- (Rekurzív) törési folyamatoknál a kapott darabok méreteloszlása,
- stb.

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric sca
- Skálázó eloszlások Eloszlás Skálázó eloszlás Példák

Fluktuációk

- Biológiai példák Mikroszkopikus fluktuációk Makroszkopikus
- Fázisátalakulások
- Rendparaméter é kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

FLUKTUÁCIÓK

Fluktuációk

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric scalir
- Skálázó eloszlások Eloszlás Skálázó eloszlás Példák

Fluktuációk

Biológiai példák

- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter é kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

Mi a fluktuáció?

Ā

Fluktuációk

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Allometric scaling
- Skálázó eloszlások ^{Eloszlás}
- Skálázó elos Példák

Fluktuaciok

- Biológiai példák
- fluktuációk Makroszkopikus
- Rendparaméter és kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

Mi a fluktuáció?

 Ha egy mennyiség időben egy jól meghatározott átlag körül kis mértékben ingadozik, ezt szoktuk fluktuációnak hívni.

Fluktuációk

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlá:
- Példák

Fluktuaciok Biológiai példák

- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter é kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

Mi a fluktuáció?

- Ha egy mennyiség időben egy jól meghatározott átlag körül kis mértékben ingadozik, ezt szoktuk fluktuációnak hívni.
- Vagy ha egy sokaságból mintavételezünk, és a kapott minták értéke ingadozik kis mértékben egy jól meghatározott átlag körül, azt is szoktuk fluktuációnak hívni.

Skálázás, fluktuációk, fázisátalakulások

Skálázás

- Definíció
- Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszl
- Példák

Biológiai példák

- Mikroszkopiku fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

• Azonos fajhoz tartozó egyedek.

- Élettani folyamatok:
 - pulzus,
 - vérnyomás,
 - légzés,
 - EKG,
 - stb.
- Állat- vagy növény populációk mérete.
- stb.

- Skálázás
- Definíció Allometric scal
- Skálázó eloszlások Eloszlás
- Skálázó elc Példák
- Biológiai példák
- Mikroszkopiku: fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Azonos fajhoz tartozó egyedek.
- Élettani folyamatok:
 - pulzus,
 - vérnyomás,
 - légzés,
 - EKG,
 - stb.
- Állat- vagy növény populációk mérete.
- stb.

- Skálázás
- Definíció
- Skálázó eloszlások
- Skálázó eloszl Példák
- Biológiai példák
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Azonos fajhoz tartozó egyedek.
- Élettani folyamatok:
 - pulzus,
 - vérnyomás,
 - légzés,
 - EKG,
 - stb.
- Állat- vagy növény populációk mérete.
- stb.

- Skálázás
- Definició Allometric scali
- Skálázó eloszlások ^{Eloszlás}
- Skálázó elo Példák
- Biológiai példák
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Azonos fajhoz tartozó egyedek.
- Élettani folyamatok:
 - pulzus,
 - vérnyomás,
 - légzés
 - EKG,
 - stb.
- Állat- vagy növény populációk mérete.
- stb.

- Skálázás
- Definíció Allomotric sca
- Skálázó eloszlások Eloszlás
- Skálázó elos Példák
- Biológiai példák
- Mikroszkopiku: fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Azonos fajhoz tartozó egyedek.
- Élettani folyamatok:
 - pulzus,
 - vérnyomás,
 - légzés,
 - EKG,
 - stb.
- Állat- vagy növény populációk mérete.
- stb.

- Skálázás
- Definíció Allomotric sca
- Skálázó eloszlások ^{Eloszlás}
- Skálázó elo: Példák
- Biológiai példák
- Mikroszkopiku: fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Azonos fajhoz tartozó egyedek.
- Élettani folyamatok:
 - pulzus,
 - vérnyomás,
 - légzés,
 - EKG,
 - stb.
- Állat- vagy növény populációk mérete.
- stb.

- Skálázás
- Definíció
- Skálázó eloszlások
- Előszlás Skálázó előszlá Példák
- Biológiai példák
- Mikroszkopiku: fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Azonos fajhoz tartozó egyedek.
- Élettani folyamatok:
 - pulzus,
 - vérnyomás,
 - légzés,
 - EKG,
 - stb.
- Állat- vagy növény populációk mérete.
- stb.

- Skálázás
- Definíció Allometric sca
- Skálázó eloszlások ^{Eloszlás}
- Skálázó elos Példák
- Biológiai példák
- Mikroszkopiku: fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Azonos fajhoz tartozó egyedek.
- Élettani folyamatok:
 - pulzus,
 - vérnyomás,
 - légzés,
 - EKG,
 - stb.
- Állat- vagy növény populációk mérete.
- stb.

- Skálázás
- Definíció Allometric sca
- Skálázó eloszlások ^{Eloszlás}
- Skálázó elo: Példák
- Biológiai példák
- Mikroszkopiku: fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások Rendparaméter és
- Elsőrendű és folytonos
- A kritikus pont

- Azonos fajhoz tartozó egyedek.
- Élettani folyamatok:
 - pulzus,
 - vérnyomás,
 - légzés,
 - EKG,
 - stb.
- Állat- vagy növény populációk mérete.
- stb.

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció

- Skálázó eloszlások Eloszlás Skálázó eloszlá Példák
- Fluktuációk Biológiai példál
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulásoł Rendparaméter és kontrollparaméter
- A kritikus pont

• Termikus fluktuációk:

- Az atomok és molekulák minden mozgási szabadság fokához ¹/₂kT kinetikus energia társul.
- Ennek révén pl. egy kristály rácsban az atomok nem az egyensúlyi helyükön ülnek, hanem akörül "rezegnek".
- A termikus fluktuációkat korrelálatlan (fehér) zajként szoktuk figyelembe venni:

 $\left\langle \zeta(\mathbf{r},t)\zeta(\mathbf{r}',t')\right\rangle - \left\langle \zeta(\mathbf{r},t)\right\rangle \left\langle \zeta(\mathbf{r}',t')\right\rangle = C\delta(\mathbf{r}-\mathbf{r}',t-t')$

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Skálázó eloszlások ^{Eloszlás}
- Skálázó eloszlá Példák
- Fluktuációk Biológiai példál
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

• Termikus fluktuációk:

- Az atomok és molekulák minden mozgási szabadság fokához ¹/₂kT kinetikus energia társul.
- Ennek révén pl. egy kristály rácsban az atomok nem az egyensúlyi helyükön ülnek, hanem akörül "rezegnek".
- A termikus fluktuációkat korrelálatlan (fehér) zajként szoktuk figyelembe venni:

 $\left\langle \zeta(\mathbf{r},t)\zeta(\mathbf{r}',t')\right\rangle - \left\langle \zeta(\mathbf{r},t)\right\rangle \left\langle \zeta(\mathbf{r}',t')\right\rangle = C\delta(\mathbf{r}-\mathbf{r}',t-t')$

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Skálázó eloszlások
- Skálázó eloszlá Példák
- Fluktuációk Biológiai példál
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulásol Rendparaméter és kontrollparaméter Elsőrendű és
- A kritikus pont

• Termikus fluktuációk:

- Az atomok és molekulák minden mozgási szabadság fokához ¹/₂kT kinetikus energia társul.
- Ennek révén pl. egy kristály rácsban az atomok nem az egyensúlyi helyükön ülnek, hanem akörül "rezegnek".
- A termikus fluktuációkat korrelálatlan (fehér) zajként szoktuk figyelembe venni:

 $\left\langle \zeta(\mathbf{r},t)\zeta(\mathbf{r}',t')\right\rangle - \left\langle \zeta(\mathbf{r},t)\right\rangle \left\langle \zeta(\mathbf{r}',t')\right\rangle = C\delta(\mathbf{r}-\mathbf{r}',t-t')$

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Skálázó eloszlások
- Eloszlás Skálázó eloszlás Példák
- Fluktuációk Biológiai példál
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparamèter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

• Termikus fluktuációk:

- Az atomok és molekulák minden mozgási szabadság fokához ¹/₂kT kinetikus energia társul.
- Ennek révén pl. egy kristály rácsban az atomok nem az egyensúlyi helyükön ülnek, hanem akörül "rezegnek".
- A termikus fluktuációkat korrelálatlan (fehér) zajként szoktuk figyelembe venni:

 $\left\langle \zeta(\mathbf{r},t)\zeta(\mathbf{r}',t')\right\rangle - \left\langle \zeta(\mathbf{r}\,,t)\right\rangle \left\langle \zeta(\mathbf{r}',t')\right\rangle = \mathcal{C}\delta(\mathbf{r}-\mathbf{r}',t-t')$

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások Eloszlás

Skálázó eloszla Példák

Fluktuációk Biológiai példá

Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

• Bizonyos motor proteinek mint pl. a kinezin képes egy irányban végigmenni egy mikrotubuluson.

https://www.youtube.com/watch?v=y-uuk4Pr2i8

- Skálázás
- Definíció
- Allometric scaling
- Skálázó eloszlások
- Skálázó eloszlá Példák
- Fluktuációk Biológiai példál
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter é kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

- Bizonyos motor proteinek mint pl. a kinezin képes egy irányban végigmenni egy mikrotubuluson. https://www.youtube.com/watch?v=v-uuk4Pr2i8
- Ezt a legegyszerűbb úgy modellezni, mint részecskék Brown-mozgását egy ki-be kapcsolt fűrészpotenciálban.

Skálázás, fluktuációk, fázisátalakulások

- Skálázás
- Definíció
- Allometric scaling
- Skálázó eloszlások Eloszlás
- Skálázó eloszl Példák
- Fluktuációk Biológiai példál
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Bizonyos motor proteinek mint pl. a kinezin képes egy irányban végigmenni egy mikrotubuluson. https://www.youtube.com/watch?v=v-uuk4Pr2i8
- Ezt a legegyszerűbb úgy modellezni, mint részecskék Brown-mozgását egy ki-be kapcsolt fűrészpotenciálban.

http://www.ijbs.com/v06p0665.htm

- Skálázás
- Definíció
- Allometric scaling
- Skálázó eloszlások Eloszlás
- Skálázó elosz Példák
- Fluktuációk Biológiai példál
- Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter kontrollparaméte Elsőrendű és folytonos
- A kritikus pont

- Bizonyos motor proteinek mint pl. a kinezin képes egy irányban végigmenni egy mikrotubuluson. https://www.youtube.com/watch?v=v-uuk4Pr2i8
- Ezt a legegyszerűbb úgy modellezni, mint részecskék Brown-mozgását egy ki-be kapcsolt fűrészpotenciálban.

http://physics.aps.org/story/v26/st22

Skálázás, fluktuációk, fázisátalakulások Makroszkopikus fluktuációk

Honnan származnak a makroszkopikus fluktuációk?

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció

Skálázó eloszlások Eloszlás Skálázó eloszlá

Fluktuációk

Biologiai peldal Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Honnan származnak a makroszkopikus fluktuációk?

• Nemlineáris dinamika és káosz:

Determinisztikus rendszer is mutathat nagyon bonyolult viselkedést, ha nemlineáris a dinamika és/vagy nagyon sok elem hat kölcsön. (Ez a bonyolult viselkedés tűnhet sztochasztikusnak).

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások Eloszlás Skálázó eloszla

Példák

Fluktuaciok Biológiai példál Mikroszkopikus

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Honnan származnak a makroszkopikus fluktuációk?

• Nemlineáris dinamika és káosz:

Determinisztikus rendszer is mutathat nagyon bonyolult viselkedést, ha nemlineáris a dinamika és/vagy nagyon sok elem hat kölcsön. (Ez a bonyolult viselkedés tűnhet sztochasztikusnak).

 Sok mikroszkopikus egység egymással kölcsönhatva képes makroszkopikus effektust produkálni, ez általában egy FÁZISÁTALAKULÁS.
Makroszkopikus fluktuációk

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások Eloszlás Skálázó eloszlá

Példak Eluktuációl

Biológiai példáł Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparamét Elsőrendű és folytonos

A kritikus pont

Honnan származnak a makroszkopikus fluktuációk?

• Nemlineáris dinamika és káosz:

Determinisztikus rendszer is mutathat nagyon bonyolult viselkedést, ha nemlineáris a dinamika és/vagy nagyon sok elem hat kölcsön. (Ez a bonyolult viselkedés tűnhet sztochasztikusnak).

- Sok mikroszkopikus egység egymással kölcsönhatva képes makroszkopikus effektust produkálni, ez általában egy FÁZISÁTALAKULÁS.
- A fázisátalakulás kritikus pontjánál:
 - nagy fluktuációk,
 - skálázó eloszlások.

Makroszkopikus fluktuációk

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció Allometric scali

Skálázó eloszlások Eloszlás Skálázó eloszlá

Fluktuációk Biológiai példá

Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter kontrollparaméte Elsőrendű és folytonos

A kritikus pont

Honnan származnak a makroszkopikus fluktuációk?

• Nemlineáris dinamika és káosz:

Determinisztikus rendszer is mutathat nagyon bonyolult viselkedést, ha nemlineáris a dinamika és/vagy nagyon sok elem hat kölcsön. (Ez a bonyolult viselkedés tűnhet sztochasztikusnak).

- Sok mikroszkopikus egység egymással kölcsönhatva képes makroszkopikus effektust produkálni, ez általában egy FÁZISÁTALAKULÁS.
- A fázisátalakulás kritikus pontjánál:
 - nagy fluktuációk,
 - skálázó eloszlások.
- Önszervező kritikusság: bizonyos rendszerek esetén ez a kritikus pont attraktorként viselkedik, azaz a rendszer dinamikája olyan, hogy a külső paraméterek változtatása nélkül is a kritikus pont felé halad.

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric sca
- Skalazo eloszlások Eloszlás Skálázó eloszlá
- Fluktuációk
- Biológiai példák Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter és kontrollparaméter Elsőrendű és folytonos A kritikus pont

FÁZISÁTALAKULÁSOK

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció

Skálázó eloszlások Eloszlás Skálázó eloszlá

Fluktuációk

Biologiai peldal Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter é: kontrollparaméter Elsőrendű és folytonos

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció

- Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlá
- Fluktuációk
- Biológiai példák Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter és kontrollparaméter Elsőrendű és folytonos A kritikus pont

Néhány példa fázisátalakulásra:

• víz megfagyása vagy felforrása,

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlá:
- Fluktuációk
- Biológiai példák Mikroszkopikus
- Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter é: kontrollparaméter Elsőrendű és folytonos A kritikus pont

- víz megfagyása vagy felforrása,
- a ferromágneses átalakulás a Curie-pontnál,

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlá
- Fluktuációk Biológiai példá
- fluktuációk Makroszkopikus

Fázisátalakulások

Rendparaméter és kontrollparaméter Elsőrendű és folytonos A kritikus pont

- víz megfagyása vagy felforrása,
- a ferromágneses átalakulás a Curie-pontnál,
- perkolációs átalakulás,

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Allometric scaling
- Skálázó eloszlások Eloszlás
- Példák
- Fluktuációk
- Biológiai példá Mikroszkopikus
- Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter és kontrollparaméter Elsőrendű és folytonos A kritikus pont

- víz megfagyása vagy felforrása,
- a ferromágneses átalakulás a Curie-pontnál,
- perkolációs átalakulás,
- szupravezetés,

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Allometric scaling
- Skálázó eloszlások Eloszlás
- Példák
- Fluktuációk
- Biológiai példá Mikroszkopiku fluktuációk
- Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter é kontrollparaméter Elsőrendű és folytonos

- víz megfagyása vagy felforrása,
- a ferromágneses átalakulás a Curie-pontnál,
- perkolációs átalakulás,
- szupravezetés,
- Bose-Einstein-kondenzáció,

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Allometric scaling
- Skálázó eloszlások Eloszlás
- Példák
- Fluktuációk
- Biológiai példá Mikroszkopiku fluktuációk
- Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter é kontrollparaméter Elsőrendű és folytonos

- Néhány példa fázisátalakulásra:
 - víz megfagyása vagy felforrása,
 - a ferromágneses átalakulás a Curie-pontnál,
 - perkolációs átalakulás,
 - szupravezetés,
 - Bose-Einstein-kondenzáció,
 - stb.

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció

Skálázó eloszlások Eloszlás Skálázó eloszlá

Fluktuációk

Biológiai példá Mikroszkopikus fluktuációk

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter és kontrollparaméter

Elsőrendű és folytonos

A kritikus pont

• Két fázis: "rendezetlen" és "rendezett".

Skálázás, fluktuációk, fázisátalakulások

- Skálázás
- Definíció
- Allometric scaling
- eloszlások Eloszlás Skálázó eloszlá Példák
- Fluktuációk
- Biológiai példál Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások

Rendparaméter és kontrollparaméter

- Elsőrendű és folytonos
- A kritikus pont

- Két fázis: "rendezetlen" és "rendezett".
- Általában a rendezett fázis esetén valamilyen szimmetria sérül.

Skálázás, fluktuációk, fázisátalakulások

- Skálázás
- Definíció
- Skálázó eloszlások
- Eloszlás Skálázó eloszlá Példák
- Fluktuációk
- Biológiai példá Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások

Rendparaméter és kontrollparaméter

- Elsőrendű és folytonos
- A kritikus pont

- Két fázis: "rendezetlen" és "rendezett".
- Általában a rendezett fázis esetén valamilyen szimmetria sérül.
- **Rendparaméter**, *m*: a rendezetlen fázisban *m* = 0, a rendezett fázisban *m* > 0.

Skálázás, fluktuációk, fázisátalakulások

- Skálázás
- Allometric scalir
- Skálázó eloszlások
- Eloszlás Skálázó eloszlás Példák
- Fluktuációk
- Biológiai példák Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások

Rendparaméter és kontrollparaméter

Elsőrendű és folytonos

A kritikus pont

- Két fázis: "rendezetlen" és "rendezett".
- Általában a rendezett fázis esetén valamilyen szimmetria sérül.
- **Rendparaméter**, *m*: a rendezetlen fázisban *m* = 0, a rendezett fázisban *m* > 0.
- Kontrollparaméter: pl. hőmérséklet, *T*, sűrűség, ρ, stb. Ennek változtatásával lehet a rendszert átvinni egyik fázisból a másikba.

Fázisátalakulások Osztályozás

Skálázás, fluktuációk, fázisátalakulások

- Skálázás
- Allomotrio coo
- Skálázó eloszlások Eloszlás Skálázó eloszlá Példák
- Fluktuációk Biológiai példák Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakuláso
- Rendparaméter és kontrollparaméter
- Elsőrendű és folytonos
- A kritikus pont

Alapvetően két fajta fázisátalakulás:

ELSŐRENDŰ:

- m ugrásszerűen változik,
- a két fázis egyszerre létezhet egymás mellett,
- az átalakulásnál a rendszer hőt vesz fel vagy hőt ad le hőmérséklet-változás nélkül,

FOLYTONOS:

- m folytonosan változik,
- a kritikus pontban divergáló szuszceptibilitás: a rendszer végtelenül érzékeny lesz a külső zavarokra, egy minimális külső tér is makroszkopikus választ okoz.

Folytonos fázisátalakulás

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció
- Allometric scaling
- Skálázó eloszlások Eloszlás Skálázó eloszlá Példák
- Fluktuációk
- Biológiai példá Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter és kontrollparaméter
- Elsőrendű és folytonos
- A kritikus pont

interacting elementary magnets (spins) sitting in a lattice.

Neighboring spins like to be point in the same direction

If the temperature T is high this attraction is not sufficiently strong-there is no net magnetization.

If the temperature is low, the ferromagnetic order sets in. There is a phase transition at $T_{\rm c}$.

Skálázás, fluktuációk, fázisátalakulások

Skálázás Definíció

Skálázó eloszlások Eloszlás Skálázó eloszl

Példák

Fluktuációk

Biológiai példá Mikroszkopiku:

Makroszkopikus fluktuációk

Fázisátalakulások

Rendparaméter é kontrollparaméter Elsőrendű és folytonos

A kritikus pont

A korrelációs hossz, ξ definíciója:

$$\langle s(x)s(y)\rangle \sim e^{-\frac{|x-y|}{\xi}}.$$

 $\xi \sim |T - T_c|^{-\nu}$

At T = Tc: correlation length diverges

Fluctuations emerge at all scales: scale-free behavior

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric scali
- Skálázó eloszlások Eloszlás Skálázó eloszlás Példák
- Fluktuációk
- Biológiai példál Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter é: kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

A korrelációs hossz, ξ definíciója:

 $\langle s(x)s(y)\rangle \sim e^{-\frac{|x-y|}{\xi}}.$

 Azonban a kritikus pontban a korreláció nem exponenciálisan cseng le, hanem hatványszerűen, azaz skálázik! $\xi \sim |T-T_c|^{-\nu}$

Fluctuations emerge at all scales: scale-free behavior

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric scali
- Skálázó eloszlások Eloszlás Skálázó eloszlás Példák
- Fluktuációk Biológiai példál Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások
- Rendparaméter é kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

A korrelációs hossz, ξ definíciója:

 $\langle s(x)s(y)\rangle \sim e^{-\frac{|x-y|}{\xi}}.$

 Azonban a kritikus pontban a korreláció nem exponenciálisan cseng le, hanem hatványszerűen, azaz skálázik!

At T = Tc: correlation length diverges

Fluctuations emerge at all scales: scale-free behavior

→ A korrelációs hossz a kritikus pontban divergál!

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric scali
- Skálázó eloszlások Eloszlás Skálázó eloszlás Példák
- Fluktuációk Biológiai példák Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakulások Rendparaméter és kontrolloaraméter
- Elsőrendű és folytonos
- A kritikus pont

A korrelációs hossz, ξ definíciója:

 $\langle s(x)s(y)\rangle \sim e^{-\frac{|x-y|}{\xi}}.$

 Azonban a kritikus pontban a korreláció nem exponenciálisan cseng le, hanem hatványszerűen, azaz skálázik! $\xi \sim |T-T_c|^{-\nu}$

Fluctuations emerge at all scales: scale-free behavior

- → A korrelációs hossz a kritikus pontban divergál!
- A kritikus ponthoz közel a korrelációs hossz is skálázik, $\xi \sim |T T_c|^{-\nu}$.

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric scali
- Skálázó eloszlások Eloszlás Skálázó eloszlás Példák
- Fluktuációk Biológiai példák Mikroszkopikus
- Makroszkopikus fluktuációk
- Fázisátalakuláso Rendparaméter és kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

A korrelációs hossz, ξ definíciója:

 $\langle s(x)s(y)\rangle \sim e^{-\frac{|x-y|}{\xi}}.$

 Azonban a kritikus pontban a korreláció nem exponenciálisan cseng le, hanem hatványszerűen, azaz skálázik! $\xi \sim |T-T_c|^{-\nu}$

Fluctuations emerge at all scales: scale-free behavior

- → A korrelációs hossz a kritikus pontban divergál!
- A kritikus ponthoz közel a korrelációs hossz is skálázik, $\xi \sim |T T_c|^{-\nu}$.
- A doménméreteloszlás is hatványszerű, a domének önhasonló struktúrát mutatnak több nagyságrenden keresztül. https://www.youtube.com/watch?v=lQxD1PinDbs

Skálázás, fluktuációk, fázisátalakulások

- Skálázás Definíció Allometric scali
- Skálázó eloszlások Eloszlás Skálázó eloszlás Példák
- Fluktuációk Biológiai példák Mikroszkopikus fluktuációk
- Makroszkopikus fluktuációk
- Fázisátalakulásol Rendparaméter és kontrollparaméter Elsőrendű és folytonos
- A kritikus pont

A korrelációs hossz, ξ definíciója:

 $\langle s(x)s(y)\rangle \sim e^{-\frac{|x-y|}{\xi}}.$

 Azonban a kritikus pontban a korreláció nem exponenciálisan cseng le, hanem hatványszerűen, azaz skálázik! $\xi \sim |T-T_c|^{-\nu}$

Fluctuations emerge at all scales: scale-free behavior

- → A korrelációs hossz a kritikus pontban divergál!
- A kritikus ponthoz közel a korrelációs hossz is skálázik, $\xi \sim |T T_c|^{-\nu}$.
- A doménméreteloszlás is hatványszerű, a domének önhasonló struktúrát mutatnak több nagyságrenden keresztül. https://www.youtube.com/watch?v=lQxDlPinDbs
- Univerzalitás: sok különböző fázisátalakulásnál ugyanazok az exponensek írják le a kritikus pont körüli viselkedést.

Fraktálok

Példák

- Fraktálok mindenüt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók köz összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény
- A fraktáldimonz
- mérése

FRAKTÁLOK: DEFINÍCIÓK, (DIMENZIÓK, KORRELÁCIÓS FÜGGVÉNYEK) TÍPUSAIK, DIMENZIÓK KÖZTI ÖSSZEFÜGGÉSEK

Fraktálok

Példák

Fraktálok mindenütt

- Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók köz összefüggések
- Sztochasztikus fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Fraktálok

Példák

Fraktálok mindenütt

- Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók köz összefüggések
- Sztochasztikus fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Fraktálok

Példák

Fraktálok mindenütt

Hogyan rajzoljunk fraktált?

Definíciók

Anomális térfoga felület, hossz.

Fraktáldimenzió

Dimenziók köz összefüggések

Sztochasztiku: fraktálok

Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens

Fraktálok

Példák

Fraktálok mindenütt

Hogyan rajzoljuni fraktált?

Definíciók

Anomális térfoga felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztiku fraktálok

Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens

Fraktálok

Példák

Fraktálok mindenütt

Hogyan rajzoljuni fraktált?

Definíciók

Anomális térfogat felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztiku: fraktálok

Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens

Fraktálok

Példák

Fraktálok mindenütt

Hogyan rajzoljuni fraktált?

Definíciók

Anomális térfoga felület, hossz.

Fraktáldimenzió

Dimenziók köz összefüggések

Sztochasztiku: fraktálok

Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens

Fraktálok

Példák

Fraktálok mindenütt

fraktált?

Definíciók

Anomális térfoga felület, hossz.

Fraktáldimenzió

Dimenziók köz összefüggések

Sztochasztiku: fraktálok

Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens

Fraktálok

Példák

Fraktálok mindenütt Hogyan raizoliunk

fraktált?

Definíciók

Anomális térfoga felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztikus fraktálok

Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens

Fraktálok

Példák

Fraktálok mindenütt

- Hogyan rajzoljuni fraktált?
- Definíciók
- Anomális térfoga felület, hossz
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

Fraktálok

Példák

- Fraktálok mindenütt
- Hogyan rajzoljuni fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók köz összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Fraktálok

Példák

Fraktálok mindenütt

Hogyan rajzoljunk fraktált?

Definíciók

Anomális térfoga felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztiku fraktálok

Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens

Fraktálok Mandelbrot-halmazok

Fraktálok

Példák

Fraktálok mindenütt Hogyan rajzoljunk

Definíciók

Anomális térfoga felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztiku: fraktálok

Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens

Fraktálok Mandelbrot-halmazok

Fraktálok

Példák

- Fraktálok mindenütt
- fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók köz összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Fraktálok

Fraktál rajzolás I. módszere

- Hogyan raizoliunk fraktált?

Egy egyszerű geometriai alakzatból indulunk ki.

Rekurzívan lecseréljük az alakzat részeit "saját magával".

(Sierpinski-háromszög)

Fraktálok

Példák

Hogyan rajzoljunk fraktált?

Definíciók

Anomális térfoga felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztiku: fraktálok

Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens

A fraktáldimenzió mérése

Fraktál rajzolás I. módszere

- Egy egyszerű geometriai alakzatból indulunk ki.
- Rekurzívan lecseréljük az alakzat részeit "saját magával".

(Sierpinski-háromszög)

Fraktálok

Példák

Hogyan rajzoljunk

- fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztikus fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

Fraktál rajzolás I. módszere

- Egy egyszerű geometriai alakzatból indulunk ki.
- Rekurzívan lecseréljük az alakzat részeit "saját magával".

Fraktálok

Példák

Hoovan raizoliunk

- fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztikus fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Fraktál rajzolás I. módszere

- Egy egyszerű geometriai alakzatból indulunk ki.
- Rekurzívan lecseréljük az alakzat részeit "saját magával".

Fraktálok

Példák

Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztikus fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Fraktál rajzolás II. módszere

- Egy egyszerű geometriai alakzatból indulunk ki.
- Adott geometria szerint rekurzívan növeljük az ábrát "saját magával".

Fraktálok

Példák

- Hogvan raizoliunk
- fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztikus fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

Fraktál rajzolás II. módszere

- Egy egyszerű geometriai alakzatból indulunk ki.
- Adott geometria szerint rekurzívan növeljük az ábrát "saját magával".

Fraktálok

• Mérjük meg a pl. Brit-szigetek kerületét!

Fraktálok n

Hogyan rajzoljun fraktált?

Definíciók

Anomális térfogat, felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztiku fraktálok

Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens

A fraktáldimenzió mérése

Fraktálok

Példák Fraktálok mind Hogyan rajzolju

fraktált?

Definíciók

Anomális térfogat, felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztiku: fraktálok

Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens

A fraktáldimenzió mérése

• Mérjük meg a pl. Brit-szigetek kerületét!

Minél nagyobb felbontású térképet használunk, annál nagyobb értéket mérünk!

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

Anomális térfogat, felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztiku: fraktálok

Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens

A fraktáldimenzió mérése

• Mérjük meg a pl. Brit-szigetek kerületét!

Minél nagyobb felbontású térképet használunk, annál nagyobb értéket mérünk!

Fraktálok

Példák

Fraktálok mindenű: Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfogat, felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens
- A fraktáldimenzió mérése

A térfogat (terület, hossz, stb.) mérése

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

Anomális térfogat, felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztiku: fraktálok

Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens

A fraktáldimenzió mérése

A térfogat (terület, hossz, stb.) mérése

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfogat, felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

A térfogat (terület, hossz, stb.) mérése

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfogat, felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens
- A fraktáldimenzió mérése

A térfogat (terület, hossz, stb.) mérése

Fraktálok

A térfogat (terület, hossz, stb.) mérése

- Anomális térfogat. felület, hossz

- Ha az adott alakzat d dimenziós térbe van beágyazva, akkor lefedjük ℓ élhosszúságú d dimenziós kockákkal, melyeknek a térfogata egyenként ℓ^d .
- Legyen a lefedéshez szükséges dobozok minimális száma $N(\ell)$.

Fraktálok

A térfogat (terület, hossz, stb.) mérése

- Példák
- Fraktálok mindenüt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat, felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Ha az adott alakzat d dimenziós térbe van

- Ha az adott alakzat d dimenzios terbe van beágyazva, akkor lefedjük l élhosszúságú d dimenziós kockákkal, melyeknek a térfogata egyenként l^d.
- Legyen a lefedéshez szükséges dobozok minimális száma N(l).
- → Az alakzat térfogata: $V(\ell) = N(\ell) \cdot \ell^d$.

Fraktálok

A térfogat (terület, hossz, stb.) mérése

- Példák Fraktálok mindenűtt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat, felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

- Ha az adott alakzat d dimenziós térbe van beágyazva, akkor lefedjük l élhosszúságú d dimenziós kockákkal, melyeknek a térfogata egyenként l^d.
- Legyen a lefedéshez szükséges dobozok minimális száma N(l).
- → Az alakzat térfogata: $V(\ell) = N(\ell) \cdot \ell^d$.
 - "Hagyományos" alakzatok: az l csökkentésével V(l) gyorsan konvergál egy jól definiált értékhez.

Fraktálok

A térfogat (terület, hossz, stb.) mérése

- Peldak Fraktálok mindenű Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat, felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

- Ha az adott alakzat d dimenziós térbe van beágyazva, akkor lefedjük l élhosszúságú d dimenziós kockákkal, melyeknek a térfogata egyenként l^d.
- Legyen a lefedéshez szükséges dobozok minimális száma N(l).
- → Az alakzat térfogata: $V(\ell) = N(\ell) \cdot \ell^d$.
 - "Hagyományos" alakzatok: az l csökkentésével V(l) gyorsan konvergál egy jól definiált értékhez.
 - Fraktálok:
 - Ha $\ell \to 0$, akkor $V(\ell) \to 0$ úgyszintén!

×

Fraktálok

Anomális térfogat, felület, hossz.

A térfogat (terület, hossz, stb.) mérése

- Ha az adott alakzat d dimenziós térbe van beágyazva, akkor lefedjük l élhosszúságú d dimenziós kockákkal, melyeknek a térfogata egyenként l^d.
 - Legyen a lefedéshez szükséges dobozok minimális száma N(l).
 - → Az alakzat térfogata: $V(\ell) = N(\ell) \cdot \ell^d$.

- "Hagyományos" alakzatok: az ℓ csökkentésével V(ℓ) gyorsan konvergál egy jól definiált értékhez.
- Fraktálok:
 - Ha $\ell \to 0$, akkor $V(\ell) \to 0$ úgyszintén!
 - Viszont ha d 1 dimenziós kockákkal lemérjük a "felületüket" (kerületüket, hosszukat):

ha $\ell \to 0$, akkor $S(\ell) \to \infty$.

Fraktálok

Anomális térfogat, felület, hossz.

A térfogat (terület, hossz, stb.) mérése

- Ha az adott alakzat d dimenziós térbe van beágyazva, akkor lefedjük l élhosszúságú d dimenziós kockákkal, melyeknek a térfogata egyenként l^d.
 - Legyen a lefedéshez szükséges dobozok minimális száma N(l).
 - → Az alakzat térfogata: $V(\ell) = N(\ell) \cdot \ell^d$.

- "Hagyományos" alakzatok: az ℓ csökkentésével V(ℓ) gyorsan konvergál egy jól definiált értékhez.
- Fraktálok:
 - Ha $\ell \to 0$, akkor $V(\ell) \to 0$ úgyszintén!
 - Viszont ha d 1 dimenziós kockákkal lemérjük a "felületüket" (kerületüket, hosszukat): ha ℓ → 0, akkor S(ℓ) → ∞.
- → A fraktálok tört dimenzióval rendelkező alakzatok.

Fraktálok

Példák

Fraktálok mindenütt Hogyan rajzoljunk fraktált?

Definíciók

Anomális térfogat, felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztiku fraktálok

Önaffin fraktálok Anizotrópia Õnaffin függvény A *H* exponens

A fraktáldimenzió mérése

Fraktál

A fraktál egy önhasonló geometriával rendelkező alakzat,

 melynél az alakzat lefedéséhez szükséges ℓ lineáris hosszúságú térfogategységek (doboz, gömb, stb.) N(ℓ) száma nemtriviális módon skálázik ℓ-el:

 $N(\ell) \sim \ell^{-D},$

ahol *D* nem egész.

- A biológiában, természetben előforduló fraktáloknál van egy alsó- és felső mérethatár, amiken belül érvényes az önhasonlóság és a skálázás.
- Felső határ: legtöbbször az alakzat (levél, hópehely, stb.) mérete.
- Alsó határ: pl. sejtek, vagy egyéb elemi alkotórészek mérete.

Fraktálok

Példák

Fraktálok mindenütt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfogat, felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Fraktál

- A fraktál egy önhasonló geometriával rendelkező alakzat,
- melynél az alakzat lefedéséhez szükséges lineáris hosszúságú térfogategységek (doboz, gömb, stb.) N(l) száma nemtriviális módon skálázik l-el:

 $N(\ell) \sim \ell^{-D},$

ahol D nem egész.

- A biológiában, természetben előforduló fraktáloknál van egy alsó- és felső mérethatár, amiken belül érvényes az önhasonlóság és a skálázás.
- Felső határ: legtöbbször az alakzat (levél, hópehely, stb.) mérete.
- Alsó határ: pl. sejtek, vagy egyéb elemi alkotórészek mérete

Fraktálok

Példák

Fraktálok mindenütt Hogyan rajzoljunk fraktált?

Definíciók

Anomális térfogat, felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztiku fraktálok

Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens

A fraktáldimenzió mérése

Fraktál

- A fraktál egy önhasonló geometriával rendelkező alakzat,
- melynél az alakzat lefedéséhez szükséges lineáris hosszúságú térfogategységek (doboz, gömb, stb.) N(l) száma nemtriviális módon skálázik l-el:

 $N(\ell) \sim \ell^{-D},$

ahol D nem egész.

- A biológiában, természetben előforduló fraktáloknál van egy alsó- és felső mérethatár, amiken belül érvényes az önhasonlóság és a skálázás.
- Felső határ: legtöbbször az alakzat (levél, hópehely, stb.) mérete.
- Alsó határ: pl. sejtek, vagy egyéb elemi alkotórészek mérete.

Fraktálok

Példák

Fraktálok mindenütt Hogyan rajzoljunk fraktált?

Definíciók

Anomális térfogat, felület, hossz.

- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Fraktál

- A fraktál egy önhasonló geometriával rendelkező alakzat,
- melynél az alakzat lefedéséhez szükséges lineáris hosszúságú térfogategységek (doboz, gömb, stb.) N(l) száma nemtriviális módon skálázik l-el:

 $N(\ell) \sim \ell^{-D},$

ahol D nem egész.

- A biológiában, természetben előforduló fraktáloknál van egy alsó- és felső mérethatár, amiken belül érvényes az önhasonlóság és a skálázás.
- Felső határ: legtöbbször az alakzat (levél, hópehely, stb.) mérete.
- Alsó határ: pl. sejtek, vagy egyéb elemi alkotórészek mérete.

Fraktáldimenzió

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Ha a fraktál lefedéséhez szükséges ℓ lineáris méretű egységek (dobozok) száma N(ℓ), akkor a fraktáldimenzió

$$D = \lim_{\ell \to 0} \frac{\ln N(\ell)}{\ln(1/\ell)}.$$

- Növekvő fraktálok esetén (pl. II. rajzolási módszer) általában adott egy kiinduló minimális elemi egység méret, *l*:
 - Az általánosság megszorítása nélkül választhatjuk a méretskálát úgy, hogy l = 1 legyen.
 - A lefedéshez használt dobozok méretét itt nem változtatjuk, a dobozok száma az alakzat L lineáris méretével N(L) ~ L^D szerint skálázik.
 - → Ilyen esetben a fraktáldimenzió:

$$D = \lim_{L \to \infty} \frac{\ln N(L)}{\ln L}.$$

Fraktáldimenzió

Fraktálok

Példák

- Fraktálok mindenüt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók közti összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Ha a fraktál lefedéséhez szükséges l lineáris méretű egységek (dobozok) száma N(l), akkor a fraktáldimenzió

$$D = \lim_{\ell \to 0} \frac{\ln N(\ell)}{\ln(1/\ell)}.$$

- Növekvő fraktálok esetén (pl. II. rajzolási módszer) általában adott egy kiinduló minimális elemi egység méret, *l*:
 - Az általánosság megszorítása nélkül választhatjuk a méretskálát úgy, hogy l = 1 legyen.
 - A lefedéshez használt dobozok méretét itt nem változtatjuk, a dobozok száma az alakzat L lineáris méretével N(L) ~ L^D szerint skálázik.
 - → Ilyen esetben a fraktáldimenzió:

$$D = \lim_{L \to \infty} \frac{\ln N(L)}{\ln L}.$$

Fraktáldimenzió

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók közti összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens
- A fraktáldimenzić mérése

Ha a fraktál lefedéséhez szükséges ℓ lineáris méretű egységek (dobozok) száma N(ℓ), akkor a fraktáldimenzió

$$D = \lim_{\ell \to 0} \frac{\ln N(\ell)}{\ln(1/\ell)}.$$

- Növekvő fraktálok esetén (pl. II. rajzolási módszer) általában adott egy kiinduló minimális elemi egység méret, *l*:
 - Az általánosság megszorítása nélkül választhatjuk a méretskálát úgy, hogy l = 1 legyen.
 - A lefedéshez használt dobozok méretét itt nem változtatjuk, a dobozok száma az alakzat L lineáris méretével N(L) ~ L^D szerint skálázik.
 - → Ilyen esetben a fraktáldimenzió:

$$D = \lim_{L \to \infty} \frac{\ln N(L)}{\ln L}.$$

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Fraktáldimenzió

 Ha a fraktál lefedéséhez szükséges l lineáris méretű egységek (dobozok) száma N(l), akkor a fraktáldimenzió

$$D = \lim_{\ell \to 0} \frac{\ln N(\ell)}{\ln(1/\ell)}.$$

- Növekvő fraktálok esetén (pl. II. rajzolási módszer) általában adott egy kiinduló minimális elemi egység méret, *l*:
 - Az általánosság megszorítása nélkül választhatjuk a méretskálát úgy, hogy ℓ = 1 legyen.
 - A lefedéshez használt dobozok méretét itt nem változtatjuk, a dobozok száma az alakzat L lineáris méretével N(L) ~ L^D szerint skálázik.
 - → Ilyen esetben a fraktáldimenzió:

$$D = \lim_{L \to \infty} \frac{\ln N(L)}{\ln L}.$$

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók közti összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Fraktáldimenzió

 Ha a fraktál lefedéséhez szükséges l lineáris méretű egységek (dobozok) száma N(l), akkor a fraktáldimenzió

$$D = \lim_{\ell \to 0} \frac{\ln N(\ell)}{\ln(1/\ell)}.$$

- Növekvő fraktálok esetén (pl. II. rajzolási módszer) általában adott egy kiinduló minimális elemi egység méret, *l*:
 - Az általánosság megszorítása nélkül választhatjuk a méretskálát úgy, hogy ℓ = 1 legyen.
 - A lefedéshez használt dobozok méretét itt nem változtatjuk, a dobozok száma az alakzat L lineáris méretével N(L) ~ L^D szerint skálázik.
 - → Ilyen esetben a fraktáldimenzió:

$$D = \lim_{L \to \infty} \frac{\ln N(L)}{\ln L}.$$

Fraktálok

Példa: számoljuk ki a fraktáldimenziót az alábbi példánál!

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztikus fraktálok
- Önaffin fraktálok Anizotrópia Ōnaffin függvény
- A H exponens
- A fraktáldimenzió mérése

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

Példa: számoljuk ki a fraktáldimenziót az alábbi példánál!

• Jelöljük k-val az iterációk számát.

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztikus fraktálok
- Önaffin fraktálok Anizotrópia Ōnaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Példa: számoljuk ki a fraktáldimenziót az alábbi példánál!

- Jelöljük k-val az iterációk számát.
- → A fraktál lineáris mérete $L = 3^k$, az elemi egységek száma $N(L) = 5^k$, ennélfogva

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztikus fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

Példa: számoljuk ki a fraktáldimenziót az alábbi példánál!

- Jelöljük k-val az iterációk számát.
- → A fraktál lineáris mérete $L = 3^k$, az elemi egységek száma $N(L) = 5^k$, ennélfogva

$$D = \lim_{L \to \infty} \frac{\ln N(L)}{\ln L} = \lim_{k \to \infty} \frac{\ln(5^k)}{\ln(3^k)} = \frac{\ln 5}{\ln 3} = 1.465..$$

Fraktáldimenzió tulajdonságai

Fraktálok

- Példák
- Fraktálok mindenüt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió

Dimenziók közti összefüggések

- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

 Ha egy d dimenzióba beágyazott D dimenziós fraktált levetítünk egy d_s altérre, (pl. csinálunk egy fotót egy 3d-be ágyazott fraktálról):

Fraktáldimenzió tulajdonságai

Fraktálok

Dimenziók közti összefüggések

- Ha egy d dimenzióba beágyazott D dimenziós fraktált levetítünk egy d_s altérre, (pl. csinálunk egy fotót egy 3d-be ágyazott fraktálról):
 - ha $d_s > D$, akkor a vetület továbbra is $D_p = D$ dimenziós marad,
 - ha $d_s < D$, akkor a fraktál kitölti az alteret és $D_p = d_s$.

≧
Fraktálok

- Ha egy d dimenzióba beágyazott D dimenziós fraktált levetítünk egy d_s altérre, (pl. csinálunk egy fotót egy 3d-be ágyazott fraktálról):
 - ha $d_s > D$, akkor a vetület továbbra is $D_p = D$ dimenziós marad,
 - ha $d_s < D$, akkor a fraktál kitölti az alteret és $D_p = d_s$.
 - Ha vesszük egy D_A és egy D_B dimenziójú fraktál unióját ahol D_A > D_B,

Fraktálok

- Ha egy d dimenzióba beágyazott D dimenziós fraktált levetítünk egy d_s altérre, (pl. csinálunk egy fotót egy 3d-be ágyazott fraktálról):
 - ha $d_s > D$, akkor a vetület továbbra is $D_p = D$ dimenziós marad,
 - ha $d_s < D$, akkor a fraktál kitölti az alteret és $D_p = d_s$.
 - Ha vesszük egy D_A és egy D_B dimenziójú fraktál unióját ahol D_A > D_B, akkor az eredmény D_{A∪B} = D_A dimenziós lesz.

Fraktálok

- Ha egy d dimenzióba beágyazott D dimenziós fraktált levetítünk egy d_s altérre, (pl. csinálunk egy fotót egy 3d-be ágyazott fraktálról):
 - ha $d_s > D$, akkor a vetület továbbra is $D_{\rho} = D$ dimenziós marad,
 - ha $d_s < D$, akkor a fraktál kitölti az alteret és $D_{\rho} = d_S$.
 - Ha vesszük egy D_A és egy D_B dimenziójú fraktál unióját ahol D_A > D_B, akkor az eredmény D_{A∪B} = D_A dimenziós lesz.
 - Ha vesszük D_A és egy D_B dimenziójú fraktál metszetét, akkor az eredmény D_{A∩B} = D_A + D_B − d dimenziós lesz:

Fraktálok

- Példák
- Fraktálok mindenütt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat. felület, hossz. Fraktáldimenzió

- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

- Ha egy d dimenzióba beágyazott D dimenziós fraktált levetítünk egy d_s altérre, (pl. csinálunk egy fotót egy 3d-be ágyazott fraktálról):
 - ha $d_s > D$, akkor a vetület továbbra is $D_p = D$ dimenziós marad,
 - ha $d_s < D$, akkor a fraktál kitölti az alteret és $D_p = d_s$.
- Ha vesszük egy D_A és egy D_B dimenziójú fraktál unióját ahol D_A > D_B, akkor az eredmény D_{A∪B} = D_A dimenziós lesz.
- Ha vesszük D_A és egy D_B dimenziójú fraktál metszetét, akkor az eredmény D_{A∩B} = D_A + D_B − d dimenziós lesz:
 - egy *L* lineáris mérettel rendelkező tartományon belül: *A* részecskék sűrűsége ~ $\frac{L^{D_A}}{L^{D_a}}$,
 - *B* részecskék sűrűsége ~ $\frac{L^{D_B}}{L^d}$.
 - → Mivel *A* és *B* független, $A \cap B$ részecskék sűrűsége az ~ $\frac{L^{D_A}}{L^d} \cdot \frac{L^{D_B}}{L^d}$, azaz $N_{A \cap B}(L) \sim \frac{L^{D_A}L^{D_B}}{L^d} = L^{D_A + D_B - d}$.

Fraktálok

 Sok olyan jelenség van, ahol az önhasonlóság szigorú geometriai értelemben nem teljesül, csak sztochasztikusan.

Peldak

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések

Sztochasztikus fraktálok

- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

Fraktálok

- Sok olyan jelenség van, ahol az önhasonlóság szigorú geometriai értelemben nem teljesül, csak sztochasztikusan.
 - Pl. fázisátalakulás kritikus pontjánál a doménszerkezet.

Fraktálo

Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztikus fraktálok

Önaffin fraktálok Anizotrópia Ōnaffin függvény A H exponens

A fraktáldimenzió mérése

Fraktálok

- Sok olyan jelenség van, ahol az önhasonlóság szigorú geometriai értelemben nem teljesül, csak sztochasztikusan.
 - Pl. fázisátalakulás kritikus pontjánál a doménszerkezet.
 - Ilyenkor a sűrűség–sűrűség korrelációs függvény segítségével vizsgáljuk az önhasonlóságot:

$$C(\vec{\mathbf{r}}) = \frac{1}{V} \sum_{\vec{\mathbf{r}}'} \rho(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \rho(\vec{\mathbf{r}}).$$

Hogyan rajz

Definíciók

Anomális térfoga felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztikus fraktálok

Önaffin fraktálok Anizotrópia Ōnaffin függvény A H exponens

A fraktáldimenzió mérése

Fraktálok

Sztochasztikus fraktálok

- Sok olyan jelenség van, ahol az önhasonlóság szigorú geometriai értelemben nem teljesül, csak sztochasztikusan.
 - Pl. fázisátalakulás kritikus pontjánál a doménszerkezet.
 - Ilyenkor a sűrűség–sűrűség korrelációs függvény segítségével vizsgáljuk az önhasonlóságot:

$$C(\vec{\mathbf{r}}) = \frac{1}{V} \sum_{\vec{\mathbf{r}}'} \rho(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \rho(\vec{\mathbf{r}}).$$

• Az egyszerűség kedvéért tegyük fel, hogy $C(\vec{r})$ izotrop, emiatt áttérünk $C(\vec{r}) \rightarrow C(r)$ -re.

Fraktálok

- Példák
- Fraktálok mindenütt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések

Sztochasztikus fraktálok

- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

- Sok olyan jelenség van, ahol az önhasonlóság szigorú geometriai értelemben nem teljesül, csak sztochasztikusan.
- Pl. fázisátalakulás kritikus pontjánál a doménszerkezet.
- Ilyenkor a sűrűség–sűrűség korrelációs függvény segítségével vizsgáljuk az önhasonlóságot:

$$C(\vec{\mathbf{r}}) = \frac{1}{V} \sum_{\vec{\mathbf{r}}'} \rho(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \rho(\vec{\mathbf{r}}).$$

- Az egyszerűség kedvéért tegyük fel, hogy $C(\vec{\mathbf{r}})$ izotrop, emiatt áttérünk $C(\vec{\mathbf{r}}) \rightarrow C(r)$ -re.
- A vizsgált alakzat önhasonló ha C(r) SKÁLÁZÓ, azaz ha

 $C(br) = g(b) \cdot C(r), \quad \leftrightarrow \quad C(r) \sim r^{-\alpha}.$

Sztochasztikus fraktálok Fraktáldimenzió

Fraktálok

Példák

Fraktálok mindenü Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztikus fraktálok

Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens

A fraktáldimenzió mérése

- Hogy lehet egy sztochasztikus fraktál esetén a fraktáldimenziót meghatározni?
- → Egy részecskétől számított L sugarú tartományon belül a részecskék számát a C(r) alapján tudjuk becsülni:

$$N(L) \sim \int_{0}^{L} C(r) d^{d}r \sim L^{d-\alpha},$$

ami alapján $D = d - \alpha$.

Sztochasztikus fraktálok Fraktáldimenzió

Fraktálok

Példák

- Fraktálok mindenü Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók köz összefüggések

Sztochasztikus fraktálok

- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

- Hogy lehet egy sztochasztikus fraktál esetén a fraktáldimenziót meghatározni?
- → Egy részecskétől számított L sugarú tartományon belül a részecskék számát a C(r) alapján tudjuk becsülni:

$$N(L) \sim \int_{0}^{L} C(r) d^{d}r \sim L^{d-\alpha},$$

ami alapján $D = d - \alpha$.

Fraktálok

- Példák
- Fraktálok mindenüt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok
- Anizotrópia
- Onaffin függvény A H exponens
- A fraktáldimenzió mérése

 A természetben előfordulnak olyan alakzatok is, melyeknél a tér különböző irányaiban eltérő módon kell skálázni ahhoz, hogy "önmagába" menjen át.

Fraktálok

- Példák
- Fraktálok mindenüt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok
- Anizotrópia
- Onaffin függvény A *H* exponens
- A fraktáldimenzió mérése

- A természetben előfordulnak olyan alakzatok is, melyeknél a tér különböző irányaiban eltérő módon kell skálázni ahhoz, hogy "önmagába" menjen át.
- Példa: Brown-mozgásnál az origótól való távolság, x(t)

Figure 7. Self-similarity of a Brownian motion path. In (a) we plot a path of a Brownian motion with 15000 time steps. The curve in (b) is a blow-up of the region delimited by a restangle in (a), where we have rescaled the *x* axis by a factor 4 and the *y* axis by a factor 2. Note that the graphs in (a) and (b) "look the same," statistically speaking. This process can be repeated indefinitely.

Fraktálok

- Példák
- Fraktálok mindenüt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok
- Anizotrópia
- Önaffin függvény A *H* exponens
- A fraktáldimenzió mérése

- A természetben előfordulnak olyan alakzatok is, melyeknél a tér különböző irányaiban eltérő módon kell skálázni ahhoz, hogy "önmagába" menjen át.
- Példa: Brown-mozgásnál az origótól való távolság, x(t)

Fraktálok

Példák

Fraktálok mindenütt Hogyan rajzoljunk fraktált?

Definíciók

Anomális térfoga felület, hossz.

Fraktáldimenzie

Dimenziók közt összefüggések

Sztochasztiku: fraktálok

Önaffin fraktáloł

Anizotrópia

Onattin tüggvény A H exponens

A fraktáldimenzió mérése

Felület durvulás:

Anizotrop önhasonlóság További példák

Fraktálok

Példák

Fraktálok mindenütt Hogyan rajzoljunk fraktált?

Definíciók

Anomális térfoga felület, hossz.

Fraktáldimenzió

Dimenziók közt összefüggések

Sztochasztiku: fraktálok

Önaffin fraktálok

Anizotrópia

Onaffin függvény A *H* exponens

A fraktáldimenzió mérése

Tőzsdei árfolyam:

Source: HURST EXPONENT AND FINANCIAL MARKET PREDICTABILITY, Bo Qian and Khaled Rasheed

Fraktálok

Példák

- Fraktálok mindenül Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Ōnaffin függvény
- A H exponens
- A fraktáldimenzió mérése

Önaffin függvény

 A [0,1]-en értelmezett egyértékű, sehol sem differenciálható F(x) függvény önaffin, ha

 $F(x)\simeq b^{-H}F(bx),$

ahol H > 0.

- → Ez azt jelenti, hogy akkor lesz a függvény invariáns, ha
 - vízszintes tengely skálája ·1/b,
 - a függ. tengely skálája ·1/b^H.
- Megfordítva: ha vízszintesen b_x, függőlegesen b_y faktorral kell nyújtani/zsugorítani, akkor

$$b_y = b_x^H, \qquad H = \frac{\ln b_y}{\ln b_x}$$

Fraktálok

Példák

- Fraktálok mindenü Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény
- A H exponens
- A fraktáldimenzió mérése

Önaffin függvény

 A [0,1]-en értelmezett egyértékű, sehol sem differenciálható F(x) függvény önaffin, ha

 $F(x)\simeq b^{-H}F(bx),$

ahol H > 0.

- → Ez azt jelenti, hogy akkor lesz a függvény invariáns, ha
 - vízszintes tengely skálája ·1/b,
 - a függ. tengely skálája $\cdot 1/b^{H}$.
 - Megfordítva: ha vízszintesen b_x függőlegesen b_y faktorral kell nyújtani/zsugorítani, akkor

$$b_y = b_x^H, \qquad H = \frac{\ln b_y}{\ln b_x}$$

Fraktálok

Példák

- Fraktálok mindenüt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Ōnaffin függvény
- A H exponens
- A fraktáldimenzió mérése

Önaffin függvény

 A [0,1]-en értelmezett egyértékű, sehol sem differenciálható F(x) függvény önaffin, ha

 $F(x)\simeq b^{-H}F(bx),$

ahol H > 0.

- → Ez azt jelenti, hogy akkor lesz a függvény invariáns, ha
 - vízszintes tengely skálája ·1/b,
 - a függ. tengely skálája ·1/b^H.
- Megfordítva: ha vízszintesen b_x, függőlegesen b_y faktorral kell nyújtani/zsugorítani, akkor

$$b_y = b_x^H, \qquad H = \frac{\ln b_y}{\ln b_x}$$

Fraktálok

Példák

- Fraktálok mindenüt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok Anizotrópia Ōnaffin függvény
- A H exponens
- A fraktáldimenzió mérése

- Természetesen a természetben előforduló példáknál csak sztochasztikusan igaz az anizotrop önhasonlóság.
- → A korrelációs függvényen alapuló definíciója az önaffin struktúráknak:

$$C(\Delta x) = \langle (F(x + \Delta x) - F(x))^2 \rangle \sim \Delta x^{2H},$$

ahol F(x) az adott felület magassága, (a függvény értéke).

• Belátható, hogy ez az előzővel ekvivalens definíciót ad.

Fraktálok

Példák

- Fraktálok mindenüt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény
- A H exponens
- A fraktáldimenzió mérése

- Természetesen a természetben előforduló példáknál csak sztochasztikusan igaz az anizotrop önhasonlóság.
- → A korrelációs függvényen alapuló definíciója az önaffin struktúráknak:

$$C(\Delta x) = \langle (F(x + \Delta x) - F(x))^2 \rangle \sim \Delta x^{2H},$$

ahol F(x) az adott felület magassága, (a függvény értéke).

Belátható, hogy ez az előzővel ekvivalens definíciót ad.

Fraktálok

Példák

- Fraktálok mindenüt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfogat felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény
- A H exponens
- A fraktáldimenzió mérése

- Természetesen a természetben előforduló példáknál csak sztochasztikusan igaz az anizotrop önhasonlóság.
- → A korrelációs függvényen alapuló definíciója az önaffin struktúráknak:

$$C(\Delta x) = \langle (F(x + \Delta x) - F(x))^2 \rangle \sim \Delta x^{2H},$$

ahol F(x) az adott felület magassága, (a függvény értéke).

• Belátható, hogy ez az előzővel ekvivalens definíciót ad.

A felület durvasága és H

Fraktálok

A H exponens

H=0

H=0.5

H=1

H=1.5

H=2

A felület durvasága és H

Fraktálok

Példák

- Fraktálok mindenüt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

A felület durvasága és H

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

Fraktálok

Példák

Fraktálok mindenütt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

- Mekkora a fraktáldimenzió, ha vízszintesen b_x-el, függőlegesen b_y-nal kell skálázni, ahol b_y = b_x^H és H = ln(b_y)/ln(b_x)?
- → Tegyük fel, hogy a k-adik iterációnál a dobozméret $b = b_x^{-k}$.
 - ekkor vízszintesen pont b_x^k darab doboz fér el.
 - a függvény által elfoglalt sáv függőleges kiterjedése egy b_x^k vízszintes méretű tartományon kb. b_y^{-k}, azaz egy oszlopban kb. b_x^{-k} darab doboz kell a lefedéshez.
 - emiatt összesen kb. $b_x^k \cdot \frac{b_y^{-k}}{b_x^{-k}} = \left(\frac{b_x^2}{b_y}\right)^k$ doboz kell a lefedéshez:

$$N(b) \sim \left(\frac{b_x^2}{b_y}\right)^k = b_x^{2k} \cdot b_y^{-k} = b_x^{2k} \cdot \left(b_x^H\right)^{-k} = \left(b_x^k\right)^{2-H} = b^{H-2}.$$

- Ezek alapján a fraktáldimenzió D = 2 H.
- VIGYÁZAT! Ez csak lokális fraktáldimenzió, az önaffin függvények, felületek globálisan "laposak" és nem fraktálok.

Fraktálok

Példák

Fraktálok mindenütt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens

A fraktáldimenzió mérése

- Mekkora a fraktáldimenzió, ha vízszintesen b_x-el, függőlegesen b_y-nal kell skálázni, ahol b_y = b_x^H és H = ln(b_y)/ln(b_x)?
- → Tegyük fel, hogy a *k*-adik iterációnál a dobozméret $b = b_x^{-k}$.
 - ekkor vízszintesen pont b_x^k darab doboz fér el.
 - a függvény által elfoglalt sáv függőleges kiterjedése egy b_x^k vízszintes méretű tartományon kb. b_y^{-k}, azaz egy oszlopban kb. b_x^{-k} darab doboz kell a lefedéshez.
 - emiatt összesen kb. $b_x^k \cdot \frac{b_y^{-k}}{b_x^{-k}} = \left(\frac{b_x^2}{b_y}\right)^k$ doboz kell a lefedéshez:

$$N(b) \sim \left(\frac{b_x^2}{b_y}\right)^k = b_x^{2k} \cdot b_y^{-k} = b_x^{2k} \cdot \left(b_x^H\right)^{-k} = \left(b_x^k\right)^{2-H} = b^{H-2}.$$

- Ezek alapján a fraktáldimenzió D = 2 H.
- VIGYÁZAT! Ez csak lokális fraktáldimenzió, az önaffin függvények, felületek globálisan "laposak" és nem fraktálok.

Fraktálok

Példák

Fraktálok mindenütt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens

A fraktáldimenzió mérése

- Mekkora a fraktáldimenzió, ha vízszintesen b_x-el, függőlegesen b_y-nal kell skálázni, ahol b_y = b_x^H és H = ln(b_y)/ln(b_y)?
- → Tegyük fel, hogy a *k*-adik iterációnál a dobozméret $b = b_x^{-k}$.
 - ekkor vízszintesen pont b_x^k darab doboz fér el.
 - a függvény által elfoglalt sáv függőleges kiterjedése egy b_x^{-k} vízszintes méretű tartományon kb. b_y^{-k}, azaz egy oszlopban kb. b_y^{-k} darab doboz kell a lefedéshez.
 - emiatt összesen kb. $b_x^k \cdot \frac{b_y^{-k}}{b_x^{-k}} = \left(\frac{b_x^2}{b_y}\right)^k$ doboz kell a lefedéshez:

$$N(b) \sim \left(\frac{b_x^2}{b_y}\right)^k = b_x^{2k} \cdot b_y^{-k} = b_x^{2k} \cdot \left(b_x^H\right)^{-k} = \left(b_x^k\right)^{2-H} = b^{H-2}.$$

- Ezek alapján a fraktáldimenzió D = 2 H.
- VIGYÁZAT! Ez csak lokális fraktáldimenzió, az önaffin függvények, felületek globálisan "laposak" és nem fraktálok.

Fraktálok

- Példák
- Fraktálok mindenütt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

- Mekkora a fraktáldimenzió, ha vízszintesen b_x -el, függőlegesen b_y -nal kell skálázni, ahol $b_y = b_x^H$ és $H = \frac{\ln(b_y)}{\ln(b_x)}$?
- → Tegyük fel, hogy a *k*-adik iterációnál a dobozméret $b = b_x^{-k}$.
 - ekkor vízszintesen pont b_x^k darab doboz fér el.
 - a függvény által elfoglalt sáv függőleges kiterjedése egy b_x^{-k} vízszintes méretű tartományon kb. b_y^{-k}, azaz egy oszlopban kb. b_y^{-k} darab doboz kell a lefedéshez.
 - emiatt összesen kb. $b_x^k \cdot \frac{b_y^{-\kappa}}{b_x^{-\kappa}} = \left(\frac{b_x^2}{b_y}\right)^{\kappa}$ doboz kell a lefedéshez:

$$N(b) \sim \left(\frac{b_x^2}{b_y}\right)^k = b_x^{2k} \cdot b_y^{-k} = b_x^{2k} \cdot \left(b_x^H\right)^{-k} = \left(b_x^k\right)^{2-H} = b^{H-2}.$$

- Ezek alapján a fraktáldimenzió D = 2 H.
- VIGYÁZAT! Ez csak lokális fraktáldimenzió, az önaffin függvények, felületek globálisan "laposak" és nem fraktálok.

Fraktálok

- Példák
- Fraktálok mindenütt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

- Mekkora a fraktáldimenzió, ha vízszintesen b_x-el, függőlegesen b_y-nal kell skálázni, ahol b_y = b_x^H és H = ln(b_y)/ln(b_y) ?
- → Tegyük fel, hogy a *k*-adik iterációnál a dobozméret $b = b_x^{-k}$.
 - ekkor vízszintesen pont b_x^k darab doboz fér el.
 - a függvény által elfoglalt sáv függőleges kiterjedése egy b_x^{-k} vízszintes méretű tartományon kb. b_y^{-k}, azaz egy oszlopban kb. b_y^{-k} darab doboz kell a lefedéshez.
 - emiatt összesen kb. $b_x^k \cdot \frac{b_y^{-k}}{b_x^{-k}} = \left(\frac{b_x^2}{b_y}\right)^k$ doboz kell a lefedéshez:

$$N(b) \sim \left(\frac{b_x^2}{b_y}\right)^k = b_x^{2k} \cdot b_y^{-k} = b_x^{2k} \cdot \left(b_x^H\right)^{-k} = \left(b_x^k\right)^{2-H} = b^{H-2}.$$

- Ezek alapján a fraktáldimenzió D = 2 H.
- VIGYÁZAT! Ez csak lokális fraktáldimenzió, az önaffin függvények, felületek globálisan "laposak" és nem fraktálok.

Fraktálok

Példák

Fraktálok mindenütt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

- Mekkora a fraktáldimenzió, ha vízszintesen b_x-el, függőlegesen b_y-nal kell skálázni, ahol b_y = b_x^H és H = ln(b_y)/ln(b_y)?
- → Tegyük fel, hogy a *k*-adik iterációnál a dobozméret $b = b_x^{-k}$.
 - ekkor vízszintesen pont b_x^k darab doboz fér el.
 - a függvény által elfoglalt sáv függőleges kiterjedése egy b_x^{-k} vízszintes méretű tartományon kb. b_y^{-k} , azaz egy oszlopban kb. $\frac{b_y^{-k}}{k-k}$ darab doboz kell a lefedéshez.
 - emiatt összesen kb. $b_x^k \cdot \frac{b_y^{-k}}{b_x^{-k}} = \left(\frac{b_x^2}{b_y}\right)^k$ doboz kell a lefedéshez:

$$N(b) \sim \left(\frac{b_x^2}{b_y}\right)^k = b_x^{2k} \cdot b_y^{-k} = b_x^{2k} \cdot \left(b_x^{H}\right)^{-k} = \left(b_x^{k}\right)^{2-H} = b^{H-2}.$$

- Ezek alapján a fraktáldimenzió D = 2 H.
- VIGYÁZAT! Ez csak lokális fraktáldimenzió, az önaffin függvények, felületek globálisan "laposak" és nem fraktálok.

Fraktálok

Példák

Fraktálok mindenütt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

- Mekkora a fraktáldimenzió, ha vízszintesen b_x-el, függőlegesen b_y-nal kell skálázni, ahol b_y = b_x^H és H = ln(b_y)/ln(b_y)?
- → Tegyük fel, hogy a *k*-adik iterációnál a dobozméret $b = b_x^{-k}$.
 - ekkor vízszintesen pont b_x^k darab doboz fér el.
 - a függvény által elfoglalt sáv függőleges kiterjedése egy b_x^{-k} vízszintes méretű tartományon kb. b_y^{-k} , azaz egy oszlopban kb. $\frac{b_y^{-k}}{k-k}$ darab doboz kell a lefedéshez.
 - emiatt összesen kb. $b_x^k \cdot \frac{b_y^{-k}}{b_x^{-k}} = \left(\frac{b_x^2}{b_y}\right)^k$ doboz kell a lefedéshez:

$$N(b) \sim \left(\frac{b_x^2}{b_y}\right)^k = b_x^{2k} \cdot b_y^{-k} = b_x^{2k} \cdot \left(b_x^H\right)^{-k} = \left(b_x^k\right)^{2-H} = b^{H-2}.$$

- Ezek alapján a fraktáldimenzió D = 2 H.
- VIGYÁZAT! Ez csak lokális fraktáldimenzió, az önaffin függvények, felületek globálisan "laposak" és nem fraktálok.

Fraktálok

- Példák
- Fraktálok mindenütt Hogyan rajzoljunk fraktált?
- Definíciók
- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A H exponens
- A fraktáldimenzió mérése

- Mekkora a fraktáldimenzió, ha vízszintesen b_x-el, függőlegesen b_y-nal kell skálázni, ahol b_y = b_x^H és H = ln(b_y)/ln(b_y) ?
- → Tegyük fel, hogy a *k*-adik iterációnál a dobozméret $b = b_x^{-k}$.
 - ekkor vízszintesen pont b_x^k darab doboz fér el.
 - a függvény által elfoglalt sáv függőleges kiterjedése egy b_x^{-k} vízszintes méretű tartományon kb. b_y^{-k}, azaz egy oszlopban kb. b_y^{-k} darab doboz kell a lefedéshez.
 - emiatt összesen kb. $b_x^k \cdot \frac{b_y^{-k}}{b_x^{-k}} = \left(\frac{b_x^2}{b_y}\right)^k$ doboz kell a lefedéshez:

$$N(b) \sim \left(\frac{b_x^2}{b_y}\right)^k = b_x^{2k} \cdot b_y^{-k} = b_x^{2k} \cdot \left(b_x^H\right)^{-k} = \left(b_x^k\right)^{2-H} = b^{H-2}.$$

- Ezek alapján a fraktáldimenzió D = 2 H.
- VIGYÁZAT! Ez csak lokális fraktáldimenzió, az önaffin függvények, felületek globálisan "laposak" és nem fraktálok.

A fraktáldimenzió és H mérése

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztikus fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens

A fraktáldimenzió mérése Fraktáldimenizó, D: általában egy R sugarú gömbön belül található részecskék N(R) számát szokás vizsgálni, ahol N(R) ~ R^D.

• *H*-exponens: egy ℓ hosszúságú szakaszon az *F*(*x*) szórása

$$\sigma(\ell) = \left[\left\langle F(x)^2 \right\rangle_x - \left\langle F(x) \right\rangle_x^2 \right]^{1/2} \sim \ell^H$$

A fraktáldimenzió és H mérése

Fraktálok

Példák

Fraktálok mindenüt Hogyan rajzoljunk fraktált?

Definíciók

- Anomális térfoga felület, hossz.
- Fraktáldimenzió
- Dimenziók közt összefüggések
- Sztochasztiku: fraktálok
- Önaffin fraktálok Anizotrópia Önaffin függvény A *H* exponens

A fraktáldimenzió mérése

 Fraktáldimenizó, D: általában egy R sugarú gömbön belül található részecskék N(R) számát szokás vizsgálni, ahol N(R) ~ R^D.

lnR

• *H*-exponens: egy ℓ hosszúságú szakaszon az F(x) szórása

$$\sigma(\ell) = \left[\left\langle F(x)^2 \right\rangle_x - \left\langle F(x) \right\rangle_x^2 \right]^{1/2} \sim \ell^H$$

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmal

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Önszervezően kritikus rendszerek:

Példák és modellek
Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Bevezetés

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mi a fázisátalakulás?

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mi a fázisátalakulás?

A **statisztikus fizikában** (termodinamikában): Az anyag átalakulása két különböző homogén állapota között, amelynek során gyakran az anyag hőt ad le vagy vesz fel.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mi a fázisátalakulás?

A **statisztikus fizikában** (termodinamikában): Az anyag átalakulása két különböző homogén állapota között, amelynek során gyakran az anyag hőt ad le vagy vesz fel.

Példák:

- a kámfor a szekrényben szublimál
- az ősrobbanás utáni feltételezett kvark-gluon plazma megszűnt

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mi a fázisátalakulás?

A **statisztikus fizikában** (termodinamikában): Az anyag átalakulása két különböző homogén állapota között, amelynek során gyakran az anyag hőt ad le vagy vesz fel.

Példák:

- a kámfor a szekrényben szublimál
- az ősrobbanás utáni feltételezett kvark-gluon plazma megszűnt

Tágabb értelemben (statisztikus fizika módszertanával): A rendszer átalakulása két eltérő rendezettségű állapota között.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mi a fázisátalakulás?

A **statisztikus fizikában** (termodinamikában): Az anyag átalakulása két különböző homogén állapota között, amelynek során gyakran az anyag hőt ad le vagy vesz fel.

Példák:

- a kámfor a szekrényben szublimál
- az ősrobbanás utáni feltételezett kvark-gluon plazma megszűnt

Tágabb értelemben (statisztikus fizika módszertanával): A rendszer átalakulása két eltérő rendezettségű állapota között.

Példák:

- emberek kapcsolati hálózatának szerkezete láncból csillag
- élőlények mozgása rendezetlen (össze-vissza) mozgásból átalakul egy nagy közös forgássá
- fehérjék kapcsolati hálózata sok kis modulból egy nagy modullá alakul

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mi a kontrollparaméter?

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mi a kontrollparaméter?

A rendszer egy tulajdonsága, amely gyakran kívülről szabályozható, és a rendszert két állapota között mozgatni tudja.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mi a kontrollparaméter?

A rendszer egy tulajdonsága, amely gyakran kívülről szabályozható, és a rendszert két állapota között mozgatni tudja.

Példák:

- páratartalom miatt a homokszemcsék tapadási erőssége
- mozgó részecskék által tartani kívánt állandó sebesség

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mi a kontrollparaméter?

A rendszer egy tulajdonsága, amely gyakran kívülről szabályozható, és a rendszert két állapota között mozgatni tudja.

Példák:

- páratartalom miatt a homokszemcsék tapadási erőssége
- mozgó részecskék által tartani kívánt állandó sebesség

Mi a rendparaméter?

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mi a kontrollparaméter?

A rendszer egy tulajdonsága, amely gyakran kívülről szabályozható, és a rendszert két állapota között mozgatni tudja.

Példák:

- páratartalom miatt a homokszemcsék tapadási erőssége
- mozgó részecskék által tartani kívánt állandó sebesség

Mi a rendparaméter?

A fázisátalakulás során a rendszer rendezettségét mérő szám, általában úgy definiáljuk, hogy a [0,1] intervallumban legyen.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tūdő működés

Mi a kontrollparaméter?

A rendszer egy tulajdonsága, amely gyakran kívülről szabályozható, és a rendszert két állapota között mozgatni tudja.

Példák:

- páratartalom miatt a homokszemcsék tapadási erőssége
- mozgó részecskék által tartani kívánt állandó sebesség

Mi a rendparaméter?

A fázisátalakulás során a rendszer rendezettségét mérő szám, általában úgy definiáljuk, hogy a [0, 1] intervallumban legyen. Példák:

- egy pohárban a víz mekkora része fagyott meg
- összes fehérje mekkora része vált rendezetlenből globulárissá
- összes DNS mekkora része lett rendezetlenből kettős spirál
- mozgó részecskék momentum-összege a max. mekkora része

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mitől kritikus a kritikus pont?

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mitől kritikus a kritikus pont?

A kontrollparaméter kis változása a rendparaméter nagy változását okozhatja.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mitől kritikus a kritikus pont?

A kontrollparaméter kis változása a rendparaméter nagy változását okozhatja.

Példa:

(lassú, kvázisztatikus) kis hőmérsékletváltozásra a vízből jég lesz.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Mitől kritikus a kritikus pont?

A kontrollparaméter kis változása a rendparaméter nagy változását okozhatja.

Példa:

(lassú, kvázisztatikus) kis hőmérsékletváltozásra a vízből jég lesz.

Általánosabban:

- a rendszer kis változás esetén a normál (Gauss) eloszláshoz képest jóval gyakrabban ad nagy válaszokat
- a válaszok nagyságának eloszlása hatványfüggvény

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés **Definíció.** Egy átalakulás során rövid hatótávolságú kölcsönhatások hosszútávú rendezettséget hoznak létre külső szabályozás nélkül: ön + szerveződés

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés **Definíció.** Egy átalakulás során rövid hatótávolságú kölcsönhatások hosszútávú rendezettséget hoznak létre külső szabályozás nélkül: ön + szerveződés

Elnevezések fizikai jelenségek alapján:

- a rövid hatótávolság: mikroszkopikus (lokális, helyi)
- a hosszútávú rend: makroszkopikus (globális, large-scale)

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés **Definíció.** Egy átalakulás során rövid hatótávolságú kölcsönhatások hosszútávú rendezettséget hoznak létre külső szabályozás nélkül: ön + szerveződés

Elnevezések fizikai jelenségek alapján:

- a rövid hatótávolság: mikroszkopikus (lokális, helyi)
- a hosszútávú rend: makroszkopikus (globális, large-scale)

Az átalakulást "mozgatja" a kontrollparaméter, például a rendszer hőmérséklete, ami a két fő hatás relatív erősségét módosítja:

- fluktuációk rendezetlen felé viszik a rendszert
- kölcsönhatások rendezett felé viszik a renszert

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés **Definíció.** Egy átalakulás során rövid hatótávolságú kölcsönhatások hosszútávú rendezettséget hoznak létre külső szabályozás nélkül: ön + szerveződés

Elnevezések fizikai jelenségek alapján:

- a rövid hatótávolság: mikroszkopikus (lokális, helyi)
- a hosszútávú rend: makroszkopikus (globális, large-scale)

Az átalakulást "mozgatja" a kontrollparaméter, például a rendszer hőmérséklete, ami a két fő hatás relatív erősségét módosítja:

- fluktuációk rendezetlen felé viszik a rendszert
- kölcsönhatások rendezett felé viszik a renszert

A rendeződés gyakran úgy történik, hogy a (termikus) fluktuációkat a lokális kölcsönhatás pozitív visszacsatolással erősíti:

- a fluktuációk véletlenszerűek, csökkentik a korrelációkat
- amikor a lokális kölcsönhatás erősít egy fluktuációt, akkor a korrelációkat növeli

Biológiai példák az önszerveződésre

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

(Wikipédia)

Biológiai példák az önszerveződésre

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

(Wikipédia)

Az önszerveződés "állatorvosi ló" példája

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés A SOC egyik legegyszerűbb példája:

Az önszerveződés "állatorvosi ló" példája

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

A SOC egyik legegyszerűbb példája:

- felülről egyenletesen táplált homokdomb
- kialakul egy nagyjából állandó dőlésszög
- időnként lavinák jelennek meg, amelyeknek a méret eloszlása hatványfüggvény

Az önszerveződés "állatorvosi ló" példája

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

A SOC egyik legegyszerűbb példája:

- felülről egyenletesen táplált homokdomb
- kialakul egy nagyjából állandó dőlésszög
- időnként lavinák jelennek meg, amelyeknek a méret eloszlása hatványfüggvény

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés **Egyensúlyi** (konzervatív, zárt) rendszereket a kontrollparaméterrel (pl. hőmérséklet) történő külső vezérléssel lehet bevinni a kritikus pontba.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés **Egyensúlyi** (konzervatív, zárt) rendszereket a kontrollparaméterrel (pl. hőmérséklet) történő külső vezérléssel lehet bevinni a kritikus pontba.

Példa: Heisenberg ferromágnes (klasszikus Heisenberg modell):

- rács (1d, 2d vagy 3d) pontjaiban 3d egységvektorok, $\vec{s_i}$
- kölcsönhatás csak szomszédok között: $\mathcal{H} = -\frac{1}{kT} \sum_{i,j} \vec{s}_i \vec{s}_j$

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés **Egyensúlyi** (konzervatív, zárt) rendszereket a kontrollparaméterrel (pl. hőmérséklet) történő külső vezérléssel lehet bevinni a kritikus pontba.

Példa: Heisenberg ferromágnes (klasszikus Heisenberg modell):

- rács (1d, 2d vagy 3d) pontjaiban 3d egységvektorok, $\vec{s_i}$
- kölcsönhatás csak szomszédok között: $\mathcal{H} = -\frac{1}{kT} \sum_{i,j} \vec{s}_i \vec{s}_j$

Melyik irányba fognak rendeződni ezek az egységvektorok?

- a rendeződés előtt minden irány azonos: szimmetria
- a közös irány önszervezően (külső vezérlés nélkül) áll be
- a rendeződés egy irányt kitüntet: spontán szimmetriasértés

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés **Nemegyensúlyi** (nem konzervatív, nyílt) rendszerekben előfordul, hogy a dinamika a kritikus állapotba viszi a rendszert.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés **Nemegyensúlyi** (nem konzervatív, nyílt) rendszerekben előfordul, hogy a dinamika a kritikus állapotba viszi a rendszert.

Az önszerveződött állapot **megjelenése** során megmaradási törvények (anyag, energia, lendület) sérülnek.

• példa: a homokdomb a felépülése során anyagot kap kívülről

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés **Nemegyensúlyi** (nem konzervatív, nyílt) rendszerekben előfordul, hogy a dinamika a kritikus állapotba viszi a rendszert.

Az önszerveződött állapot **megjelenése** során megmaradási törvények (anyag, energia, lendület) sérülnek.

• példa: a homokdomb a felépülése során anyagot kap kívülről

Az önszerveződés **eredménye** szintén nemegyensúlyi állapot, de már stacionárius:

- az egyensúllyal ellentétben nincsen teljes kiegyenlítődés, és mindig vannak áramok (anyag, energia, stb)
- stacionárius, mert hosszú idő átlagában a rendszerbe bejövő és a rendszerből kimenő energia, lendület, stb. egyenlő

Önszervezően kritikus rendszerek

Bevezetés, alapfogalma

Self-organized criticality

Homokdomb Biológiai evolúci Tüdő működés

Self-organized criticality (SOC)

Önszervező kritikusság

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality

Homokdomb Biológiai evolúcio Tüdő működés Az önszerveződés hogyan viszi a rendszert a kritikus állapotba?

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality

Homokdomb Biológiai evolúcio Tüdő működés Az önszerveződés hogyan viszi a rendszert a kritikus állapotba? Ismétlés: Mi a kritikus viselkedés? A kritikus pontnál

Önszervezően kritikus rendszerek

Bevezetés, alapfogalma

Self-organized criticality

Homokdomb Biológiai evolúcio Tüdő működés Az önszerveződés hogyan viszi a rendszert a kritikus állapotba? Ismétlés: Mi a kritikus viselkedés? A kritikus pontnál

- nagy fluktuációk és
- hatványfüggvény szerinti eloszlások jelennek meg.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalma

Self-organized criticality

Homokdomb Biológiai evolúcio Tüdő működés Az önszerveződés hogyan viszi a rendszert a kritikus állapotba? Ismétlés: Mi a kritikus viselkedés? A kritikus pontnál

- nagy fluktuációk és
- hatványfüggvény szerinti eloszlások jelennek meg.
- Az SOC nemegyensúlyi jelenség:
 - A kritikus viselkedés eredeti definíciója egyensúlyi állapotra vonatkozik, amit egy lassú (kvázisztatikus) fázisátalakulás során látunk.
 - A SOC esetében egy stacionárius nemegyensúlyi állapothoz konvergál a rendszer (folyamatosan kap például energiát vagy anyagot a környezetéből).
Self-Organized Criticality (SOC)

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmal

Self-organized criticality

Homokdomb Biológiai evolúcie Tüdő működés Az önszerveződés hogyan viszi a rendszert a kritikus állapotba? Ismétlés: Mi a kritikus viselkedés? A kritikus pontnál

- nagy fluktuációk és
- hatványfüggvény szerinti eloszlások jelennek meg.
- Az SOC nemegyensúlyi jelenség:
 - A kritikus viselkedés eredeti definíciója egyensúlyi állapotra vonatkozik, amit egy lassú (kvázisztatikus) fázisátalakulás során látunk.
 - A SOC esetében egy stacionárius nemegyensúlyi állapothoz konvergál a rendszer (folyamatosan kap például energiát vagy anyagot a környezetéből).
 - Ha egy SOC-t mutató rendszer időben egyenletesen kapja az energiát/anyagot,
 - akkor is a válaszainak (amikkel mindig visszatér a stacionárius állapothoz) a méret eloszlása hatványfüggvény.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Homokdomb (rizsszemekkel működik jól) Videó (2m57s-3m50s): https://youtu.be/KnOkkC4QND8#t=2m57s

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Homokdomb (rizsszemekkel működik jól) Videó (2m57s–3m50s): https://youtu.be/KnOkkC4QND8#t=2m57s

(http://www-ics.u-strasbg.fr/etsp)

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Homokdomb (rizsszemekkel működik jól) Videó (2m57s–3m50s): https://youtu.be/KnOkkC4QND8#t=2m57s

Megfigyelés: bárhogyan szórjuk a homokot a domb tetejére, a lejtő meredeksége (θ) növekszik, és egy (a szórás módjától független) θ_C érték fölé érve visszaáll θ_C alatti értékre.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Homokdomb (rizsszemekkel működik jól) Videó (2m57s–3m50s): https://youtu.be/KnOkkC4QND8#t=2m57s

Megfigyelés: bárhogyan szórjuk a homokot a domb tetejére, a lejtő meredeksége (θ) növekszik, és egy (a szórás módjától független) θ_C érték fölé érve visszaáll θ_C alatti értékre.

A stacionárius állapotot (meredekséget) fenntartó lavinák méret eloszlása hatványfüggvény. Ezért ez egy kritikus állapot, és a θ_C neve kritikus szög.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Homokdomb (rizsszemekkel működik jól) Videó (2m57s–3m50s): https://youtu.be/KnOkkC4QND8#t=2m57s

Megfigyelés: bárhogyan szórjuk a homokot a domb tetejére, a lejtő meredeksége (θ) növekszik, és egy (a szórás módjától független) θ_C érték fölé érve visszaáll θ_C alatti értékre.

A stacionárius állapotot (meredekséget) fenntartó lavinák méret eloszlása hatványfüggvény. Ezért ez egy kritikus állapot, és a θ_C neve kritikus szög.

Megjegyzés: a kritikus szög közelében kis változás (néhány homokszem) nagy lavinát okozhat.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Egy négyzetrács oszlopaiba felülről "homokszemek" érkeznek egyesével, időben és térben korrelálatlanul.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Egy négyzetrács oszlopaiba felülről "homokszemek" érkeznek egyesével, időben és térben korrelálatlanul.

Modellezési módszer: A felület magassága helyett csak a magasság deriváltját figyeljük.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Egy négyzetrács oszlopaiba felülről "homokszemek" érkeznek egyesével, időben és térben korrelálatlanul.

Modellezési módszer:

- A felület magassága helyett csak a magasság deriváltját figyeljük.
 - Ha egy oszlop magassága 3, akkor a két felső mezője átkerül a két szomszédos oszlopra.
 - Folytatni mindenütt, ahol keletkezett 3-as magasság.
 - Ha egy oszlop a minta szélén van, akkor az egyik "homokszeme" leesik a minta széléről.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Egy négyzetrács oszlopaiba felülről "homokszemek" érkeznek egyesével, időben és térben korrelálatlanul.

Modellezési módszer:

- A felület magassága helyett csak a magasság deriváltját figyeljük.
 - Ha egy oszlop magassága 3, akkor a két felső mezője átkerül a két szomszédos oszlopra.
 - Folytatni mindenütt, ahol keletkezett 3-as magasság.
 - Ha egy oszlop a minta szélén van, akkor az egyik "homokszeme" leesik a minta széléről.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Egy négyzetrács oszlopaiba felülről "homokszemek" érkeznek egyesével, időben és térben korrelálatlanul.

Modellezési módszer:

- A felület magassága helyett csak a magasság deriváltját figyeljük.
 - Ha egy oszlop magassága 3, akkor a két felső mezője átkerül a két szomszédos oszlopra.
 - Folytatni mindenütt, ahol keletkezett 3-as magasság.
 - Ha egy oszlop a minta szélén van, akkor az egyik "homokszeme" leesik a minta széléről.

Egy új "homokszem" okozhat több egymás utáni lépést \rightarrow lavina.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Self-Organized Criticality: An Explanation of 1/f Noise. Bak, Tang, Wiesenfeld. PRL 1987, doi: 10.1103/PhysRevLett.59.381.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Self-Organized Criticality: An Explanation of 1/f Noise. Bak, Tang, Wiesenfeld. PRL 1987, doi: 10.1103/PhysRevLett.59.381.

Egyenletes és korrelálatlan érkezés:

- 2d rács oszlopaira pontok érkeznek egyesével, időben és térben korrelálatlanul.
- az (x, y) helyen a függvény értéke h(x, y) nem a homok magassága, inkább derivált

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Self-Organized Criticality: An Explanation of 1/f Noise. Bak, Tang, Wiesenfeld. PRL 1987, doi: 10.1103/PhysRevLett.59.381.

Egyenletes és korrelálatlan érkezés:

- 2d rács oszlopaira pontok érkeznek egyesével, időben és térben korrelálatlanul.
- az (x, y) helyen a függvény értéke h(x, y) nem a homok magassága, inkább derivált

Kölcsönhatás: ha egy oszlop magassága $K \ge 4$, akkor

- oszlop négy felső eleme átkerül a szomszédos oszlopokra
- a minta szélén leesik

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Self-Organized Criticality: An Explanation of 1/f Noise. Bak, Tang, Wiesenfeld. PRL 1987, doi: 10.1103/PhysRevLett.59.381.

Egyenletes és korrelálatlan érkezés:

- 2d rács oszlopaira pontok érkeznek egyesével, időben és térben korrelálatlanul.
- az (x, y) helyen a függvény értéke h(x, y) nem a homok magassága, inkább derivált

Kölcsönhatás: ha egy oszlop magassága $K \ge 4$, akkor

- oszlop négy felső eleme átkerül a szomszédos oszlopokra
- a minta szélén leesik

Mit mérünk:

- egy oszlopra ráteszünk 1 elemet
- felrajzoljuk a keletkező lavina területét (felülnézetét)
- minden oszlopra csináljuk meg ezt a mérést
- az összes kapott lavinát (felülnézetét) klaszterezzük

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Pillanatfelvétel a klaszterekről, 100 × 100-as terület (Bak et.al Fig.1)

(Bak Tang Wiesenfeld 1987)

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Klaszter méret eloszlás (2d,3d)

Bak et.al. Fig.2

Önszervezően kritikus rendszerek

Klaszter méret

Bak et.al. Fig.2

Homokdomb

Önszervezően kritikus rendszerek

Bevezetés, alapfogalma

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Klaszter méret eloszlás (2d,3d) Bak et.al. Fig.2

Illesztett egyenes meredeksége: 0.98

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmal

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Klaszter méret eloszlás (2d,3d) Bak et.al. Fig.2

Illesztett egyenes meredeksége: 0.98

3d-ben: 1.35

Homokdomb: 2-dimenziós modell Megjegyzések

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés A gyakorlatban mit jelent a hatványfüggvény szerinti eloszlás?

Homokdomb: 2-dimenziós modell Megjegyzések

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

A gyakorlatban mit jelent a hatványfüggvény szerinti eloszlás?

- Hatványfüggvény x^{-3} értéke x = 10-nél 10^{-3} .
- Gauss e^{-x^2} értéke 4×10^{-44} . Összehasonlítás: proton $10^{-15}m$, Univerzum $\ge 10^{27}m$.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés SOC munkahelyi hasonlat (ügyintézők):

Önszervezően kritikus rendszerek

Bevezetés, alapfogalma

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

SOC munkahelyi hasonlat (ügyintézők):

- Ha egy alkalmazott a munkatársainál jóval több munkát kap,
- akkor továbbadja a környezetének a munkája egy részét.
- Az átlagosnál sokkal nagyobb "lavinák" gyakoriak.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalma

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

SOC munkahelyi hasonlat (ügyintézők):

- Ha egy alkalmazott a munkatársainál jóval több munkát kap,
- akkor továbbadja a környezetének a munkája egy részét.
- Az átlagosnál sokkal nagyobb "lavinák" gyakoriak.

SOC társadalmi hasonlat:

Önszervezően kritikus rendszerek

Bevezetés, alapfogalma

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

SOC munkahelyi hasonlat (ügyintézők):

- Ha egy alkalmazott a munkatársainál jóval több munkát kap,
- akkor továbbadja a környezetének a munkája egy részét.
- Az átlagosnál sokkal nagyobb "lavinák" gyakoriak.

SOC társadalmi hasonlat:

- Egyenletes környezeti változás és
- a helyi átlag feletti teher helyi átadása esetén
- a teljes rendszer szintjén az átlagosnál sokkal nagyobb változások váratlanul gyakoriak.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Darwin: egymás utáni kis változások (mutációk) hatására

- a fajok változnak és
- fajok keletkeznek időben nagyjából egyenletes gyakorisággal (phyletic gradualism).

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmal

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Darwin: egymás utáni kis változások (mutációk) hatására

- a fajok változnak és
- fajok keletkeznek időben nagyjából egyenletes gyakorisággal (phyletic gradualism).

Darwin után megfigyelés:

- sokáig semmi nem történik
- időnként ugrásszerűen sok új faj

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmal

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Darwin: egymás utáni kis változások (mutációk) hatására

- a fajok változnak és
- fajok keletkeznek időben nagyjából egyenletes gyakorisággal (phyletic gradualism).

Darwin után megfigyelés:

- sokáig semmi nem történik
- időnként ugrásszerűen sok új faj

Eldredge és Gould (1972) javaslatai:

- fosszíliáknál phyletic gradualism helyett nagy változásokat látnak
- statis: megjelent faj nem változik

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmal

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Darwin: egymás utáni kis változások (mutációk) hatására

- a fajok változnak és
- fajok keletkeznek időben nagyjából egyenletes gyakorisággal (phyletic gradualism).

Darwin után megfigyelés:

- sokáig semmi nem történik
- időnként ugrásszerűen sok új faj

Eldredge és Gould (1972) javaslatai:

- fosszíliáknál phyletic gradualism helyett nagy változásokat látnak
- statis: megjelent faj nem változik

Modell a stasis közelítés alapján: Punctuated Equilibrium model of evolution.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmal

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Darwin: egymás utáni kis változások (mutációk) hatására

- a fajok változnak és
- fajok keletkeznek időben nagyjából egyenletes gyakorisággal (phyletic gradualism).

Darwin után megfigyelés:

- sokáig semmi nem történik
- időnként ugrásszerűen sok új faj

Eldredge és Gould (1972) javaslatai:

- fosszíliáknál phyletic gradualism helyett nagy változásokat látnak
- statis: megjelent faj nem változik

Modell a stasis közelítés alapján: Punctuated Equilibrium model of evolution.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Megfigyelés: rendszertani nemzetségek "élettartam" eloszlása hatványfüggvény

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Megfigyelés: rendszertani nemzetségek "élettartam" eloszlása hatványfüggvény

FIG. 7. Lifetime distribution for genera as recorded by Sepkoski, Raup, and Boyajian (2–6). The distribution can be well fitted by a power law $N(t) \propto 1/t^2$.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Megfigyelés: faj (rend, osztály, stb) kihalások létszám eloszlása széles

Punctuated equilibrium model of evolution

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Megfigyelés: faj (rend, osztály, stb) kihalások létszám eloszlása széles

Fig. 1. Distribution of extinction intensities for the 79 generally recognized geologic stages of Phanerozoic time, based on recorded times of extinction of 2316 marine animal families (7). Extinction intensity for the last stage of the Cretaceous (Maestrichtian) is indicated for comparison.

(Raup, Science 1986, doi: 10.1126/science.11542058)

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Megfigyelés: faj (rend, osztály, stb) kihalások létszám eloszlása széles

(D. Raup. Extinction: Bad Genes or Bad Luck? W. W. Norton & Company, 1992.)
Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Megfigyelés: faj (rend, osztály, stb) kihalások létszám eloszlása széles

(D. Raup. Extinction: Bad Genes or Bad Luck? W. W. Norton & Company, 1992.)

Következtetések:

- a kihalások között vannak korrelációk ("lavinák")
- és az élővilág önszervező kritikus állapotban van

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Bak, Sneppen. Punctuated equilibrium and criticality in a simple model of evolution. PRL 1993. doi 10.1103/PhysRevLett.71.4083

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tūdő működés Bak, Sneppen. Punctuated equilibrium and criticality in a simple model of evolution. PRL 1993. doi 10.1103/PhysRevLett.71.4083

Kezdeti állapot:

- 1d láncban N mező $(i = 1 \rightarrow N)$ (ökoszisztéma), nyitott határ
- stasis közelítés: faj nem változik, csak kihalni tud
- fitnesz: relatív reprodukciós képesség
 0 ≤ B_i ≤ 1 egyenletes eloszlású független véletlen számok

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Bak, Sneppen. Punctuated equilibrium and criticality in a simple model of evolution. PRL 1993. doi 10.1103/PhysRevLett.71.4083

Kezdeti állapot:

- 1d láncban N mező $(i = 1 \rightarrow N)$ (ökoszisztéma), nyitott határ
- stasis közelítés: faj nem változik, csak kihalni tud
- fitnesz: relatív reprodukciós képesség
 0 ≤ B_i ≤ 1 egyenletes eloszlású független véletlen számok

Frissítési szabályok:

- a legkisebb fitnesz-ű mezőn kihalás, Bi cseréje, az új szám: időben és térben korrelálatlan, 0 és 1 között egyenletes eloszlás
 - \rightarrow csak ezzel a szabállyal minden B_i 1-hez tartana lassan

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Bak, Sneppen. Punctuated equilibrium and criticality in a simple model of evolution. PRL 1993. doi 10.1103/PhysRevLett.71.4083

Kezdeti állapot:

- 1d láncban N mező $(i = 1 \rightarrow N)$ (ökoszisztéma), nyitott határ
- stasis közelítés: faj nem változik, csak kihalni tud
- fitnesz: relatív reprodukciós képesség
 0 ≤ B_i ≤ 1 egyenletes eloszlású független véletlen számok

Frissítési szabályok:

- a legkisebb fitnesz-ű mezőn kihalás, Bi cseréje, az új szám: időben és térben korrelálatlan, 0 és 1 között egyenletes eloszlás
 - \rightarrow csak ezzel a szabállyal minden B_i 1-hez tartana lassan
- 2. egy csere után a két szomszéd fitneszét is cseréljük ugyanígy
 - \rightarrow ez a lépés a kölcsönhatás
 - → emiatt korrelációk épülnek fel a térbeli korrelációk okozzák a lavinákat

Önszervezően kritikus rendszerek

Bevezetés, alapfogalma

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Darwin-féle **phyletic gradualism**: nincsen kölcsönhatás A nagy evolúciós változások (megjelenés, kihalás) magyarázata:

- sok. egymással időben és térben korrelált mutáció
- nagy külső változás (pl. vulkán kitörés, meteor becsapódása)

!! Mindegyiknek jóval kisebb az esélye, mint a nagy evolúciós változások mért gyakorisága.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalma

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Darwin-féle **phyletic gradualism**: nincsen kölcsönhatás A nagy evolúciós változások (megjelenés, kihalás) magyarázata:

- sok, egymással időben és térben korrelált mutáció
- nagy külső változás (pl. vulkán kitörés, meteor becsapódása)

!! Mindegyiknek jóval kisebb az esélye, mint a nagy evolúciós változások mért gyakorisága.

SOC modell (Bak-Sneppen):

- térben és időben korrelálatlan mutáció (legkisebb fitnesz cseréje RND értékre)
- a lokális kölcsönhatás korrelációkat okoz, amelyek
 - hatványfüggvény szerinti méret eloszlásúak
 - a rendszer méretét elérhetik

Önszervezően kritikus rendszerek

Bevezetés, alapfogalma

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Darwin-féle **phyletic gradualism**: nincsen kölcsönhatás A nagy evolúciós változások (megjelenés, kihalás) magyarázata:

- sok, egymással időben és térben korrelált mutáció
- nagy külső változás (pl. vulkán kitörés, meteor becsapódása)

!! Mindegyiknek jóval kisebb az esélye, mint a nagy evolúciós változások mért gyakorisága.

SOC modell (Bak-Sneppen):

- térben és időben korrelálatlan mutáció (legkisebb fitnesz cseréje RND értékre)
- a lokális kölcsönhatás korrelációkat okoz, amelyek
 - hatványfüggvény szerinti méret eloszlásúak
 - a rendszer méretét elérhetik

Nagy rendszer ($N \gg 1$), hosszú idejű szimuláció

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Eredmények a Bak-Sneppen modellben:

Ha a rendszer kezdeti állapotában minden $B_i < 1$, akkor felépül egy önszervező kritikus állapot, ami független a kezdeti állapottól, és stacionárius módon fennmarad.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb **Biológiai evolúció** Tüdő működés

Eredmények a Bak-Sneppen modellben:

Ha a rendszer kezdeti állapotában minden $B_i < 1$, akkor felépül egy **önszervező kritikus állapot**, ami független a kezdeti állapottól, és stacionárius módon fennmarad.

Ebben a stacionárius állapotban

- a B_i fitnesz értékek eloszlása a B_C ≈ 0.67-nél kezdődik, fölötte konstans → lépcsőszerű vonal a lenti ábra jobb oldalán
- a kicserélt (legkisebb) B_i fitnesz értékek eloszlása B = 0-tól B_C-ig lineárisan csökken → a lenti ábra bal oldali görbéje

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Eredmények a Bak-Sneppen modellben:

Ha a rendszer kezdeti állapotában minden $B_i < 1$, akkor felépül egy önszervező kritikus állapot, ami független a kezdeti állapottól, és stacionárius módon fennmarad.

Ebben a stacionárius állapotban

- a B_i fitnesz értékek eloszlása a B_C ≈ 0.67-nél kezdődik, fölötte konstans → lépcsőszerű vonal a lenti ábra jobb oldalán
- a kicserélt (legkisebb) B_i fitnesz értékek eloszlása B = 0-tól B_C-ig lineárisan csökken → a lenti ábra bal oldali görbéje

FIG. 2. Distribution of barriers in the critical state (right curve). There is a self-organized upper threshold $B_C = 0.67 \pm$ 0.01 for spontaneous mutation. The distribution is flat above the threshold, with statistical fluctuations. The distribution of the minimum barriers is also shown (left curve); it vanishe (by definition) above the self-organized threshold.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Eredmények a Bak-Sneppen modellben:

→ Térbeli korrelációk épülnek fel:

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Eredmények a Bak-Sneppen modellben:

→ Térbeli korrelációk épülnek fel:

FIG. 1. Distribution of distances C(x) between successive mutations. The power law indicates that the ecology has self-organized into a critical state.

(Bak Sneppen 1993 PRL)

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Eredmények a Bak-Sneppen modellben:

→ Térbeli korrelációk épülnek fel:

(Bak Sneppen 1993 PRL)

→ Definíció: A **lavina** egymás után kicserélt B_c alatti B_i értékek sorozata.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

- a kezdeti állapotban a fitnesz értékek térben korrelálatlanok
- később az egymás utáni lépésekben a minimális fitnesz-ek egymáshoz közeli mezőkön lesznek

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

- a kezdeti állapotban a fitnesz értékek térben korrelálatlanok
- később az egymás utáni lépésekben a minimális fitnesz-ek egymáshoz közeli mezőkön lesznek
- → Lavinák jelennek meg:

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmal

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Eredmények a Bak-Sneppen modellben:

- a kezdeti állapotban a fitnesz értékek térben korrelálatlanok
- később az egymás utáni lépésekben a minimális fitnesz-ek egymáshoz közeli mezőkön lesznek
- → Lavinák jelennek meg:

(Bak Sneppen 1993 PRL)

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Eredmények a Bak-Sneppen modellben:

→ Hatványfüggvény eloszlású lavina méretek:

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Eredmények a Bak-Sneppen modellben:

→ Hatványfüggvény eloszlású lavina méretek:

FIG. 5. Distribution of avalanche sizes in the critical state. Here an avalanche is defined by subsequent sequential activity below punctuation of the barrier B = 0.65.

(Bak Sneppen 1993 PRL)

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Eredmények a Bak-Sneppen modellben:

A modell egy idő átskálázással (mutációk száma helyett valódi idő) a biológiai kihalási hullámok **méret eloszlás**át helyesen adja:

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Eredmények a Bak-Sneppen modellben:

A modell egy idő átskálázással (mutációk száma helyett valódi idő) a biológiai kihalási hullámok **méret eloszlás**át helyesen adja:

FIG. 4. Punctuated equilibrium behavior. Activity vs time in a local segment of ten consecutive sites is shown for a system of size N = 512. Time is measured in units of the number of mutations. In real time, the intermittency is further enhanced by the exponential enlargement of the periods of stasis.

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Összefoglalás – Eredmények a Bak-Sneppen modellben

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Összefoglalás – Eredmények a Bak-Sneppen modellben

A kezdeti állapottól függetlenül ugyanaz a nemtriviális stacionárius végállapot jelenik meg:

- $B_C \approx 0.67$ küszöb érték
- megfigyelhető a "punctuated equilibrium", azaz: a B_C alatti B értékeket érintő lavinák méretének eloszlása egy $P(\geq s) \sim s^{-\tau}$ hatványfüggvény, ahol $\tau \approx 1.07$

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tūdő működés

Összefoglalás – Eredmények a Bak-Sneppen modellben

A kezdeti állapottól függetlenül ugyanaz a nemtriviális stacionárius végállapot jelenik meg:

- $B_C \approx 0.67$ küszöb érték
- megfigyelhető a "punctuated equilibrium", azaz: a B_C alatti B értékeket érintő lavinák méretének eloszlása egy $P(\geq s) \sim s^{-\tau}$ hatványfüggvény, ahol $\tau \approx 1.07$

A modell **átlagtér** változatában egy minimális B_i fitnesz cseréje után K - 1 másik **véletlenszerűen** kiválasztott hely frissül egyszerre. Tehát a csere után nem a szomszédok változnak. (Flyvbjerg, Sneppen, Bak. Mean field theory for a simple model of evolution. PRL 1993, doi 10.1103/PhysRevLett.71.4087.)

- Ez az átlagtér modell analitikusan megoldható,
- skálázást ad,
- de a korrelációk figyelmen kívül hagyása miatt B_C a korábbi 0.67-os értéktől eltérő.

Tüdő működés SOC modellje

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Tüdő szerkezete

(Shields, Ponn, Rusch: General Thoracic Surgery, 2009)

Tüdő működés SOC modellje

Önszervezően kritikus rendszerek

Bevezetés, alapfogalma

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Tüdő szerkezete

- 2-felé ágazik 35 lépésen át
- utolsó 10-14 lépésnél:
 - szelep van, ami
 - nyomásra nyit

(Shields, Ponn, Rusch: General Thoracic Surgery, 2009)

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Működés mérése: levegő befújása kutya tüdőbe

Suki et.al.: Avalanches and power-law behaviour in lung inflation. Nature 1994, doi 10.1038/368615a0

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmal

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Működés mérése: levegő befújása kutya tüdőbe

Suki et.al.: Avalanches and power-law behaviour in lung inflation. Nature 1994, doi 10.1038/368615a0

- "leeresztett" tüdő felfújása teljes méretűre olyan légárammal, ami időegység alatt állandó V mennyiségű levegőt visz be ΔP nyomás különbség mellett
- mit mértek? az R légúti ellenállást (airway resistance)
- R definíciója elektromos analógiával (R=U/I):

$$R = \frac{\Delta P}{dV/dt}$$

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Működés mérése: levegő befújása kutya tüdőbe

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Működés mérése: levegő befújása kutya tüdőbe

FIG. 1 a, The terminal airway resistance R_t as a function of inflation time for three different capsules on a single dog lung lobe. The

(Suki et al, Fig.1)

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

- önhasonló görbe
 ha egy szelep nyit, utána több nyithat
 - → lavina

FIG. 1 a, The terminal airway resistance R_t as a function of inflation time for three different capsules on a single dog lung lobe. The

(Suki et al, Fig.1)
Tüdő működés SOC modellje Megfigyelések

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Működés mérése: levegő befújása kutya tüdőbe

Tüdő működés SOC modellje Megfigyelések

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Működés mérése: levegő befújása kutya tüdőbe

Ellenállás relatív ugrásainak méret eloszlása hatványfüggvény

- input: egyenletes "betáplálás"
- output: nagy változások, méret eloszlásuk hatványfüggvény.
- → hasonló a homokdombhoz !

Tüdő működés SOC modellje Megfigyelések

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Működés mérése: levegő befújása kutya tüdőbe

Ellenállás relatív ugrásainak méret eloszlása hatványfüggvény

(Suki et al, Fig.1b)

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Modell: Szerkezet alapján lavinák méretének eloszlása

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Modell: Szerkezet alapján lavinák méretének eloszlása Barabási et.al.: Avalanches in the Lung: A Statistical Mechanical Model. PRL 1996, doi 10.1103/PhysRevLett.76.2192

- A tüdő szerkezete: 3-Cayley-fa harmada
 - hurokmentes → egyszerűen számolható
 - a gráf gyökér pontja a tüdő bejárata
 - utána mindenütt elágazás 2 irányban

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Modell: Szerkezet alapján lavinák méretének eloszlása

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Modell: Szerkezet alapján lavinák méretének eloszlása

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Modell: Szerkezet alapján lavinák méretének eloszlása

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Modell: Szerkezet alapján lavinák méretének eloszlása

- az (*i*, *j*) szelep *P_{i,j}* nyomáskülönbségnél nyit
 i: szint (generáció), *j*: szinten belül melyik oszlop
- a *P_{i,j}*-k egyenletesek és korrelálatlanok a [0,1]-ben
- kezdeti állapot: minden szelep (szakasz a fán) zárt

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

- kezdetben $\Delta P = 0$, és minden szelep zárva van
- amikor ΔP eléri a P_{0,0} értéket, akkor a legfelső szelep nyit a legfelső szelep: (*i*,*j*) = (0,0)
 - a legfelső szelep kinyitása után nézzük meg az "alatta" lévő két szelepet (1,0 és 1,1), és amelyiknek a P_{i,j} zárónyomása kisebb, mint az aktuális ΔP, azt nyissuk ki
 - így tovább: nyissuk ki az összes nyitott szelep alatt Δ*P*-nél gyengébben záró szelep(ek)et

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

- kezdetben $\Delta P = 0$, és minden szelep zárva van
- amikor ΔP eléri a $P_{0,0}$ értéket, akkor a legfelső szelep nyit a legfelső szelep: (i,j) = (0,0)
 - a legfelső szelep kinyitása után nézzük meg az "alatta" lévő két szelepet (1,0 és 1,1), és amelyiknek a P_{i,j} zárónyomása kisebb, mint az aktuális ΔP, azt nyissuk ki
 - így tovább: nyissuk ki az összes nyitott szelep alatt Δ*P*-nél gyengébben záró szelep(ek)et
- megjegyzés: a számolás a gyakorlatban történhet úgy, hogy a Δ*P*-t mindig a már nyitott tartomány szélén lévő összes zárt szelep *P_{i,j}* értékei közül a legkisebbig növeljük
- ekkor kinyílik az egyik zárt szelep (vagy több), és az alatta (alattuk) lévő tartomány vagy annak egy része

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

- kezdetben $\Delta P = 0$, és minden szelep zárva van
- amikor ΔP eléri a $P_{0,0}$ értéket, akkor a legfelső szelep nyit a legfelső szelep: (i,j) = (0,0)
 - a legfelső szelep kinyitása után nézzük meg az "alatta" lévő két szelepet (1,0 és 1,1), és amelyiknek a P_{i,j} zárónyomása kisebb, mint az aktuális ΔP, azt nyissuk ki
 - így tovább: nyissuk ki az összes nyitott szelep alatt Δ*P*-nél gyengébben záró szelep(ek)et
- megjegyzés: a számolás a gyakorlatban történhet úgy, hogy a Δ*P*-t mindig a már nyitott tartomány szélén lévő összes zárt szelep *P_{i,j}* értékei közül a legkisebbig növeljük
- ekkor kinyílik az egyik zárt szelep (vagy több), és az alatta (alattuk) lévő tartomány vagy annak egy része
- a számolás az utolsó szelep nyitásáig megy

Önszervezően kritikus rendszerek

Példa

Bevezetés, alapfogalmal

Self-organized criticality Homokdomb Biológiai evolúcić Tüdő működés

Modell részletesen

Figure 3.5: Typical development of avalanches in the lung model. (a) After the main alveola has opened, a small part of the lung also opens (b) due to lower critical pressure in that region. (c) The situation after a large avalanche: about the half of alveoli are open (after [9]).

Eredmények - Összes lavina helyett csak az első lavina méreteloszlása

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

A szelepek erősségei valós számok, ezért

- nincsen két azonos szelep erősség
- a külső nyomás növelése során minden lavina úgy történik, hogy megnyílik egy zárt szelep és alatta nulla vagy több további szelep

Eredmények - Összes lavina helyett csak az első lavina méreteloszlása

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

A szelepek erősségei valós számok, ezért

- nincsen két azonos szelep erősség
- a külső nyomás növelése során minden lavina úgy történik, hogy megnyílik egy zárt szelep és alatta nulla vagy több további szelep

Ha a szintek száma $\rightarrow \infty$, akkor

- a modell (3-Cayley-fa + *P_{i,j}*) minden "al-Cayley-fán" statisztikus értelemben azonos
 - ha a lavina-méret eloszlás a teljes 0 < P_E < 1 nyomás tartományon végighaladva hatványfüggvény,
 - akkor minden P_{E,min} < P_E < P_{E,max} résztartományon is hatványfüggvény

Eredmények - Összes lavina helyett csak az első lavina méreteloszlása

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

A szelepek erősségei valós számok, ezért

- nincsen két azonos szelep erősség
- a külső nyomás növelése során minden lavina úgy történik, hogy megnyílik egy zárt szelep és alatta nulla vagy több további szelep

Ha a szintek száma $\rightarrow \infty$, akkor

- a modell (3-Cayley-fa + P_{i,j}) minden "al-Cayley-fán" statisztikus értelemben azonos
 - ha a lavina-méret eloszlás a teljes 0 < P_E < 1 nyomás tartományon végighaladva hatványfüggvény,
 - akkor minden P_{E,min} < P_E < P_{E,max} résztartományon is hatványfüggvény

Ezért az összes lavina méretének az eloszlása

- $\bullet\,$ akkor és csak akkor hatványfüggvény γ kitevővel,
- ha az első lavina (P_{0,0} nyitásakor) is az

Eredmények - Numerikus

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Lavina méret definíció: a nyomás változás hatására megnyíló szelepek száma

Eredmények - Numerikus

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Lavina méret definíció: a nyomás változás hatására megnyíló szelepek száma

- (•) a Cayley-fa legalsó szintjén (levelein)
- (o) a fa bármelyik szintjén ("generációban")

Eredmények - Numerikus

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Lavina méret definíció:

a nyomás változás hatására megnyíló szelepek száma

- (•) a Cayley-fa legalsó szintjén (levelein)
- (o) a fa bármelyik szintjén ("generációban")

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Első lavina méretének eloszlása

- ekvivalens: perkoláció 3-Cayley-fán
- egzaktul megoldható

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Első lavina méretének eloszlása

- ekvivalens: perkoláció 3-Cayley-fán
- egzaktul megoldható

Rögzítsük az első szelep nyitó nyomását: $p = P_{0,0}$ Az első lavina *s* méretének $\Pi(s,p)$ eloszlása *p* paraméterrel:

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Első lavina méretének eloszlása

- ekvivalens: perkoláció 3-Cayley-fán
- egzaktul megoldható

Rögzítsük az első szelep nyitó nyomását: $p = P_{0,0}$ Az első lavina *s* méretének $\Pi(s, p)$ eloszlása *p* paraméterrel:

Ismert eredmény (itt nem vezetjük le) perkolációval való analógiából

 $\Pi(s,p) \sim s^{-\tau} f(s^{\sigma}|p-p_c|)$, ahol

•
$$\tau = 3/2, \sigma = 1/2, p_c = 1/2$$

•
$$f(u \ll 1) = \text{const.}$$
 és $f(u \gg 1) \rightarrow 0$

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmał

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés

Első lavina méretének eloszlása

- ekvivalens: perkoláció 3-Cayley-fán
- egzaktul megoldható

Rögzítsük az első szelep nyitó nyomását: $p = P_{0,0}$ Az első lavina *s* méretének $\Pi(s, p)$ eloszlása *p* paraméterrel:

Ismert eredmény (itt nem vezetjük le) perkolációval való analógiából

- $\Pi(s,p) \sim s^{-\tau} f(s^{\sigma}|p-p_c|)$, ahol
 - $\tau = 3/2, \sigma = 1/2, p_c = 1/2$
 - $f(u \ll 1) = \text{const.}$ és $f(u \gg 1) \rightarrow 0$

Átlagoljunk véletlenszerűen (egyenletesen) választott $p = P_{0,0}$ -ra:

- integrálás: $\Pi(s) = \int_0^1 dp \Pi(s, p)$
- változótranszformáció: $z = s^{\sigma} |p p_c|, dp = s^{-\sigma} dz$
- az analitikus eredmény két exponens:
 - $n(s) = s^{-\tau \sigma} \rightarrow \tau + \sigma \approx 1.9 = \gamma_B$ (numerikus)
 - másik exponens 1, ami kb. a numerikus $\gamma_A \approx 0.9$

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmak

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Tüdő járatok záródása (betegség, sérülés) esetén

- lélegeztetőgép szükséges
- a túlnyomás nem lehet sokáig magas
- de ki kell nyitni minél több járatot

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmal

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Tüdő járatok záródása (betegség, sérülés) esetén

- lélegeztetőgép szükséges
- a túlnyomás nem lehet sokáig magas
- de ki kell nyitni minél több járatot

Megoldás:

• váltakozó amplitúdójú P_E lélegeztető túlnyomás

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmal

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Tüdő járatok záródása (betegség, sérülés) esetén

- lélegeztetőgép szükséges
- a túlnyomás nem lehet sokáig magas
- de ki kell nyitni minél több járatot

Megoldás:

• váltakozó amplitúdójú P_E lélegeztető túlnyomás

A 3-Cayley-fa szerkezet esetén

 a p_c kritikus pont közelében a felvett O₂ mennyisége a |P_E - p_c|ⁿ hatványfüggvény szerint növekszik, ahol n fa rendje (pl. a 3-Cayley fa rendje 2)

Modell és mérés: Suki B, et.al.: Mathematical Modeling of the First Inflation of Degassed Lungs. Annals of Biomedical Engineering, Vol. 26, pp. 608–617 (1998)

Önszervezően kritikus rendszerek

Bevezetés, alapfogalmal

Self-organized criticality Homokdomb Biológiai evolúció Tüdő működés Tüdő járatok záródása (betegség, sérülés) esetén

- lélegeztetőgép szükséges
- a túlnyomás nem lehet sokáig magas
- de ki kell nyitni minél több járatot

Megoldás:

• váltakozó amplitúdójú P_E lélegeztető túlnyomás

A 3-Cayley-fa szerkezet esetén

 a p_c kritikus pont közelében a felvett O₂ mennyisége a |P_E - p_c|ⁿ hatványfüggvény szerint növekszik, ahol n fa rendje (pl. a 3-Cayley fa rendje 2)

Modell és mérés: Suki B, et.al.: Mathematical Modeling of the First Inflation of Degassed Lungs. Annals of Biomedical Engineering, Vol. 26, pp. 608–617 (1998)

A rövid ideig tartó nagy túlnyomások alatt erősebben nő az oxigén-felvétel, mint amennyivel csökken a hosszabb ideig tartó alacsonyabb túlnyomások alatt.

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagran

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

Baktériumtelepek geometriája I. :

Mikrobiológiai háttér, morfológiai diagram, Fisher-egyenlet, instabilitás eredete

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás
- Mozgás: Több oste Mozgás: Egy osto Telep tenyésztése Baktériumtelepek morfológiája
- Morfológiai diagram
- További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

- (nagyrészt) szabadon élő egysejtű élőlények
- telepeket (colonies) alkotnak
- a környezeti hatásoktól erősen függnek

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás
- Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagrar
- További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

- (nagyrészt) szabadon élő egysejtű élőlények
- telepeket (colonies) alkotnak
- a környezeti hatásoktól erősen függnek
- a kísérletekben a soksejtűek sejtjeinél könnyebben kezelhetőek
- változatos tér- és időbeli mintázatokat tudnak létrehozni
- a mintázatok gyakran nem függnek a kölcsönhatás részleteitől tehát általánosak (univerzálisak)

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás
- Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagran
- További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

- (nagyrészt) szabadon élő egysejtű élőlények
- telepeket (colonies) alkotnak
- a környezeti hatásoktól erősen függnek
- a kísérletekben a soksejtűek sejtjeinél könnyebben kezelhetőek
- változatos tér- és időbeli mintázatokat tudnak létrehozni
- a mintázatok gyakran nem függnek a kölcsönhatás részleteitől tehát általánosak (univerzálisak)
- baktériumok kölcsönhatási/mozgási szabályai ismertebbek
- a kísérletekben mért jelenségek reprodukálhatóak számítógépes (numerikus) és analitikus módszerekkel

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás
- Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagran
- További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

- (nagyrészt) szabadon élő egysejtű élőlények
- telepeket (colonies) alkotnak
- a környezeti hatásoktól erősen függnek
- a kísérletekben a soksejtűek sejtjeinél könnyebben kezelhetőek
- változatos tér- és időbeli mintázatokat tudnak létrehozni
- a mintázatok gyakran nem függnek a kölcsönhatás részleteitől tehát általánosak (univerzálisak)
- baktériumok kölcsönhatási/mozgási szabályai ismertebbek
- a kísérletekben mért jelenségek reprodukálhatóak számítógépes (numerikus) és analitikus módszerekkel
- → Baktériumtelep: Önszerveződő biológiai jelenségek jól vizsgálható példája

Baktériumtelepek geometriája I.

Példák (Petri csészében):

Bevezetés

- Mozgás, osztódás
- Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram
- Kompakt
- Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

S0: kezdeti tápanyag-koncentráció, W0: táptalaj nedvessége
Bevezetés

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás Mozgás: Töl
- Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagran
- További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov A telepek (colonies) alakját két közvetlen hatás alakítja:

- a baktériumok osztódása és
- mozgása

Bevezetés

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

- Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagran
- További alakzatok

Kompakt morfológia

- Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása
- Fisher-Kolmogorov összefoglalás

A telepek (colonies) alakját két közvetlen hatás alakítja:

- a baktériumok osztódása és
- mozgása

Mi befolyásolja ezt a két közvetlen hatást?

- tápanyagtartalom, táptalaj keménysége, nedvességtartalma
- hőmérséklet
- osztódási sebesség
- baktériumok mozgása (chemotaxis): mozgás kémiai koncentráció gradiens érzékelése alapján
 - tápanyagok
 - méreg anyagok

Bevezetés

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram

Kompakt

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov összaforalalás A telepek (colonies) alakját két közvetlen hatás alakítja:

- a baktériumok osztódása és
- mozgása

Mi befolyásolja ezt a két közvetlen hatást?

- tápanyagtartalom, táptalaj keménysége, nedvességtartalma
- hőmérséklet
- osztódási sebesség
- baktériumok mozgása (chemotaxis): mozgás kémiai koncentráció gradiens érzékelése alapján
 - tápanyagok
 - méreg anyagok

A baktériumok mozgása általában

- (1) "run and tumble" vagy
- (2) "gliding"

Bevezetés Baktériumok szaporodási sebessége

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás Mozgás: Több Mozgás: Egy o
- Baktériumtelepek morfológiája Morfológiai diagra

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

A tápanyag koncentrációjától való függés:

Bevezetés Baktériumok szaporodási sebessége

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás
- Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram
- További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

A tápanyag koncentrációjától való függés:

- kezdeti gyors növekedés után telítésbe megy
- van egy alsó küszöb, ami alatt nincsen növekedés

Bevezetés Baktériumok szaporodási sebessége

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás
- Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

A tápanyag koncentrációjától való függés:

- kezdeti gyors növekedés után telítésbe megy
- van egy alsó küszöb, ami alatt nincsen növekedés

Bevezetés Baktériumtelepek morfológiai diagramja

Baktériumtelepek geometriája I.

Példa:

Bevezetés

- Mozgás, osztódás Mozgás: Több ost Mozgás: Egy osto Telep tenyésztése Baktériumtelepek morfológiája
- További alakzatok

Kompakt morfológia

Fisher-Kolmogoro egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogoro

Figure 4.4: Morphology diagram of the strain *Bacillus subtilis* OG-01 (a) and a non motile mutant OG-01b (b) as a function of peptone and agar concentration. The dashed line in (a) indicates the boundary of the active movement of bacterial cells inside the colonies. The morphologies are classified as follows: fractal (A), compact with rough boundary (B), branching with periodic growth phases (C), compact with diffuse boundary (D) and dense branching (E). In the case of the non motile strain the regions A and B seen in (a) expand laterally, while regions C, D and E disappear.

Bevezetés Baktériumok mozgása

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás Mozgás: Több ost Mozgás: Egy osto Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagra

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

Baktériumok mozgásának két gyakori formája:

Bevezetés Baktériumok mozgása

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás
- Mozgás: Több ost Mozgás: Egy osto Telep tenyésztése Baktériumtelepek morfológiája
- Morfológiai diagram
- Kompakt
- Fisher-Kolmogoro egyenlet F-K numerikus megoldása F-K analitikus megoldása
- Fisher-Kolmogorov összefoglalás

Baktériumok mozgásának két gyakori formája:

- Egyenes haladás és véletlenszerű bolyongás váltakozása. ("run and tumble", bacterial tumbling)
 - Alapja: a baktérium az ostorát (vagy ostor kötegét) mindkét irányban tudja forgatni az ostor kapcsolódásánál lévő molekuláris "motorral".
 - ostor(köteg) forgatása egyik módon → egyenes haladás
 - másik módon (pl. széteső köteg) → bolyongás, irányváltás
- (2) "Gliding": pl. tapadás-elengedés módszerrel.

Bevezetés Baktériumok mozgása

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás
- Mozgás: Több oste Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagrar
- További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov öccasteralelás

Baktériumok mozgásának két gyakori formája:

- (1) Egyenes haladás és véletlenszerű bolyongás váltakozása. ("run and tumble", bacterial tumbling)
 - Alapja: a baktérium az ostorát (vagy ostor kötegét) mindkét irányban tudja forgatni az ostor kapcsolódásánál lévő molekuláris "motorral".
 - ostor(köteg) forgatása egyik módon → egyenes haladás
 - másik módon (pl. széteső köteg) → bolyongás, irányváltás
- (2) "Gliding": pl. tapadás-elengedés módszerrel.

Videók:

- 10mp: flagellum (ostor) motorja https://youtu.be/xEVq7jCT4kw
- 2 perc: motor összeállítása: https://youtu.be/hLTFiekwFy8

A mozgás mikrobiológiai háttere Több ostor mozgatásával

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több ostor

Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

A vizsgált baktériumok jellemző mérete $4\mu m \times 1\mu m \times 1\mu m$

- membránján hosszú vékony ostorok ("propellerek")
- ostor alján lévő motor: legkisebb ismert forgó motor
- kis méret → kis Reynolds-szám, lamináris áramlás

A mozgás mikrobiológiai háttere Több ostor mozgatásával

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több ostor

Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov összefoolalás

A vizsgált baktériumok jellemző mérete $4\mu m \times 1\mu m \times 1\mu m$

- membránján hosszú vékony ostorok ("propellerek")
- ostor alján lévő motor: legkisebb ismert forgó motor
- kis méret → kis Reynolds-szám, lamináris áramlás

Gyakori megoldás: Több ostor

CW: clockwise, CCW: counter-clockwise, peritrichous: a felszínen egyenletesen elosztva

A mozgás mikrobiológiai háttere Több ostor mozgatásával

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több ostor

Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov összefoglalás

A vizsgált baktériumok jellemző mérete $4\mu m \times 1\mu m \times 1\mu m$

- membránján hosszú vékony ostorok ("propellerek")
- ostor alján lévő motor: legkisebb ismert forgó motor
- kis méret → kis Reynolds-szám, lamináris áramlás

Gyakori megoldás: Több ostor

CW: clockwise, CCW: counter-clockwise, peritrichous: a felszínen egyenletesen elosztva

- CW forgás, helikális szálak együtt → propeller, előre tol (run) mintát vesz: ha jófelé halad (pl. cukor felé), CW marad
- CCW, szálak szétesnek → RND bolyongás (Brown, tumble)

A mozgás mikrobiológiai háttere Egy ostor mozgatásával

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több os

Mozgás: Egy ostor

Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagran Tevébbi elekzetek

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov összefonlalás

Ritkább megoldás: Egy ostor

b Monotrichous flagellum

Movement

CW: clockwise, CCW: counter-clockwise, monotrichous: egy ostora van

A mozgás mikrobiológiai háttere Egy ostor mozgatásával

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több os

Mozgás: Egy ostor

Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov összefoolalás

Ritkább megoldás: Egy ostor

b Monotrichous flagellum

Movement

CW rotation

Movement (random reorientation)

CW: clockwise, CCW: counter-clockwise, monotrichous: egy ostora van

- CW forgás esetén halad egyenes vonalban
- CCW forgás esetén véletlenszerű irányváltás

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás Mozgás: Több (

Mozgás: Egy ostor Telep tenvésztése

Baktériumtelepek morfológiája Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás Mozgás: Több os Mozgás: Egy osto

Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás Mozgás: Több os Mozgás: Egy osto

Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov ösczafonalás

- az edényben agar alapú gél van (az agar egy alga)
- a gélben van víz, tápanyag, stb
- a gél tetején a baktériumok szaporodnak

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás Mozgás: Több os Mozgás: Egy osto

Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov ösczatopolajás

- az edényben agar alapú gél van (az agar egy alga)
- a gélben van víz, tápanyag, stb
- a gél tetején a baktériumok szaporodnak
- az agar koncentráció szabályozza a gél keménységét
- sok tápanyag vagy kemény gél ⇒ ágas-bogas szerkezet

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás Mozgás: Több ost Mozgás: Egy osto Telep tenyésztése Baktériumtelepek morfológiája

Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás Mozgás: Több o Mozgás: Egy os

Baktériumtelepek morfológiája Morfológiai diagra

Kompakt

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov A dendritikus szerkezetű telepekben egy ág akár 1mm vastag is lehet. Ilyen alakzatok általában diffúzió-limitált rendszerekben keletkeznek.

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás
- Mozgás: Több os Mozgás: Egy osto
- Telep tenyésztés
- Baktériumtelepek morfológiája
- További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov A dendritikus szerkezetű telepekben egy ág akár 1mm vastag is lehet. Ilyen alakzatok általában diffúzió-limitált rendszerekben keletkeznek.

- belül már nincsen tápanyag, kívülről diffundál befelé
- az szaporodik, aki sok tápanyagot kap → aki a szélén van

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Egy os

Baktériumtelepek morfológiája Morfológiai diagrai További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov A dendritikus szerkezetű telepekben egy ág akár 1mm vastag is lehet. Ilyen alakzatok általában diffúzió-limitált rendszerekben keletkeznek.

- belül már nincsen tápanyag, kívülről diffundál befelé
- az szaporodik, aki sok tápanyagot kap → aki a szélén van

A dendritikus szerkezet a tápanyag-felvételre optimalizált:

• sokan vannak közel a felülethez

Baktériumtelepek morfológiája

Morfológiai diagram: Pontszerű "forrás", változó tápanyag és agar koncentráció

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiála

Morfológiai diagram

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov

A telep: a baktériumok által adott időpontig használt terület

Baktériumtelepek morfológiája

Morfológiai diagram: Pontszerű "forrás", változó tápanyag és agar koncentráció

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiála Tápanyag koncentráció

Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogorov összefonlalás

A telep: a baktériumok által adott időpontig használt terület

Telep: tömör Határvonal: egyenetlen, önaffin

Önhasonló, fraktál

a gél sűrű (száraz)

Kör alakú

Kör alakú tartományban szálak sűrűn (nem fraktál)

a gél híg

1 / agar koncentráció

Baktériumtelepek morfológiája További baktériumtelep alakzatok

Baktériumtelepek geometriája I.

További alakzatok

Spirálszerű karok

"Ujjasodás" (fraktál) után genetikai kapcsoló hatására sűrű

Baktériumtelepek geometriája I.

Sok táplálék, nedves felület

→ tudnak mozogni, kb. diffundálnak a táptalaj felszínén

Bevezetes

Mozgás, osztódás Mozgás: Több Mozgás: Egy o

Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagras

Kompakt morfológia

Fisher-Kolmogorov egyenlet

F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmoro

Fisher-Kolmogorov összefoglalás

Baktériumtelepek geometriája I.

Sok táplálék, nedves felület

→ tudnak mozogni, kb. diffundálnak a táptalaj felszínén

Kezdetben kis folt

- folyik szét \rightarrow diffúzió
- szaporodik → forrás tag

Kompakt morfológia

Fisher-Kolmogorov egyenlet

F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogo

Fisher-Kolmogorov összefoglalás

Baktériumtelepek geometriája I.

Sok táplálék, nedves felület

→ tudnak mozogni, kb. diffundálnak a táptalaj felszínén

Kezdetben kis folt

- folyik szét \rightarrow diffúzió
- szaporodik → forrás tag

⇒ Fisher-Kolmogorov egyenlet (2d tér + 1d idő)

- Mozgas, osztódás
- Mozgás: Tobb os Mozgás: Egy osto Telep tenyésztése Baktériumtelepek morfológiája
- Morfológiai diagram

Kompakt morfológia

Fisher-Kolmogorov egyenlet

- F-K numerikus megoldása F-K analitikus megoldása
- Fisher-Kolmogorov összefoglalás

Baktériumtelepek geometriája I.

Sok táplálék, nedves felület

→ tudnak mozogni, kb. diffundálnak a táptalaj felszínén

Kezdetben kis folt

- folyik szét \rightarrow diffúzió
- szaporodik → forrás tag

⇒ Fisher-Kolmogorov egyenlet (2d tér + 1d idő)

- $\rho(\vec{r}, t)$: baktériumok sűrűsége
- ∂_t : idő szerinti parciális derivált
- ∇ : térbeli koordináták szerinti parciális derivált
- D_ρ: diffúziós állandó
- c: tápanyag koncentrációja
- f(ρ, c): forrás tag (osztódással keletkeznek baktériumok)

morfológia

Fisher-Kolmogorov egyenlet

F-K numerikus megoldása F-K analitikus megoldása

Fisher-Kolmogorov összefoglalás

Baktériumtelepek geometriája I.

Fisher-Kolmogorov eavenlet

Sok táplálék, nedves felület

→ tudnak mozogni, kb. diffundálnak a táptalaj felszínén

Kezdetben kis folt

- folyik szét → diffúzió
- szaporodik → forrás tag

⇒ Fisher-Kolmogorov egyenlet (2d tér + 1d idő)

- $\rho(\vec{r}, t)$: baktériumok sűrűsége
- ∂_t : idő szerinti parciális derivált
- ∇ : térbeli koordináták szerinti parciális derivált
- D_ρ: diffúziós állandó
- c: tápanyag koncentrációja
- f(ρ, c): forrás tag (osztódással keletkeznek baktériumok)

$$\Rightarrow \quad \partial_t \rho = \underbrace{D_{\rho} \cdot \nabla^2 \rho}_{\text{diffuzio}} + \underbrace{f(\rho, c)}_{\text{forras}}$$

ሕ

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás Mozgás: Töl

Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagran

További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet

F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogo

összefoglalás

A D_{ρ} diffúziós állandó mérhető a baktériumnak az origótól (a kiindulási helytől) való átlagos távolsága alapján:

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram

Iovabbi alakzato

Kompakt morfológia

Fisher-Kolmogorov egyenlet

F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogo

összefoglalás

A D_{ρ} diffúziós állandó mérhető a baktériumnak az origótól (a kiindulási helytől) való átlagos távolsága alapján:

 $\overline{d^2(t)} = 2D_\rho \cdot t$

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiaj diagram

Kompakt morfológia

Fisher-Kolmogorov egyenlet

F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogor A D_{ρ} diffúziós állandó mérhető a baktériumnak az origótól (a kiindulási helytől) való átlagos távolsága alapján:

 $\overline{d^2(t)} = 2D_\rho \cdot t$

Az $f(\rho, c)$ "forrás" tag a baktériumok keletkezését (osztódási sebességét) írja le a ρ baktérium-sűrűség és a c tápanyag koncentráció függvényében:

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram

Kompakt morfológia

Fisher-Kolmogorov egyenlet

F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogor A D_{ρ} diffúziós állandó mérhető a baktériumnak az origótól (a kiindulási helytől) való átlagos távolsága alapján:

 $\overline{d^2(t)}=2D_\rho\cdot t$

Az $f(\rho, c)$ "forrás" tag a baktériumok keletkezését (osztódási sebességét) írja le a ρ baktérium-sűrűség és a c tápanyag koncentráció függvényében:

- alacsony ρ sűrűség esetén $f(\rho)$ arányos ρ -val
- magasabb ρ-nál telítés, utána csökkenés (mérgező anyagcsere melléktermékek feldúsulása miatt)
- egy küszöb ρ^* értéknél $f(\rho^*)$ = 0-ra csökken
Kompakt alak Fisher-Kolmogorov egyenlet – Paraméterek

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram

Kompakt morfológia

Fisher-Kolmogorov egyenlet

F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogo A D_{ρ} diffúziós állandó mérhető a baktériumnak az origótól (a kiindulási helytől) való átlagos távolsága alapján:

 $\overline{d^2(t)}=2D_\rho\cdot t$

Az $f(\rho, c)$ "forrás" tag a baktériumok keletkezését (osztódási sebességét) írja le a ρ baktérium-sűrűség és a c tápanyag koncentráció függvényében:

- alacsony ρ sűrűség esetén $f(\rho)$ arányos ρ -val
- magasabb ρ-nál telítés, utána csökkenés (mérgező anyagcsere melléktermékek feldúsulása miatt)
- egy küszöb ρ^* értéknél $f(\rho^*)$ = 0-ra csökken
- alacsony c esetén a növekedés arányos c-vel

Kompakt alak Fisher-Kolmogorov egyenlet – Paraméterek

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram

Kompakt morfológia

Fisher-Kolmogorov egyenlet

F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogor A D_{ρ} diffúziós állandó mérhető a baktériumnak az origótól (a kiindulási helytől) való átlagos távolsága alapján:

 $\overline{d^2(t)}=2D_\rho\cdot t$

Az $f(\rho, c)$ "forrás" tag a baktériumok keletkezését (osztódási sebességét) írja le a ρ baktérium-sűrűség és a c tápanyag koncentráció függvényében:

- alacsony ρ sűrűség esetén $f(\rho)$ arányos ρ -val
- magasabb ρ-nál telítés, utána csökkenés (mérgező anyagcsere melléktermékek feldúsulása miatt)
- egy küszöb ρ^* értéknél $f(\rho^*)$ = 0-ra csökken
- alacsony c esetén a növekedés arányos c-vel
- A legegyszerűbb függvény típus, ami mindezt teljesíti:

$$f(\rho, \mathbf{c}) = \mathbf{r}(\mathbf{c}) \ \rho \left(\rho^* - \rho \right)$$

logistic function

Baktériumtelepek geometriája I.

Fisher-Kolmogorov equenlet

Az $f(\rho, c)$ függvény:

- alacsony ρ sűrűség esetén $f(\rho)$ arányos ρ -val
- magasabb ρ-nál telítés, utána csökkenés (mérgező anyagcsere melléktermékek feldúsulása miatt)
- egy küszöb ρ^* értéknél $f(\rho^*)$ = 0-ra csökken
- alacsony c esetén a növekedés arányos c-vel

Baktériumtelepek geometriája I.

Fisher-Kolmogorov equenlet

Az $f(\rho, c)$ függvény:

- alacsony ρ sűrűség esetén $f(\rho)$ arányos ρ -val
- magasabb ρ-nál telítés, utána csökkenés (mérgező anyagcsere melléktermékek feldúsulása miatt)
- egy küszöb ρ^* értéknél $f(\rho^*)$ = 0-ra csökken
- alacsony c esetén a növekedés arányos c-vel

Milyen az $f(\rho, c)$ függvény alakja? (vázlatosan)

≧

Baktériumtelepek geometriája I.

Fisher-Kolmogorov eavenlet

Az $f(\rho, c)$ függvény:

- alacsony ρ sűrűség esetén $f(\rho)$ arányos ρ -val
- magasabb ρ-nál telítés, utána csökkenés (mérgező anyagcsere melléktermékek feldúsulása miatt)
- egy küszöb ρ^* értéknél $f(\rho^*) = 0$ -ra csökken
- alacsony c esetén a növekedés arányos c-vel

Milyen az $f(\rho, c)$ függvény alakja? (vázlatosan)

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás Mozgás: Töbl

Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagra

Kompakt

Fisher-Kolmogorov egyenlet

F-K numerikus megoldása F-K analitikus megoldása

Fisher-Kolmogorov összefoglalás

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás
- Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagrar
- További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet

- F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogo
- Fisher-Kolmogorov összefoglalás

- $\rho = \rho^*$ -nál a növekedési ráta = 0
- $\rho > \rho^*$ -nál nincsen növekedés
- mértékegység választásával ρ* := 1

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás
- Mozgás: Több ostr Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagrar
- További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet

- F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogo
- Fisher-Kolmogorov összefoglalás

- $\rho = \rho^*$ -nál a növekedési ráta = 0
- $\rho > \rho^*$ -nál nincsen növekedés
- mértékegység választásával ρ* := 1

$$f(\rho) = r(c) \rho (1 - \rho)$$

Baktériumtelepek geometriája I.

Bevezetés

- Mozgás, osztódás
- Mozgás: Több osta Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagrar
- További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet

F-K numerikus megoldása F-K analitikus megoldása Fisher-Kolmogo

- $\rho = \rho^*$ -nál a növekedési ráta = 0
- $\rho > \rho^*$ -nál nincsen növekedés
- mértékegység választásával ρ* := 1

$$f(\rho) = r(c) \rho (1 - \rho)$$

Baktériumtelepek geometriája I.

A Fisher-Kolmogorov egyenlet az egyszerűsített forrás taggal:

$$\partial_t \rho = D_{\rho} \cdot \nabla^2 \rho + r(c) \rho (1 - \rho)$$

Bevezetés

- Mozgás, osztódás
- Mozgás: Több os Mozgás: Egy osto Telep tenyésztése
- Baktériumtelepek morfológiája
- Tavébbi alakzatak

Kompakt morfológia

Fisher-Kolmogoro egyenlet

F-K numerikus megoldása

- F-K analitikus megoldása
- Fisher-Kolmogorov összefoglalás

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram

Kompakt morfológia

Fisher-Kolmogoro egyenlet

F-K numerikus megoldása

F-K analitikus megoldása

Fisher-Kolmogorov összefoglalás

A Fisher-Kolmogorov egyenlet az egyszerűsített forrás taggal:

$$\partial_t \rho = D_{\rho} \cdot \nabla^2 \rho + r(c) \rho (1 - \rho)$$

Numerikus eredmény a $\rho(x, t)$ függvényre:

1

Figure 4.9: Typical result of the numerical integration of the Fisher equation (4.8) starting from a localised perturbation ($D_{\varrho} = 1$, $f(x) = x - x^2$, i.e., r =1). The $\varrho(x, t)$ curves are plotted for t =0, 5, 10, 15, 20 and 25. The domain grows with a stationary speed of v = 2.

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiaj Morfológiai diagram

Kompakt morfológia

Fisher-Kolmogoro egyenlet

F-K numerikus megoldása

F-K analitikus megoldása Fisher-Kolmogori

A Fisher-Kolmogorov egyenlet az egyszerűsített forrás taggal:

$$\partial_t \rho = D_{\rho} \cdot \nabla^2 \rho + r(c) \rho (1 - \rho)$$

Numerikus eredmény a $\rho(x, t)$ függvényre:

Figure 4.9: Typical result of the numerical integration of the Fisher equation (4.8) starting from a localised perturbation ($D_{\varrho} = 1$, $f(x) = x - x^2$, i.e., r =1). The $\varrho(x, t)$ curves are plotted for t =0, 5, 10, 15, 20 and 25. The domain grows with a stationary speed of v = 2.

Numerikus eredmény: a baktérium tartomány $v_x = 2\sqrt{r D_{\rho}}$ sebességgel terjed ki.

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiaja Morfológiai diagram

Kompakt morfológia

Fisher-Kolmogoro egyenlet

F-K numerikus megoldása

F-K analitikus megoldása Fisher-Kolmogorov összefoglalás

A Fisher-Kolmogorov egyenlet az egyszerűsített forrás taggal:

$$\partial_t \rho = D_{\rho} \cdot \nabla^2 \rho + r(c) \rho (1 - \rho)$$

Numerikus eredmény a $\rho(x, t)$ függvényre:

Figure 4.9: Typical result of the numerical integration of the Fisher equation (4.8) starting from a localised perturbation ($D_{\varrho} = 1$, $f(x) = x - x^2$, i.e., r =1). The $\varrho(x, t)$ curves are plotted for t =0, 5, 10, 15, 20 and 25. The domain grows with a stationary speed of v = 2.

Numerikus eredmény: a baktérium tartomány $v_x = 2\sqrt{r D_{\rho}}$ sebességgel terjed ki.

Ezért a sűrűségre egy "ansatz" (próbafüggvény) lehet $\tilde{\rho}(u, t) = \rho(x, t)$, ahol $u = x - v_x t$, $v_x > 0$, $\rho(-\infty) = 1$ és $\rho(+\infty) = 0$.

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

- Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája
- További alakzatok

Kompakt morfológia

- Fisher-Kolmogoro egyenlet
- megoldása

F-K analitikus megoldása

Fisher-Kolmogorov összefoglalás

A Fisher-Kolmogorov egyenlet az egyszerűsített forrás taggal:

$$\partial_t \rho = D_{\rho} \cdot \nabla^2 \rho + r \rho \left(1 - \rho\right)$$

Próbafüggvény: $\tilde{\rho}(u, t) = \rho(x, t)$, ahol $u = x - v_x t$, $v_x > 0$, $\rho(-\infty) = 1$ és $\rho(+\infty) = 0$.

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram

Kompakt morfológia

Fisher-Kolmogoro egyenlet F-K numerikus megoldása

F-K analitikus megoldása

Fisher-Kolmogorov összefoglalás

A Fisher-Kolmogorov egyenlet az egyszerűsített forrás taggal:

$$\partial_t \rho = \boldsymbol{D}_{\rho} \cdot \nabla^2 \rho + \boldsymbol{r} \, \rho \, (1 - \rho)$$

Próbafüggvény: $\tilde{\rho}(u, t) = \rho(x, t)$, ahol $u = x - v_x t$, $v_x > 0$, $\rho(-\infty) = 1$ és $\rho(+\infty) = 0$.

A próbafüggvény behelyettesítésével:

$$\partial_t \tilde{\rho} = D_\rho \tilde{\rho}'' + v_x \tilde{\rho}' + f(\tilde{\rho})$$

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiaja Morfológiai diagram További alekzatok

Kompakt morfológia

Fisher-Kolmogoro egyenlet F-K numerikus

megoldása F-K analitikus

F-K analitikus megoldása

Fisher-Kolmogorov összefoglalás

A Fisher-Kolmogorov egyenlet az egyszerűsített forrás taggal:

$$\partial_t \rho = D_{\rho} \cdot \nabla^2 \rho + r \rho \left(1 - \rho\right)$$

Próbafüggvény: $\tilde{\rho}(u, t) = \rho(x, t)$, ahol $u = x - v_x t$, $v_x > 0$, $\rho(-\infty) = 1$ és $\rho(+\infty) = 0$.

A próbafüggvény behelyettesítésével:

$$\partial_t \tilde{\rho} = D_\rho \tilde{\rho}^{\prime\prime} + v_x \tilde{\rho}^\prime + f(\tilde{\rho})$$

Létezik analitikus megoldása: tetszőleges $v_x > 0$ megoldja az egyenletet $\tilde{\rho}$ -ra

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogoro egyenlet F-K numerikus megoldása

F-K analitikus megoldása

Fisher-Kolmogorov összefoglalás

A Fisher-Kolmogorov egyenlet az egyszerűsített forrás taggal:

$$\partial_t \rho = D_{\rho} \cdot \nabla^2 \rho + r \rho (1 - \rho)$$

Próbafüggvény: $\tilde{\rho}(u, t) = \rho(x, t)$, ahol $u = x - v_x t$, $v_x > 0$, $\rho(-\infty) = 1$ és $\rho(+\infty) = 0$.

A próbafüggvény behelyettesítésével:

$$\partial_t \tilde{\rho} = D_\rho \tilde{\rho}^{\prime\prime} + v_x \, \tilde{\rho}^\prime + f(\tilde{\rho})$$

Létezik analitikus megoldása: tetszőleges $v_x > 0$ megoldja az egyenletet $\tilde{\rho}$ -ra

A valóságban mindig pontosan egy v növekedési sebesség van.

⇒ az egyenletes növekedés kihasználása nem elegendő ahhoz, hogy a megvalósuló növekedési sebességet megtaláljuk

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több osto Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása

F-K analitikus megoldása

Fisher-Kolmogorov összefoglalás

A Fisher-Kolmogorov egyenlet az egyszerűsített forrás taggal:

$$\partial_t \rho = D_{\rho} \cdot \nabla^2 \rho + r \rho (1 - \rho)$$

Próbafüggvény: $\tilde{\rho}(u, t) = \rho(x, t)$, ahol $u = x - v_x t$, $v_x > 0$, $\rho(-\infty) = 1$ és $\rho(+\infty) = 0$.

A próbafüggvény behelyettesítésével:

$$\partial_t \tilde{\rho} = D_\rho \tilde{\rho}^{\prime\prime} + v_x \tilde{\rho}^\prime + f(\tilde{\rho})$$

Létezik analitikus megoldása: tetszőleges $v_x > 0$ megoldja az egyenletet $\tilde{\rho}$ -ra

A valóságban mindig pontosan egy v növekedési sebesség van.

⇒ az egyenletes növekedés kihasználása nem elegendő ahhoz, hogy a megvalósuló növekedési sebességet megtaláljuk

Mintázatképződési jelenségeknél ez gyakori, "sebesség szelekció problémának" szokták nevezni.

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás Mozgás: Több os Mozgás: Egy osto Telep tenyésztésa Baktériumtelepek morfológiája Morfológiaj diagra

Kompakt

Fisher-Kolmogoro egyenlet F-K numerikus megoldása F-K analitikus megoldása

Fisher-Kolmogorov összefoglalás

Fisher-Kolmogorov egyenlet összefoglalása:

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás Mozgás: Több osi Mozgás: Egy osto Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagra

Kompakt morfológia

Fisher-Kolmogoro egyenlet F-K numerikus megoldása F-K analitikus megoldása

Fisher-Kolmogorov összefoglalás

Fisher-Kolmogorov egyenlet összefoglalása:

Diffúzió és forrás tag

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több ostor Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram

Kompakt morfológia

Fisher-Kolmogoror egyenlet F-K numerikus megoldása F-K analitikus megoldása

Fisher-Kolmogorov összefoglalás

Fisher-Kolmogorov egyenlet összefoglalása:

Diffúzió és forrás tag

Numerikus megoldás: állandó sebességgel terjedő "front"

Baktériumtelepek geometriája I.

Bevezetés

Mozgás, osztódás

Mozgás: Több ostor Mozgás: Egy ostor Telep tenyésztése Baktériumtelepek morfológiája Morfológiai diagram További alakzatok

Kompakt morfológia

Fisher-Kolmogorov egyenlet F-K numerikus megoldása F-K analitikus megoldása

Fisher-Kolmogorov összefoglalás Fisher-Kolmogorov egyenlet összefoglalása:

Diffúzió és forrás tag

Numerikus megoldás: állandó sebességgel terjedő "front"

Analitikus megoldás: az állandó sebesség feltételezése (ansatz) nem elegendő a megvalósuló sebesség kiválasztásához

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Baktériumtelepek geometriája II:

Fraktálnövekedés modelljei

(önhasonló, önaffin, irányított perkoláció)

Bevezetés

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktériumc Csavarodó (királis növekedés

Videók

A sima felülettel induló telep felülete miért válik hullámossá?

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktérium Csavarodó (királis

Videók

A sima felülettel induló telep felülete miért válik hullámossá?

Vajon ez egy általános jelenség, ami a biológiában és máshol is gyakori?

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepeł Mozgó baktérium Csavarodó (királis

Videók

A sima felülettel induló telep felülete miért válik hullámossá?

Vajon ez egy általános jelenség, ami a biológiában és máshol is gyakori?

Leírható-e a felület növekedése matematikai egyeneletekkel?

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telep

Csavarodó (királis növekedés

Videók

A sima felülettel induló telep felülete miért válik hullámossá?

Vajon ez egy általános jelenség, ami a biológiában és máshol is gyakori?

Leírható-e a felület növekedése matematikai egyeneletekkel? Milyen felület típusokat szeretnénk leírni?

Bevezetés

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felüle modelljei

Eden modell

KPZ modell Befagyott zaj Irányított perkolád

Elágazó morfológia DLA DLA növekedő baktérium telepe Mozgó baktériur Csavarodó (királ

Videók

Kompakt alakzat növekedésének leírása

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei

Eden modell

KPZ modell Befagyott zaj Irányított perkoláci Instabilítás eredete

Elágazó morfológia

DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Kompakt alakzat növekedésének leírása

Murray Eden modellje 1961-ből ("Eden growth model")

- 2d rács mezői: betölthető helyek
- kiindulás: egyetlen "részecske" (egy betöltött hely)
- időlépés:
 - a betöltött mezőkkel szomszédos helyen 1 új részecske

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei

Eden modell

KPZ modell Befagyott zaj Irányított perkoláci Instabilitás eredete

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Kompakt alakzat növekedésének leírása

Murray Eden modellje 1961-ből ("Eden growth model")

- 2d rács mezői: betölthető helyek
- kiindulás: egyetlen "részecske" (egy betöltött hely)
- időlépés:
 - a betöltött mezőkkel szomszédos helyen 1 új részecske

Az új mező kiválasztási valószínűsége többféle lehet:

- A, mindegyik lehetséges új mező azonos valószínűséggel
- B, több betöltött szomszéd esetén nagyobb valószínűség

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei

Eden modell

KPZ modell Befagyott zaj Irányított perkolác

Elágazó morfológia DLA DLA növekedő baktérium telej Mozgó baktériu

Csavarodó (királ növekedés

Videók

Példa: számítógépes szimulációs "pillanatkép"

2d rácson definiált Eden modell

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felüle modelljei

Eden modell

KPZ modell Befagyott zaj Irányított perkolácia

Elágazó morfológia DLA

DLA novekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Példa: számítógépes szimulációs "pillanatkép"

2d rácson definiált Eden modell

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei

Eden modell

KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növeked baktérium tele

Mozgó baktériumoł Csavarodó (királis) növekedés

Videók

Példa: számítógépes szimulációs "pillanatkép"

2d rácson definiált Eden modell

Megjegyzés:

- a rács elronthatja a forgatási szimmetriát
- a folytonos modell realisztikusabb és nem túl nehéz a megvalósítása (programozási idő, CPU idő, memória)

Baktériumtelepek geometriája II.

Példa folytonos esetben

Kuennen és Wang, J. Stat. Mech. 2008 doi:10.1088/1742-5468/2008/05/P05014

Bevezetés

Baktériumtelepeł felszíne

Növekedő felüle modelljei

Eden modell

KPZ modell Befagyott zaj Iránvított perkolá

Instabilitás eredete

Elágazó morfológia DLA DLA növeked

Mozgó baktériumol Csavarodó (királis) növekedés

Videók
Eden modell

Baktériumtelepek geometriája II.

Példa folytonos esetben

Kuennen és Wang, J. Stat. Mech. 2008 doi:10.1088/1742-5468/2008/05/P05014

Bevezetés

Baktériumtelepeł felszíne

Növekedő felüle modelljei

Eden modell

KPZ modell Befagyott zaj Irányított perkoláci Instabilitás eredete

Elágazó morfológia DLA

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Figure 6. Two-dimensional off-lattice Eden cluster of 100 000 cells in the radial geometry, and a detail of the surface.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felüle modelljei

Eden modell

KPZ modell Befagyott zaj Irányított perkolád

Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telej Mozoó baktériu

Csavarodó (királi: növekedés

Videók

Az Eden modell felülete tartalmaz "túlnyúlásokat" (overhangs)

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepel felszíne

Növekedő felület modelljei

Eden modell

KPZ modell Befagyott zaj

Instabilitás eredete

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Az Eden modell felülete tartalmaz "túlnyúlásokat" (overhangs)

A modell lényege:

- növekedés a felületen
- a "részecskék" nem tudnak elmozdulni (nincsen diffúzió)

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei

Eden modell

KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Az Eden modell felülete tartalmaz "túlnyúlásokat" (overhangs) A modell lényege:

- növekedés a felületen
- a "részecskék" nem tudnak elmozdulni (nincsen diffúzió)

A modell egyszerű, sok növekedési jelenség így működik

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei

Eden modell

KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium tele

Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Az Eden modell felülete tartalmaz "túlnyúlásokat" (overhangs) A modell lényege:

- növekedés a felületen
- a "részecskék" nem tudnak elmozdulni (nincsen diffúzió)

A modell egyszerű, sok növekedési jelenség így működik

Általánosabban megfogalmazva:

- a növekedést két hatás befolyásolja
 - (i) az egyik hatás simítja a felületet (völgyek feltöltése)

(ii) a másik hatástól "durvul" a felület (zaj erősödik)

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei

Eden modell

KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktérium Csavarodó (királis

Videók

Az Eden modell felülete tartalmaz "túlnyúlásokat" (overhangs) A modell lényege:

- növekedés a felületen
- a "részecskék" nem tudnak elmozdulni (nincsen diffúzió)

A modell egyszerű, sok növekedési jelenség így működik

Általánosabban megfogalmazva:

- a növekedést két hatás befolyásolja
 - (i) az egyik hatás simítja a felületet (völgyek feltöltése)
 - (ii) a másik hatástól "durvul" a felület (zaj erősödik)

Az eredményként kapott határvonal önaffin

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei

Eden modell

KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktériumo Csavarodó (királis növekedés

Videók

Az Eden modell felülete tartalmaz "túlnyúlásokat" (overhangs) A modell lényege:

- növekedés a felületen
- a "részecskék" nem tudnak elmozdulni (nincsen diffúzió)

A modell egyszerű, sok növekedési jelenség így működik

Általánosabban megfogalmazva:

- a növekedést két hatás befolyásolja
 - (i) az egyik hatás simítja a felületet (völgyek feltöltése)
 - (ii) a másik hatástól "durvul" a felület (zaj erősödik)
- Az eredményként kapott határvonal önaffin
- A felület durvulását leíró egyik folytonos egyenlet:

KPZ modell

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befaqvott zai

Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktérium Csavarodó (királis növekedés

Videók

Kardar, Parisi, Zhang: Dynamic scaling of growing surfaces. Physical Review Letters (1986)

KPZ modell

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell

Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepel Mozgó baktérium Csavarodó (királi

növekedés

Videók

Kardar, Parisi, Zhang: Dynamic scaling of growing surfaces. Physical Review Letters (1986)

1 (tér) + 1 (idő) dimenziós modell

KPZ modell

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

- Növekedő felület modelljei Eden modell KPZ modell
- Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Kardar, Parisi, Zhang: Dynamic scaling of growing surfaces. Physical Review Letters (1986)

1 (tér) + 1 (idő) dimenziós modell

Jelölések:

- a felület magassága: h(x, t)
- idő szerinti parciális derivált: ∂_t
- hely koordináta szerinti parciális derivált: ∂_x második derivált: ∂_x²
- a felületre merőleges irányú növekedési sebesség: v
- korrelálatlan zaj tag (sztochasztikus tag): $\eta(x, t)$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell

Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepeki Mozgó baktériumc Csavarodó (királis) növekedés

Videók

A KPZ egyenlet felépítése lépésről lépésre

Baktériumtelepek geometriája II.

A KPZ egyenlet felépítése lépésről lépésre

- A felület függőleges irányú növekedési sebessége: $\partial_t h(x,t)$
- Baktériumtelepe
- Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj
- Irányított perkoláció Instabilitás eredete
- Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktériumo Csavarodó (királis pávakcelóa
- Videók

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepel felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium telepe Mozgó baktérium

Csavarodó (királis növekedés

Videók

A KPZ egyenlet felépítése lépésről lépésre

A felület függőleges irányú növekedési sebessége: $\partial_t h(x, t)$ A KPZ egyenletben milyen tagokból áll?

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell

KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A KPZ egyenlet felépítése lépésről lépésre

A felület függőleges irányú növekedési sebessége: $\partial_t h(x, t)$ A KPZ egyenletben milyen tagokból áll?

A felületet **simító hatás**: $\partial_t h(x, t) = \nu \cdot \partial_x^2 h(x, t)$

- ahol a felület deriváltja csökken (egy "púp tetején"), ott a ∂²_xh(x, t) tag negatív
- ahol a felületen egy "gödör alja" van (derivált nő) ott ez a tag pozitív

Tehát a $\partial_x^2 h(x,t)$ tag a felülettől felfelé vagy lefelé eltérő részeket "behúzza" a felülethez.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell

KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A KPZ egyenlet felépítése lépésről lépésre

A felület függőleges irányú növekedési sebessége: $\partial_t h(x, t)$ A KPZ egyenletben milyen tagokból áll?

A felületet **simító hatás**: $\partial_t h(x, t) = \nu \cdot \partial_x^2 h(x, t)$

 ahol a felület deriváltja csökken (egy "púp tetején"), ott a ∂²_xh(x, t) tag negatív

 ahol a felületen egy "gödör alja" van (derivált nő) ott ez a tag pozitív

Tehát a $\partial_x^2 h(x,t)$ tag a felülettől felfelé vagy lefelé eltérő részeket "behúzza" a felülethez.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell

Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepeki Mozgó baktériumo Csavarodó (királis) növekedés

Videók

Adjuk hozzá a felületre merőleges növekedést leíró tagot

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj

Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktériumo Csavarodó (királis päivekedő

Videók

Adjuk hozzá a felületre merőleges növekedést leíró tagot

Kis Δt idő esetén a felület kis része egyenessel közelíthető

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Adjuk hozzá a felületre merőleges növekedést leíró tagot

Kis Δt idő esetén a felület kis része egyenessel közelíthető

A baktériumok szaporodása időben változatlan, átlagos üteme v. \rightarrow A felület önmagára merőleges irányban növekszik v sebességgel.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó

DLA DLA növekedő baktérium telepeke Mozgó baktériumo Csavarodó (királis)

Videók

Adjuk hozzá a felületre merőleges növekedést leíró tagot

Kis Δt idő esetén a felület kis része egyenessel közelíthető

A baktériumok szaporodása időben változatlan, átlagos üteme v. \rightarrow A felület önmagára merőleges irányban növekszik v sebességgel.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

- Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció
- Instabilitás eredete

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Adjuk hozzá a felületre merőleges növekedést leíró tagot

Kis Δt idő esetén a felület kis része egyenessel közelíthető

A baktériumok szaporodása időben változatlan, átlagos üteme v. \rightarrow A felület önmagára merőleges irányban növekszik v sebességgel.

Megjegyzések:

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó

DLA DLA növekedő baktérium telepel Mozgó baktérium Casuaradá (királi

növekedés

Videók

Adjuk hozzá a felületre merőleges növekedést leíró tagot

Kis Δt idő esetén a felület kis része egyenessel közelíthető

A baktériumok szaporodása időben változatlan, átlagos üteme v. \rightarrow A felület önmagára merőleges irányban növekszik v sebességgel.

Megjegyzések:

(1) a felület "durvul"
⇒ emiatt lesz hullámos!!

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Adjuk hozzá a felületre merőleges növekedést leíró tagot

Kis Δt idő esetén a felület kis része egyenessel közelíthető

A baktériumok szaporodása időben változatlan, átlagos üteme v. \rightarrow A felület önmagára merőleges irányban növekszik v sebességgel.

Megjegyzések:

(1) a felület "durvul"
⇒ emiatt lesz hullámos!!

(2) sorfejtés alapján: ha $\epsilon \ll 1$, akkor $\sqrt{1+\epsilon} \approx 1 + \frac{\epsilon}{2}$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Adjuk hozzá a felületre merőleges növekedést leíró tagot

Kis Δt idő esetén a felület kis része egyenessel közelíthető

A baktériumok szaporodása időben változatlan, átlagos üteme v. \rightarrow A felület önmagára merőleges irányban növekszik v sebességgel.

Megjegyzések:

(1) a felület "durvul"
⇒ emiatt lesz hullámos!!

(2) sorfejtés alapján: ha $\epsilon \ll 1$, akkor $\sqrt{1 + \epsilon} \approx 1 + \frac{\epsilon}{2}$

(3) hasonlóan ha $\varphi \ll 1$, akkor tan $(\varphi) \approx \partial_x h$

$$\Delta h \approx v \Delta t \sqrt{1 + \tan^2(\varphi)} \approx v \Delta t + \frac{v \Delta t}{2} \tan^2(\varphi) \approx v \Delta t + \frac{v \Delta t}{2} (\partial_x h)^2$$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell

Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepeki Mozgó baktériumo Csavarodó (királis) növekedés

Videók

A felület növekedését leíró tag járuléka kis Δt idő alatt:

Baktériumtelepek geometriája II.

A **felület növekedés**ét leíró tag járuléka kis Δt idő alatt:

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj

Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepel Mozgó baktérium Csavarodó (királi:

Videók

 $\frac{\Delta h}{\Delta t} \approx v + \frac{v}{2} (\partial_x h)^2$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepel felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj

Irányított perkoláció Instabilitás eredete

Elágazó morfológia _{DLA}

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A felület növekedését leíró tag járuléka kis Δt idő alatt:

$$\frac{\Delta h}{\Delta t} \approx v + \frac{v}{2} (\partial_x h)^2$$

Egyéb effektusok miatt a $\frac{v}{2}$ helyett legyen $\frac{\lambda}{2}$ (így általánosabb lesz az egyenlet)

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növeked

baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A **felület növekedés**ét leíró tag járuléka kis Δt idő alatt:

$$\frac{\Delta h}{\Delta t} \approx v + \frac{v}{2} (\partial_x h)^2$$

Egyéb effektusok miatt a $\frac{v}{2}$ helyett legyen $\frac{\lambda}{2}$ (így általánosabb lesz az egyenlet)

Az 1d tér helyett legyen 2d tér:

- az x koordináta helyett r helyvektor lesz
- a ∂_x parciális derivált helyett $\vec{\nabla}$ operátor lesz

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktérium Csavarodó (királis növekedés

Videók

A **felület növekedés**ét leíró tag járuléka kis Δt idő alatt:

$$\frac{\Delta h}{\Delta t} \approx v + \frac{v}{2} (\partial_x h)^2$$

Egyéb effektusok miatt a $\frac{v}{2}$ helyett legyen $\frac{\lambda}{2}$ (így általánosabb lesz az egyenlet)

Az 1d tér helyett legyen 2d tér:

- az x koordináta helyett r helyvektor lesz
- a ∂_x parciális derivált helyett $\vec{\nabla}$ operátor lesz

A felületet simító tag és a felület (önmagára merőleges irányban történő) növekedését leíró tag összege alapján itt tartunk:

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium telepeki Mozgó baktériumo Csavarodó (királis) növekedés

Videók

A felület növekedés ét leíró tag járuléka kis Δt idő alatt:

$$\frac{\Delta h}{\Delta t} \approx v + \frac{v}{2} (\partial_x h)^2$$

Egyéb effektusok miatt a $\frac{v}{2}$ helyett legyen $\frac{\lambda}{2}$ (így általánosabb lesz az egyenlet)

Az 1d tér helyett legyen 2d tér:

- az x koordináta helyett r helyvektor lesz
- a ∂_x parciális derivált helyett $\vec{\nabla}$ operátor lesz

A felületet simító tag és a felület (önmagára merőleges irányban történő) növekedését leíró tag összege alapján itt tartunk:

$$\partial_t h(\vec{r},t) = \nu \, \vec{\nabla}^2 h(\vec{r},t) + v + \frac{\lambda}{2} (\vec{\nabla}h)^2$$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium telepekr Mozgó baktériumo Csavarodó (királis) növekedés

Videók

A felület növekedés ét leíró tag járuléka kis Δt idő alatt:

$$\frac{\Delta h}{\Delta t} \approx v + \frac{v}{2} (\partial_x h)^2$$

Egyéb effektusok miatt a $\frac{v}{2}$ helyett legyen $\frac{\lambda}{2}$ (így általánosabb lesz az egyenlet)

Az 1d tér helyett legyen 2d tér:

- az x koordináta helyett r helyvektor lesz
- a ∂_x parciális derivált helyett $\vec{\nabla}$ operátor lesz

A felületet simító tag és a felület (önmagára merőleges irányban történő) növekedését leíró tag összege alapján itt tartunk:

$$\partial_t h(\vec{r},t) = \nu \, \vec{\nabla}^2 h(\vec{r},t) + v + \frac{\lambda}{2} (\vec{\nabla}h)^2$$

Figyelem! A ν egy konstans szorzó, nem ugyanaz, mint a ν sebesség!

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj

Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktériumo Csavarodó (királis növekedés

Videók

Végül adjuk hozzá a zaj tagot (ez a sztochasztikus tag = nem determinisztikus)

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepel felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktérium Csavarodó (királis

Videók

Végül adjuk hozzá a zaj tagot (ez a sztochasztikus tag = nem determinisztikus)

ldőben <u>és</u> térben korrelálatlan zaj: $\eta(\vec{r}, t)$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj

Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Végül adjuk hozzá a zaj tagot (ez a sztochasztikus tag = nem determinisztikus)

ldőben **és** térben korrelálatlan zaj: $\eta(\vec{r}, t)$

Tehát

- a simító tag,
- a felületre merőleges irányú növekedés (→ ez "hullámosít")
- és a térben és időben korrelálatlan zaj

összegeként a KPZ egyenlet:

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj

Irányított perkoláció Instabilitás eredete

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Végül adjuk hozzá a zaj tagot (ez a sztochasztikus tag = nem determinisztikus)

ldőben <u>és</u> térben korrelálatlan zaj: $\eta(\vec{r}, t)$

Tehát

- a simító tag,
- a felületre merőleges irányú növekedés (→ ez "hullámosít")
- és a térben és időben korrelálatlan zaj

összegeként a KPZ egyenlet:

$$\partial_t h(\vec{r},t) = \nu \, \vec{\nabla}^2 h(\vec{r},t) + v + \frac{\lambda}{2} (\vec{\nabla}h)^2 + \eta(\vec{r},t)$$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj

Instabilitás eredet

Elágazó morfológia DLA

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Végül adjuk hozzá a zaj tagot (ez a sztochasztikus tag = nem determinisztikus)

ldőben <u>és</u> térben korrelálatlan zaj: $\eta(\vec{r}, t)$

Tehát

- a simító tag,
- a felületre merőleges irányú növekedés (→ ez "hullámosít")
- és a térben és időben korrelálatlan zaj

összegeként a KPZ egyenlet:

$$\partial_t h(\vec{r},t) = \nu \, \vec{\nabla}^2 h(\vec{r},t) + v + \frac{\lambda}{2} (\vec{\nabla}h)^2 + \eta(\vec{r},t)$$

Megjegyzések:

- korrelálatlan $\eta(\vec{r}, t)$ esetén a KPZ-ből kapott felület önaffin
- a KPZ alapján (az Eden-nél is!) a felület durvulási (önaffin) exponense H = 1/2, viszont a kísérletekben H ≈ 0.7...0.8 !
- eltérés oka: KPZ zaj időben korrelálatlan (valóságban korrelált)

KPZ modell KPZ egyenlet + Befagyott zaj (Quenched noise)

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell

Befagyott zaj

Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktériumo Csavarodó (királis päivekedő

Videók

Időben korrelálatlan zaj esetén:
Baktériumtelepek geometriája II.

Időben korrelálatlan zaj esetén:

- ha a zaj az \vec{r} helyen a *t* időpillanatban $\eta(\vec{r}, t)$,
- akkor ugyanitt a $t + \Delta t$ időpillanatban ettől független a zaj.

Bevezetés

Baktériumtelepek felszíne

Novekedo felule modelljei Eden modell KPZ modell

Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepe Mozoó baktérium

Csavarodó (királi: növekedés

Videók

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell

KPZ modell

Befagyott zaj

Irányított perkoláció Instabilitás eredete

Elágazó morfológia

DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) pävekodó

Videók

Időben korrelálatlan zaj esetén:

- ha a zaj az \vec{r} helyen a *t* időpillanatban $\eta(\vec{r}, t)$,
- akkor ugyanitt a t + Δt időpillanatban ettől független a zaj.

Másképpen megfogalmazva:

- ha a felület a táptalaj egyenetlensége (pl. bemélyedés) miatt a t időpillanatban az r helyen "megakad",
- akkor ugyanitt a t + Δt időpillanatban a táptalaj (közeg) által okozott η(r, t + Δt) zaj az előbbitől független lesz, tehát a felület halad tovább.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell

KPZ modell

Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Időben korrelálatlan zaj esetén:

- ha a zaj az \vec{r} helyen a *t* időpillanatban $\eta(\vec{r}, t)$,
- akkor ugyanitt a t + Δt időpillanatban ettől független a zaj.

Másképpen megfogalmazva:

- ha a felület a táptalaj egyenetlensége (pl. bemélyedés) miatt a t időpillanatban az r helyen "megakad",
- akkor ugyanitt a t + Δt időpillanatban a táptalaj (közeg) által okozott η(r, t + Δt) zaj az előbbitől független lesz, tehát a felület halad tovább.

Ezzel szemben

- a zaj valóságban gyakran időben konstants
- a felület egy időben állandó inhomogén közegben terjed
- szemléletesen megfogalmazva: a zaj "befagy" a közegbe befagyott zaj = quenched noise (szilárdtest-fizikából)

Baktériumtelepek geometriája II.

Az időben állandó (rögzített) zaj esetén

- a táptalaj adott helyén mindig az átlagtól azonos az eltérés
- tehát ha egy helyen a felület megakad,
 - akkor ott is maradhat hosszú ideig, megakadhat,
 - hiszen a közeg nem változik

Baktériumte

modelljei Eden modell

Befagyott zaj

Irányított perkoláció Instabilitás eredete

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis)

Videók

Baktériumtelepek geometriája II.

Az időben állandó (rögzített) zaj esetén

- a táptalaj adott helyén mindig az átlagtól azonos az eltérés
- tehát ha egy helyen a felület megakad,
 - akkor ott is maradhat hosszú ideig, megakadhat,
 - hiszen a közeg nem változik
- → Akadozva-ugrálva terjedő felület (a pontok akadályokat jelölnek)

Bevezetés

- Baktériumtelepek felszíne
- Növekedő felület modelljei Eden modell
- KPZ modell
- Befagyott zaj Irányított perkoláció

Elágazó morfológia

- DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) pävekedés
- Videók

Baktériumtelepek geometriája II.

Befagyott zaj

Az időben állandó (rögzített) zaj esetén

- a táptalaj adott helyén mindig az átlagtól azonos az eltérés
- tehát ha egy helyen a felület megakad,
 - akkor ott is maradhat hosszú ideig, megakadhat,
 - hiszen a közeg nem változik
- → Akadozva-ugrálva terjedő felület (a pontok akadályokat jelölnek)

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell

Befagyott zaj

Irányitott perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktérium Csavarodó (királis

Videók

Az $\eta(\vec{r}, t)$ befagyott zaj definiálása

Baktériumtelepek geometriája II.

Befagyott zaj

Az $\eta(\vec{r}, t)$ befagyott zaj definiálása

Tekintsünk egy ilyen $\Delta(u)$ függvényt (egy "elkent" Dirac-deltát):

- ha *u* közel van 0-hoz, akkor $\Delta(u) \cong 1$
- és máshol mindenütt $\Delta(u) = 0$.

Baktériumtelepek geometriája II.

Az $\eta(\vec{r}, t)$ befagyott zaj definiálása

Bevezetés

- Baktériumtelepek felszíne
- Növekedő felület modelljei Eden modell KPZ modell
- Befagyott zaj Irányított perkoláció Instabilitás eredete
- Elágazó morfológia DLA DLA növekedő baktérium telepeke Mozgó baktériumo Csavarodó (királis) növekedés
- Videók

Tekintsünk egy ilyen $\Delta(u)$ függvényt (egy "elkent" Dirac-deltát):

- ha *u* közel van 0-hoz, akkor $\Delta(u) \ge 1$
- és máshol mindenütt $\Delta(u) = 0$.

Ezt felhasználva az $\tilde{\eta}$ normált zaj segítségével

 $\eta(\vec{r},t)\coloneqq 2D\tilde{\eta}\big(\vec{r},h(\vec{r},t)\big)\,,$

Baktériumtelepek geometriája II.

Az $\eta(\vec{r},t)$ befagyott zaj definiálása

Tekintsünk egy ilyen $\Delta(u)$ függvényt (egy "elkent" Dirac-deltát):

- ha *u* közel van 0-hoz, akkor $\Delta(u) \cong 1$
- és máshol mindenütt $\Delta(u) = 0$.

Ezt felhasználva az $\tilde{\eta}$ normált zaj segítségével

$$\eta(\vec{r},t) \coloneqq 2D\,\tilde{\eta}\big(\vec{r},h(\vec{r},t)\big)\,,$$

ahol

- az $\tilde{\eta}$ térbeli részének autokorrelációja $C_{\tilde{\eta}}(\vec{r}, \vec{r'}) = \Delta(|\vec{r}|)\Delta(|\vec{r'}|)$, és
- az $\eta(\vec{r}, t)$ jellemző nagysága $\sqrt{\eta \cdot \eta} = \sqrt{2D}$.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell

Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Baktériumtelepek geometriája II.

Befagyott zaj

Az $\eta(\vec{r}, t)$ befagyott zaj definiálása

Tekintsünk egy ilyen $\Delta(u)$ függvényt (egy "elkent" Dirac-deltát):

- ha *u* közel van 0-hoz, akkor $\Delta(u) \cong 1$
- és máshol mindenütt $\Delta(u) = 0$.

Ezt felhasználva az $\tilde{\eta}$ normált zaj segítségével

 $\eta(\vec{r},t)\coloneqq 2D\tilde{\eta}\big(\vec{r},h(\vec{r},t)\big)\,,$

ahol

- az $\tilde{\eta}$ térbeli részének autokorrelációja $C_{\tilde{\eta}}(\vec{r}, \vec{r'}) = \Delta(|\vec{r}|)\Delta(|\vec{r'}|)$, és
- az $\eta(\vec{r}, t)$ jellemző nagysága $\sqrt{\eta \cdot \eta} = \sqrt{2D}$.

Ezt az $\eta(\vec{r}, t)$ zajt helyettesítsük vissza a KPZ-be:

$$\partial_t h(\vec{r},t) = \nu \, \vec{\nabla}^2 h(\vec{r},t) + v + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta \left(\vec{r},h(\vec{r},t)\right)$$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell

Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium telepel Mozgó baktérium Csavarodó (királi:

Videók

Az általánosság elvesztése nélkül (változótranszformációval) a paramétereket ki lehet transzformálni: $v = v = \lambda = 1$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

- Növekedő felület modelljei Eden modell KPZ modell
- Befagyott zaj Irányított perkoláció
- Elágazó morfológia DLA DLA növekedő baktérium telepel Mozgó baktérium Csavarodó (királis
- Vidoók

Az általánosság elvesztése nélkül (változótranszformációval) a paramétereket ki lehet transzformálni: $v = v = \lambda = 1$

$$\begin{array}{rcl} \partial_t h & = & \vec{\nabla}^2 h + 1 + \frac{1}{2} (\vec{\nabla} h)^2 + \eta = \\ & = & \vec{\nabla}^2 h + \sqrt{1 + (\vec{\nabla} h)^2} + \eta \,, \end{array}$$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell

Befagyott zaj

Irányított perkoláció Instabilitás eredete

Elágazó morfológia _{DLA}

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Az általánosság elvesztése nélkül (változótranszformációval) a paramétereket ki lehet transzformálni: $v = v = \lambda = 1$

$$\begin{array}{rcl} \partial_t h &=& \vec{\nabla}^2 h + 1 + \frac{1}{2} (\vec{\nabla} h)^2 + \eta = \\ &=& \vec{\nabla}^2 h + \sqrt{1 + (\vec{\nabla} h)^2} + \eta \,, \end{array}$$

ahol az η zaj jellemző nagysága (az η definíciója alapján)

 $\sqrt{\eta \eta} = \sqrt{C_{\tilde{\eta}}(0,0)} = \sqrt{2 D}$.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell

Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia _{DLA}

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Az általánosság elvesztése nélkül (változótranszformációval) a paramétereket ki lehet transzformálni: $v = v = \lambda = 1$

$$\begin{array}{rcl} \partial_t h & = & \vec{\nabla}^2 h + 1 + \frac{1}{2} (\vec{\nabla} h)^2 + \eta = \\ & = & \vec{\nabla}^2 h + \sqrt{1 + (\vec{\nabla} h)^2} + \eta \,, \end{array}$$

ahol az η zaj jellemző nagysága (az η definíciója alapján)

$$\sqrt{\eta \eta} = \sqrt{C_{\tilde{\eta}}(0,0)} = \sqrt{2 D}$$

Kérdések:

- Mekkora zaj esetén tud haladni a felület?
- Milyen D = D* zaj szint esetén akad meg a felület?

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktériumo Csavarodó (királis növekedés

Videók

Tekintsünk egy 1d (tér) + 1d (idő) növekedő felületet:

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktérium Csavarodó (királlis

Videók

Tekintsünk egy 1d (tér) + 1d (idő) növekedő felületet:

A növekedő felületet meg tudja állítani sok nagy negatív η -jú hely. Ezeket szokás blokkoló helyeknek nevezni.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó

DLA

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Tekintsünk egy 1d (tér) + 1d (idő) növekedő felületet:

A növekedő felületet meg tudja állítani sok nagy negatív η -jú hely. Ezeket szokás blokkoló helyeknek nevezni.

Állítások:

- A blokkoló helyek összefüggő láncolatot alkotnak a térben 1 dimenziós minta két széle között.
- (2) Ezen a görbén nincsen túlnövés. Tehát (1) és (2) alapján a blokkoló helyek egy függvényt alkotnak.
- (3) A blokkoló helyek által alkotott függvény önaffin.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Tekintsünk egy 1d (tér) + 1d (idő) növekedő felületet:

A növekedő felületet meg tudja állítani sok nagy negatív η -jú hely. Ezeket szokás blokkoló helyeknek nevezni.

Állítások:

- A blokkoló helyek összefüggő láncolatot alkotnak a térben 1 dimenziós minta két széle között.
- (2) Ezen a görbén nincsen túlnövés. Tehát (1) és (2) alapján a blokkoló helyek egy függvényt alkotnak.
- (3) A blokkoló helyek által alkotott függvény önaffin.

Hogyan írhatjuk le a blokkoló helyek láncolatát?

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia _{DLA}

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Tekintsünk egy 1d (tér) + 1d (idő) növekedő felületet:

A növekedő felületet meg tudja állítani sok nagy negatív η -jú hely. Ezeket szokás blokkoló helyeknek nevezni.

Állítások:

- A blokkoló helyek összefüggő láncolatot alkotnak a térben 1 dimenziós minta két széle között.
- (2) Ezen a görbén nincsen túlnövés. Tehát (1) és (2) alapján a blokkoló helyek egy függvényt alkotnak.
- (3) A blokkoló helyek által alkotott függvény önaffin.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia _{DLA}

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Tekintsünk egy 1d (tér) + 1d (idő) növekedő felületet:

A növekedő felületet meg tudja állítani sok nagy negatív η -jú hely. Ezeket szokás blokkoló helyeknek nevezni.

Állítások:

- A blokkoló helyek összefüggő láncolatot alkotnak a térben 1 dimenziós minta két széle között.
- (2) Ezen a görbén nincsen túlnövés. Tehát (1) és (2) alapján a blokkoló helyek egy függvényt alkotnak.
- (3) A blokkoló helyek által alkotott függvény önaffin.

Hogyan írhatjuk le a blokkoló helyek láncolatát? Példaként használjunk **folytonos tér helyett rács**ot (mezőket): *x* hely és *h* magasság folytonos helyett csak diszkrét értékű lehet.

(1) \forall mezőre 0 < p < 1 val.séggel tegyünk blokkoló helyet.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium tele

Mozgó baktériumoł Csavarodó (királis) növekedés

Videók

Tekintsünk egy 1d (tér) + 1d (idő) növekedő felületet:

A növekedő felületet meg tudja állítani sok nagy negatív η -jú hely. Ezeket szokás blokkoló helyeknek nevezni.

Állítások:

- A blokkoló helyek összefüggő láncolatot alkotnak a térben 1 dimenziós minta két széle között.
- (2) Ezen a görbén nincsen túlnövés. Tehát (1) és (2) alapján a blokkoló helyek egy függvényt alkotnak.
- (3) A blokkoló helyek által alkotott függvény önaffin.

- (1) \forall mezőre 0 < p < 1 val.séggel tegyünk blokkoló helyet.
- (2) Induljunk el a minta egyik szélétől, blokkoló helyeken lépünk.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium telej

Csavarodó (királis növekedés

Videók

Tekintsünk egy 1d (tér) + 1d (idő) növekedő felületet:

A növekedő felületet meg tudja állítani sok nagy negatív η -jú hely. Ezeket szokás blokkoló helyeknek nevezni.

Állítások:

- A blokkoló helyek összefüggő láncolatot alkotnak a térben 1 dimenziós minta két széle között.
- (2) Ezen a görbén nincsen túlnövés. Tehát (1) és (2) alapján a blokkoló helyek egy függvényt alkotnak.
- (3) A blokkoló helyek által alkotott függvény önaffin.

- (1) \forall mezőre 0 < p < 1 val.séggel tegyünk blokkoló helyet.
- (2) Induljunk el a minta egyik szélétől, blokkoló helyeken lépünk.
- (2) Léphetünk előre, fel, le, de vissza nem! \rightarrow Irányított perkoláció!

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növeked

baktérium telepekre Mozgó baktériumok Csavarodó (királis) nővekedés

Videók

Tekintsünk egy 1d (tér) + 1d (idő) növekedő felületet:

A növekedő felületet meg tudja állítani sok nagy negatív η -jú hely. Ezeket szokás blokkoló helyeknek nevezni.

Állítások:

- A blokkoló helyek összefüggő láncolatot alkotnak a térben 1 dimenziós minta két széle között.
- (2) Ezen a görbén nincsen túlnövés. Tehát (1) és (2) alapján a blokkoló helyek egy függvényt alkotnak.
- (3) A blokkoló helyek által alkotott függvény önaffin.

- (1) \forall mezőre 0 < p < 1 val.séggel tegyünk blokkoló helyet.
- (2) Induljunk el a minta egyik szélétől, blokkoló helyeken lépünk.
- (2) Léphetünk előre, fel, le, de vissza nem! → Irányított perkoláció!
- (3) Elérjük-e a minta másik szélét? → Létezik-e a blokkoló helyeknek irányított perkolációs klasztere?

Baktériumtelepek geometriája II.

- Revezetés
- Baktériumtelepe felszíne
- Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció
- Elágazó morfológia _{DLA}
- DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés
- Videók

- (1) ∀ mező p val.séggel blokkoló (lenti ábrán: szürke)
- (2) Induljunk el a minta egyik szélétől.
- (3) Blokkoló helyeken át mehetünk előre, fel és le. Vissza nem!
- (4) Elérjük-e a minta másik szélét?

Baktériumtelepek geometriája II.

- Bevezetés
- Baktériumtelepel felszíne
- Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció
- Instabilitás eredete
- Elágazó morfológia
- DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés
- Videók

- (1) ∀ mező p val.séggel blokkoló (lenti ábrán: szürke)
- (2) Induljunk el a minta egyik szélétől.
- (3) Blokkoló helyeken át mehetünk előre, fel és le. Vissza nem!
- (4) Elérjük-e a minta másik szélét?

Figure 4.15: Examples of directed percolation clusters leaving site A. Such clusters consist of filled neighbour sites and extend from left to right.

Baktériumtelepek geometriája II.

- Bevezetés
- Baktériumtelepe felszíne
- Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció
- Instabilitàs erec
- morfológ DLA
- DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés
- Videók

- (1) ∀ mező p val.séggel blokkoló (lenti ábrán: szürke)
- (2) Induljunk el a minta egyik szélétől.
- (3) Blokkoló helyeken át mehetünk előre, fel és le. Vissza nem!
- (4) Elérjük-e a minta másik szélét?

Figure 4.15: Examples of directed percolation clusters leaving site A. Such clusters consist of filled neighbour sites and extend from left to right.

→ A blokkoló helyek lánca egy irányított perkolációs klaszter!

Baktériumtelepek geometriája II.

- Bevezetés
- Baktériumtelepel felszíne
- Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció
- Elágazó morfológia DLA DLA növekedő baktérium telep
- Mozgó baktérium Csavarodó (királis növekedés
- Videók

- (1) ∀ mező p val.séggel blokkoló (lenti ábrán: szürke)
- (2) Induljunk el a minta egyik szélétől.
- (3) Blokkoló helyeken át mehetünk előre, fel és le. Vissza nem!
- (4) Elérjük-e a minta másik szélét?

Figure 4.15: Examples of directed percolation clusters leaving site A. Such clusters consist of filled neighbour sites and extend from left to right.

→ A blokkoló helyek lánca egy irányított perkolációs klaszter!

Megjegyzés.

A kritikus állapotban (a végtelen nagy klaszter megjelenésekor) az irányított perkolációs klaszternek két karakterisztikus hossza van:

- a kitüntetett iránnyal párhuzamosan: ξ_{\parallel}
- arra merőlegesen: ξ_⊥

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktériumc Csavarodó (királis; növekedés

Videók

A zaj D = 0-ról indított növekedése során akkor érjük el a kritikus $D = D^*$ értéket, amikor megjelenik a rendszer x irányú méretével egyező nagyságú (blokkoló helyekből álló) klaszter,

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedi

baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A zaj D = 0-ról indított növekedése során akkor érjük el a kritikus $D = D^*$ értéket, amikor megjelenik a rendszer x irányú méretével egyező nagyságú (blokkoló helyekből álló) klaszter,

tehát amikor a felülettel párhuzamos irányban a korrelációs hossz eléri a rendszer *L* méretét:

 $\xi_{\parallel} \approx L$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia _{DLA}

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A zaj D = 0-ról indított növekedése során akkor érjük el a kritikus $D = D^*$ értéket, amikor megjelenik a rendszer x irányú méretével egyező nagyságú (blokkoló helyekből álló) klaszter,

tehát amikor a felülettel párhuzamos irányban a korrelációs hossz eléri a rendszer *L* méretét:

 $\xi_{\parallel} \approx L$

A diszkrét modellben

• a D zaj amplitúdó helyett: blokkoló helyek p valószínűsége

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó norfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A zaj D = 0-ról indított növekedése során akkor érjük el a kritikus $D = D^*$ értéket, amikor megjelenik a rendszer x irányú méretével egyező nagyságú (blokkoló helyekből álló) klaszter,

tehát amikor a felülettel párhuzamos irányban a korrelációs hossz eléri a rendszer *L* méretét:

 $\xi_{\parallel} \approx L$

A diszkrét modellben

- a D zaj amplitúdó helyett: blokkoló helyek p valószínűsége
- a D* helyett pc kritikus betöltési valószínűség

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA pövekedő

baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A zaj D = 0-ról indított növekedése során akkor érjük el a kritikus $D = D^*$ értéket, amikor megjelenik a rendszer x irányú méretével egyező nagyságú (blokkoló helyekből álló) klaszter,

tehát amikor a felülettel párhuzamos irányban a korrelációs hossz eléri a rendszer *L* méretét:

 $\xi_{\parallel} \approx L$

A diszkrét modellben

- a D zaj amplitúdó helyett: blokkoló helyek p valószínűsége
- a D* helyett pc kritikus betöltési valószínűség

A pc kritikus pont közelében a karakterisztikus hosszak skálázása:

 $\xi_{\parallel} \sim |p - p_c|^{\nu_{\parallel}}$ és $\xi_{\perp} \sim |p - p_c|^{\nu_{\perp}}$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia _{DLA}

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A zaj D = 0-ról indított növekedése során akkor érjük el a kritikus $D = D^*$ értéket, amikor megjelenik a rendszer x irányú méretével egyező nagyságú (blokkoló helyekből álló) klaszter,

tehát amikor a felülettel párhuzamos irányban a korrelációs hossz eléri a rendszer *L* méretét:

 $\xi_{\parallel} \approx L$

A diszkrét modellben

- a D zaj amplitúdó helyett: blokkoló helyek p valószínűsége
- a D* helyett pc kritikus betöltési valószínűség

A pc kritikus pont közelében a karakterisztikus hosszak skálázása:

$$\begin{split} \xi_{\parallel} \sim |p - p_c|^{\nu_{\parallel}} & \text{és} \quad \xi_{\perp} \sim |p - p_c|^{\nu_{\perp}} \\ \text{Numerikus eredmény:} \quad \nu_{\parallel} = 1.733 \quad \text{és} \quad \nu_{\perp} = 1.097 \end{split}$$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium telepel

Mozgó baktériumo Csavarodó (királis növekedés

Videók

A zaj D = 0-ról indított növekedése során akkor érjük el a kritikus $D = D^*$ értéket, amikor megjelenik a rendszer x irányú méretével egyező nagyságú (blokkoló helyekből álló) klaszter,

tehát amikor a felülettel párhuzamos irányban a korrelációs hossz eléri a rendszer *L* méretét:

 $\xi_{\parallel}\approx L$

A diszkrét modellben

- a D zaj amplitúdó helyett: blokkoló helyek p valószínűsége
- a D* helyett pc kritikus betöltési valószínűség

A pc kritikus pont közelében a karakterisztikus hosszak skálázása:

 $\xi_{\parallel} \sim |p - p_c|^{\nu_{\parallel}}$ és $\xi_{\perp} \sim |p - p_c|^{\nu_{\perp}}$ Numerikus eredmény: $\nu_{\parallel} = 1.733$ és $\nu_{\perp} = 1.097$

A kritikus pontban a felület vastagsága $L^{H} \sim w = \xi_{\perp} \sim |p - p_{c}|^{\nu_{\perp}} \sim \xi_{\parallel}^{\nu_{\perp}/\nu_{\parallel}} \approx L^{\nu_{\perp}/\nu_{\parallel}}$

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktérium Csavarodó (királis

Videók

A zaj D = 0-ról indított növekedése során akkor érjük el a kritikus $D = D^*$ értéket, amikor megjelenik a rendszer x irányú méretével egyező nagyságú (blokkoló helyekből álló) klaszter,

tehát amikor a felülettel párhuzamos irányban a korrelációs hossz eléri a rendszer *L* méretét:

 $\xi_{\parallel}\approx L$

A diszkrét modellben

- a D zaj amplitúdó helyett: blokkoló helyek p valószínűsége
- a D* helyett pc kritikus betöltési valószínűség

A pc kritikus pont közelében a karakterisztikus hosszak skálázása:

 $\xi_{\parallel} \sim |p - p_c|^{\nu_{\parallel}}$ és $\xi_{\perp} \sim |p - p_c|^{\nu_{\perp}}$ Numerikus eredmény: $\nu_{\parallel} = 1.733$ és $\nu_{\perp} = 1.097$

A kritikus pontban a felület vastagsága $L^{H} \sim w = \xi_{\perp} \sim |p - p_{c}|^{\nu_{\perp}} \sim \xi_{\parallel}^{\nu_{\perp}/\nu_{\parallel}} \approx L^{\nu_{\perp}/\nu_{\parallel}}$

Tehát a felület durvaságát leíró kitevő: $H = \nu_{\perp}/\nu_{\parallel} = 0.633$
Irányított perkoláció Az önaffin felület H exponense

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepel felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepeke Mozgó baktériumo Csavarodó (királis)

Videók

Az irányított perkolációs modellből (diszkrét modell) numerikusan a felület durvaságát leíró kitevő: $H = \nu_{\perp}/\nu_{\parallel} = 0.633$

Irányított perkoláció Az önaffin felület H exponense

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepel Mozgó baktérium Csavarodó (királi

növekedé

Videók

Az irányított perkolációs modellből (diszkrét modell) numerikusan a felület durvaságát leíró kitevő: $H = \nu_{\perp}/\nu_{\parallel} = 0.633$

Közelebb van a mérési eredményekhez, mint amit akkor kapunk, ha a KPZ egyenletet időben és térben korrelálatlan zajjal számoljuk.

Irányított perkoláció Az önaffin felület H exponense

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepek Mozgó baktérium Csavarodó (királis

Videók

Az irányított perkolációs modellből (diszkrét modell) numerikusan a felület durvaságát leíró kitevő: $H = \nu_{\perp}/\nu_{\parallel} = 0.633$

Közelebb van a mérési eredményekhez, mint amit akkor kapunk, ha a KPZ egyenletet időben és térben korrelálatlan zajjal számoljuk.

A KPZ befagyott zajjal és az irányított perkolációs számolás ugyanazt az eredményt adja.

Instabilitás felületek növekedése során Mullins-Sekerka instabilitás

Baktériumtelepek geometriája II.

Instabilitás eredete

Mullins, Sekerka: Morphological Stability of a Particle Growing by Diffusion or Heat Flow, J. Appl. Phys. 34:323 (1963) doi 10.1063/1.1702607.

Instabilitás felületek növekedése során

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Nővekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Instabilitás eredete

Elágazó morfológia

DLA DLA nö

Mozgó baktériumol Csavarodó (királis) növekedés

Videók

Mullins, Sekerka: Morphological Stability of a Particle Growing by Diffusion or Heat Flow, J. Appl. Phys. 34:323 (1963) doi 10.1063/1.1702607.

Növekedő felületek durvulását okozó instabilitás:

FIGURE 9.4. The Mullins-Sekerka instability. In the left hand picture equipotential lines are shown. Because they are crowded above the bump, it gets sharper.

L. M. Sander: Introduction to nonlinear physics

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A növekedés sebességét a tápanyag diffúziója határozza meg

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület nodelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A növekedés sebességét a tápanyag diffúziója határozza meg

A diffundáló tápanyag felé növekszik a baktériumtelep

tápanyag

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A növekedés sebességét a tápanyag diffúziója határozza meg

A diffundáló tápanyag felé növekszik a baktériumtelep

Instabilitás: véletlenül vagy egy "tápanyag-csomó" miatt kicsit előrébb kerül a felület \rightarrow a telepnek ez a része a közelebb kerül több tápanyaghoz \rightarrow még gyorsabban szaporodik.

Baktériumtelepek geometriája II.

Bevezetés

- Baktériumtelepek felszíne
- Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

- DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés
- Videók

A felület kitüremkedésének növekedése:

- kell valamennyi szomszéd,
- ezért csak egy maximális görbületig növekszik, és
- utána beáll egy egyensúlyi alak.

Baktériumtelepek geometriája II.

Bevezetés

- Baktériumtelepek felszíne
- Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

- DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés
- Videók

A felület kitüremkedésének növekedése:

- kell valamennyi szomszéd,
- ezért csak egy maximális görbületig növekszik, és
- utána beáll egy egyensúlyi alak.

Felületre merőleges növekedés \Rightarrow csúcsokon gyorsabb növekedés.

Baktériumtelepek geometriája II.

Bevezetés

- Baktériumtelepek felszíne
- Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

- DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés
- Videók

A felület kitüremkedésének növekedése:

- kell valamennyi szomszéd,
- ezért csak egy maximális görbületig növekszik, és
- utána beáll egy egyensúlyi alak.

Felületre merőleges növekedés \Rightarrow csúcsokon gyorsabb növekedés.

Emiatt könnyen újabb perturbáció → oldalág, újabb elágazás

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A DLA modell (algoritmus) definíciója:

Baktériumtelepek geometriája II.

A DLA modell (algoritmus) definíciója:

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Kiindulás:

• mag: 1 részecske áll

Baktériumtelepek geometriája II.

A DLA modell (algoritmus) definíciója:

evezetés

- Baktériumtelepek felszíne
- Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj
- Irányított perkoláció Instabilitás eredete

Elágazó morfológia

DLA

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Kiindulás:

• mag: 1 részecske áll

Frissítés (időlépés):

- végtelen távolról véletlen bolyongó részecske indul
- amikor hozzáér a telephez, akkor ott megáll

Megjegyzés:

• a gyakorlatban elegendő véges távolságból indítani

Baktériumtelepek geometriája II.

A DLA modell (algoritmus) definíciója:

levezetés

- Baktériumtelepek felszíne
- Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj
- Irányított perkoláció Instabilitás eredete

Elágazó morfológia

DLA

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Kiindulás:

• mag: 1 részecske áll

Frissítés (időlépés):

- végtelen távolról véletlen bolyongó részecske indul
- amikor hozzáér a telephez, akkor ott megáll

Megjegyzés:

• a gyakorlatban elegendő véges távolságból indítani

Eredmény:

- fraktál klaszterek
- elágazó baktériumtelephez hasonló alak

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA

DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Példa (részecske szín: érkezés időpontja)

Baktériumtelepek geometriája II.

Bevezetés

- Baktériumtelepeł felszíne
- Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA

- DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés
- Videók

Példa (részecske szín: érkezés időpontja)

Baktériumtelepek geometriája II.

DLA növekedő baktérium telepekre

A DLA modell alkalmazása növekedő baktériumtelepre – nem mozognak

Baktériumtelepek geometriája II.

- DLA növekedő baktérium telepekre

A DLA modell alkalmazása növekedő baktériumtelepre – nem mozognak

- részecske bolyongása ~ tápanyag mozgása
- részecske odaragad a klaszterre ~ baktérium szaporodik

A DLA modell alkalmazása növekedő baktériumtelepre

Baktériumtelepek geometriája II.

DI A növekedő baktérium telepekre

A DLA modell alkalmazása növekedő baktériumtelepre – **nem** mozognak

- részecske bolyongása ~ tápanyag mozgása
- részecske odaragad a klaszterre ~ baktérium szaporodik

Egy erősen egyszerűsített modell:

- 1db bolyongó tápanyag molekula
- a molekula érkezésekor szaporodás: 1 új baktérium

Már ez is a megfigyelthez hasonló alakot állít elő (~ univerzalitás)

A DLA modell alkalmazása növekedő baktériumtelepre

Baktériumtelepek geometriája II.

DI A növekedő baktérium telepekre

A DLA modell alkalmazása növekedő baktériumtelepre – **nem** mozognak

- részecske bolyongása ~ tápanyag mozgása
- részecske odaragad a klaszterre ~ baktérium szaporodik

Egy erősen egyszerűsített modell:

- 1db bolyongó tápanyag molekula
- a molekula érkezésekor szaporodás: 1 új baktérium

Már ez is a megfigyelthez hasonló alakot állít elő (~ univerzalitás)

A modell finomítása:

- baktériumok (részecskék) között feltételezünk kölcsönhatást
- ∀ részecskéhez x_i hely és E_i sejtciklus állapot (energia)

Baktériumtelepek geometriája II.

DLA növekedő baktérium telepekre

A DLA modell alkalmazása növekedő baktériumtelepre:

Baktériumtelepek geometriája II.

DLA növekedő baktérium telepekre

A DLA modell alkalmazása növekedő baktériumtelepre:

- baktériumok (részecskék) között feltételezünk kölcsönhatást
- \forall részecskéhez x_i hely és E_i sejtciklus állapot (energia)

Baktériumtelepek geometriája II.

- Bevezetés
- Baktériumtelepek felszíne
- Növekedő felület modelljei Eden modell
- KPZ modell
- Befagyott zaj
- Irányított perkoláció
- Instabilitás eredet

Elágazó morfológia

DLA növekedő baktérium telepekre

Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A DLA modell alkalmazása növekedő baktériumtelepre:

- baktériumok (részecskék) között feltételezünk kölcsönhatást
- ∀ részecskéhez x_i hely és E_i sejtciklus állapot (energia)
- *E_i* < 0: spóra vagy osztódás utáni állapot ha nincs táplálék, akkor ebben az állapotban marad
- *E_i* > 1: van elég energiája az osztódáshoz az osztódási után mindkét sejtnek 0 < *E_i* < 1 energiája lesz

A DLA modell alkalmazása növekedő baktériumtelepre

Baktériumtelepek geometriája II.

- DI A növekedő baktérium telepekre

A DLA modell alkalmazása növekedő baktériumtelepre:

- baktériumok (részecskék) között feltételezünk kölcsönhatást
- ∀ részecskéhez x_i hely és E_i sejtciklus állapot (energia)
- E_i < 0: spóra vagy osztódás utáni állapot ha nincs táplálék, akkor ebben az állapotban marad
- E_i > 1: van elég energiája az osztódáshoz az osztódási után mindkét sejtnek $0 < E_i < 1$ energiája lesz

Jelölések:

- ω_i: táplálék felvételi ráta (ebből nyer energiát)
- κ: táplálék → energia átalakítási szorzó
- ε: "alapműködéshez" szükséges energia időegység alatt

A DLA modell alkalmazása növekedő baktériumtelepre

Baktériumtelepek geometriája II.

- DI A növekedő baktérium telepekre

A DLA modell alkalmazása növekedő baktériumtelepre:

- baktériumok (részecskék) között feltételezünk kölcsönhatást
- ∀ részecskéhez x_i hely és E_i sejtciklus állapot (energia)
- E_i < 0: spóra vagy osztódás utáni állapot ha nincs táplálék, akkor ebben az állapotban marad
- E_i > 1: van elég energiája az osztódáshoz az osztódási után mindkét sejtnek $0 < E_i < 1$ energiája lesz

Jelölések:

- ω_i: táplálék felvételi ráta (ebből nyer energiát)
- κ: táplálék → energia átalakítási szorzó
- ε: "alapműködéshez" szükséges energia időegység alatt

Ezekkel kifejezve az *i*. baktérium energiája:

$$\frac{dE_i}{dt} = \underbrace{\kappa \cdot \omega_i}_{\text{felveszi}} - \underbrace{\epsilon}_{\text{alap}'' \text{fogyasztas''}}$$

Baktériumtelepek geometriája II.

DLA növekedő baktérium telepekre

Mekkora maximális rátával növekszik a teljes sejttömeg?

Baktériumtelepek geometriája II.

DI A növekedő baktérium telepekre

Mekkora maximális rátával növekszik a teljes sejttömeg?

A növekedést korlátozza:

- ω_{max}: tápanyag felvétel maximális rátája
- κ: a tápanyagot felhasználó enzimatikus reakció hatékonysága
- c(x_i): jelenlévő tápanyag mennyisége (helyi koncentrációja)
- ω₀: tápanyag diffúziós rátája környezetből a baktériumhoz
- $\rho(x_i)$: lokális baktérium sűrűség

A helyi környezetből max. $\omega_0 c$ tömeg rátával jut be a tápanyag.

A DLA modell alkalmazása növekedő baktériumtelepre

Baktériumtelepek geometriája II.

DI A növekedő baktérium telepekre

Mekkora maximális rátával növekszik a teljes sejttömeg?

A növekedést korlátozza:

- ω_{max}: tápanyag felvétel maximális rátája
- κ: a tápanyagot felhasználó enzimatikus reakció hatékonysága
- c(x_i): jelenlévő tápanyag mennyisége (helyi koncentrációja)
- ω₀: tápanyag diffúziós rátája környezetből a baktériumhoz
- $\rho(x_i)$: lokális baktérium sűrűség

A helyi környezetből max. $\omega_0 c$ tömeg rátával jut be a tápanyag.

Ezek alapján a sejttömeg növekedési ráta, $\rho(x_i)\omega_i$:

 $\rho(\mathbf{x}_i) \,\omega_i = \min[\omega_{\max} \rho(\mathbf{x}_i), \omega_0 \mathbf{c}(\mathbf{x}_i)] \Rightarrow \omega_i = \min[\omega_{\max}, \omega_0 \mathbf{c}(\mathbf{x}_i) / \rho(\mathbf{x}_i)]$

A DLA modell alkalmazása növekedő baktériumtelepre

Baktériumtelepek geometriája II.

DI A növekedő baktérium telepekre

Mekkora maximális rátával növekszik a teljes sejttömeg?

A növekedést korlátozza:

- ω_{max}: tápanyag felvétel maximális rátája
- κ: a tápanyagot felhasználó enzimatikus reakció hatékonysága
- c(x_i): jelenlévő tápanyag mennyisége (helyi koncentrációja)
- ω₀: tápanyag diffúziós rátája környezetből a baktériumhoz
- $\rho(x_i)$: lokális baktérium sűrűség

A helyi környezetből max. $\omega_0 c$ tömeg rátával jut be a tápanyag.

Ezek alapján a sejttömeg növekedési ráta, $\rho(x_i)\omega_i$:

 $\rho(\mathbf{x}_i)\,\omega_i = \min[\omega_{\max}\rho(\mathbf{x}_i),\omega_0\mathbf{C}(\mathbf{x}_i)] \implies \omega_i = \min[\omega_{\max},\omega_0\mathbf{C}(\mathbf{x}_i)/\rho(\mathbf{x}_i)]$

A tápanyagot (fel)használják a baktériumok. Hogyan változik a tápanyag c(x, t) mennyisége?

$$\frac{\partial \boldsymbol{c}}{\partial t} = \underbrace{\boldsymbol{D}_0 \cdot \nabla^2 \boldsymbol{c}}_{\text{diffuzio}} - \underbrace{\sum_i \omega_i \delta(\boldsymbol{x} - \boldsymbol{x}_i)}_{\text{nyelok}}$$

Összefoglalás

Baktériumtelepek geometriája II.

DLA növekedő baktérium telepekre

Baktériumtelepek geometriája II.

Összefoglalás

DLA növekedő baktérium telepekre

$\frac{dE_i}{dt} = \kappa \cdot \omega_i - \epsilon$ (1) A sejt energiája:

 \rightarrow osztódás $E_i > 1$ -nél

A DLA modell alkalmazása növekedő baktériumtelepre

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepel felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA növekedő baktérium telepekre

Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Összefoglalás

(1) A sejt energiája: $\frac{dE_i}{dt} = \kappa \cdot \omega_i - \epsilon$

→ osztódás *E_i* > 1-nél

(2) Sejttömeg növekedése: $\rho(x_i)\omega_i = \min[\omega_{\max}\rho(x_i), \omega_0 c(x_i)]$

A DLA modell alkalmazása növekedő baktériumtelepre

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA növekedő baktérium telepekre Mozoó baktériumok

Csavarodó (királis növekedés

Videók

Összefoglalás

(1) A sejt energiája: $\frac{dE_i}{dt} = \kappa \cdot \omega_i - \epsilon$

→ osztódás *E*_i > 1-nél

- (2) Sejttömeg növekedése: $\rho(x_i)\omega_i = \min[\omega_{\max}\rho(x_i), \omega_0 c(x_i)]$
- (3) Tápanyag c(x, t) mennyiségének változása:
 - első tag: a tápanyag diffúziója
 - második tag (nyelők): a telep az x_i pontban ω_i rátával fogyasztja a tápanyagot

A DLA modell alkalmazása növekedő baktériumtelepre

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA növekedő baktérium telepekre

Csavarodó (királis) növekedés

Videók

Összefoglalás

(1) A sejt energiája: $\frac{dE_i}{dt} = \kappa \cdot \omega_i - \epsilon$

→ osztódás *E_i* > 1-nél

- (2) Sejttömeg növekedése: $\rho(x_i)\omega_i = \min[\omega_{\max}\rho(x_i), \omega_0 c(x_i)]$
- (3) Tápanyag c(x, t) mennyiségének változása:
 - első tag: a tápanyag diffúziója
 - második tag (nyelők): a telep az x_i pontban ω_i rátával fogyasztja a tápanyagot

$$\frac{\partial \boldsymbol{c}}{\partial t} = \boldsymbol{D}_0 \cdot \nabla^2 \boldsymbol{c} - \sum_i \omega_i \delta(\boldsymbol{x} - \boldsymbol{x}_i)$$

A DLA modell alkalmazása növekedő baktériumtelepre

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA növekedő baktérium telepekre

Csavarodó (királis) növekedés

Videók

Összefoglalás

(1) A sejt energiája: $\frac{dE_i}{dt} = \kappa \cdot \omega_i - \epsilon$

 \rightarrow osztódás $E_i > 1$ -nél

- (2) Sejttömeg növekedése: $\rho(x_i)\omega_i = \min[\omega_{\max}\rho(x_i), \omega_0 c(x_i)]$
- (3) Tápanyag c(x, t) mennyiségének változása:
 - első tag: a tápanyag diffúziója
 - második tag (nyelők): a telep az x_i pontban ω_i rátával fogyasztja a tápanyagot

$$\frac{\partial \boldsymbol{c}}{\partial t} = \boldsymbol{D}_0 \cdot \nabla^2 \boldsymbol{c} - \sum_i \omega_i \delta(\boldsymbol{x} - \boldsymbol{x}_i)$$

Eredmény: Az ω_{max} = 1 választással a numerikus eredmény jól egyezik a kísérletekkel, hasonló alakzatokat ad.
Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület nodelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA növekedő baktérium telepe

Mozgó baktériumok

Csavarodó (királis) növekedés

Videók

Maradnak a szabályok (egyenletek) az előző – mozgás nélküli – DLA típusú modellből:

Baktériumtelepek geometriája II.

Bevezetés

- Baktériumtelepeł felszíne
- Növekedő felület modelljei
- Eden model
- RPZ modell
- Iránvított perkoláció
- Instabilitás eredete

Elágazó morfológia

DLA DLA növekedő

Mozgó baktériumok

Csavarodó (királis) növekedés

Videók

Maradnak a szabályok (egyenletek)

az előző – mozgás nélküli – DLA típusú modellből:

- (1) Sejt energiája és osztódás
- (2) Sejttömeg növekedése
- (3) Tápanyag mennyiségének változása

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

- Növekedő felület modelljei Eden modell
- KPZ modell
- Befagyott zaj
- Iranyitott perkolacio

Elágazó morfológia

DLA DLA növekedő

Mozgó baktériumok

Csavarodó (királis) növekedés

Videók

Maradnak a szabályok (egyenletek)

az előző – mozgás nélküli – DLA típusú modellből:

- (1) Sejt energiája és osztódás
- (2) Sejttömeg növekedése
- (3) Tápanyag mennyiségének változása

Mi történik mozgás esetén? → További szabályok

- (4) Ha a baktériumok nem mozognak, akkor a felület recés (önaffin) lesz. Ha mozognak, akkor a felület simul.
 - Tegyük fel, h. Brown-mozgást végeznek egy határon belül:

 $dx_i/dt = v_0 \vec{e}$, ahol \vec{e} véletlen irányú egységvektor

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

- Növekedő felület modelljei Eden modell
- KPZ modell
- Betagyott zaj Irányított perkoláció
- Instabilitás eredete

Elágazó morfológia

DLA növekedő baktérium telepek

Mozgó baktériumok

Csavarodó (királis) növekedés

Videók

Maradnak a szabályok (egyenletek) az előző – mozgás nélküli – DLA típusú modellből:

- (1) Sejt energiája és osztódás
- (2) Sejttömeg növekedése
- (3) Tápanyag mennyiségének változása

Mi történik mozgás esetén? → További szabályok

- (4) Ha a baktériumok nem mozognak, akkor a felület recés (önaffin) lesz. Ha mozognak, akkor a felület simul.
 - Tegyük fel, h. Brown-mozgást végeznek egy határon belül:
 - $dx_i/dt = v_0 \vec{e}$, ahol \vec{e} véletlen irányú egységvektor
- (5) A növekedő telep a határvonala előtti területen nyálkásítja, mozgásra alkalmassá teszi a táptalaj felszínét.
 - Ha egy a mozgó sejtek a határvonal egy szakaszának N_c-nél többször ütköznek, akkor ott elfoglalják a szomszédos mezőt, tehát a határ előre mozdul.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület nodelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA növekedő baktérium telep

Mozgó baktériumok

Csavarodó (királis) növekedés

Videók

Példa szimulációs eredmény – mozgó baktérium telepek

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne N

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA DLA növeked

Mozgó baktériumok

Csavarodó (királis) növekedés

Videók

Példa szimulációs eredmény – mozgó baktérium telepek

Figure 4.29: Morphology diagram generated by the model with motile bacteria as the function of the initial nutrient concentration and agar gel "hardness", i.e. the threshold value for the colony borderline displacement. (After [?].)

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Novekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA növekedő baktérium telepe

Mozgó baktériumok

Csavarodó (királis) növekedés

Videók

Az előző oldalon mutatott szimulációs eredmények jól közelítik az agar és a tápanyag koncentráció függvényében kísérletileg kapható alakokat.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia

DLA DLA növekedő baktérium telene

Mozgó baktériumok

Csavarodó (királis) növekedés

Videók

Az előző oldalon mutatott szimulációs eredmények jól közelítik az agar és a tápanyag koncentráció függvényében kísérletileg kapható alakokat.

Egy fontos hiányosság: nem írják le a kísérletekben látható fraktál (dendrit-szerű) → nem fraktál ("vonalak") átmenetet.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Nővekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA DLA növek

baktérium telepekn

Mozgó baktériumok

Csavarodó (királis) növekedés

Videók

Az előző oldalon mutatott szimulációs eredmények jól közelítik az agar és a tápanyag koncentráció függvényében kísérletileg kapható alakokat.

Egy fontos hiányosság: nem írják le a kísérletekben látható fraktál (dendrit-szerű) → nem fraktál ("vonalak") átmenetet.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia

DLA DLA növekedő baktérium tele

Mozgó baktériumok

Csavarodó (királis) növekedés

Videók

Az előző oldalon mutatott szimulációs eredmények jól közelítik az agar és a tápanyag koncentráció függvényében kísérletileg kapható alakokat.

Egy fontos hiányosság: nem írják le a kísérletekben látható fraktál (dendrit-szerű) → nem fraktál ("vonalak") átmenetet.

Leírható a baktériumok közötti taszító hatással. A taszítás nyomán egymás kikerülése kemotaxissal, azaz: irányított Brown mozgás. Szimulációs eredmény példa: (a)

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepeł felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepekre Mozgó baktériumoł Csavarodó (királia)

növekedés

Videók

Erős sejt-sejt kölcsönhatások esetén lehetséges átmenet

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis)

növekedés

Videók

Erős sejt-sejt kölcsönhatások esetén lehetséges átmenet

Normál helyett → királis telep: minden kar azonos irányban hajlik

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

Erős sejt-sejt kölcsönhatások esetén lehetséges átmenet

Normál helyett → királis telep: minden kar azonos irányban hajlik

A kettő ugyanaz a fajta baktérium, a különbség csak annyi, hogy más a hosszuk.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) nővekedés

Videók

Erős sejt-sejt kölcsönhatások esetén lehetséges átmenet

Normál helyett → királis telep: minden kar azonos irányban hajlik

A kettő ugyanaz a fajta baktérium, a különbség csak annyi, hogy más a hosszuk.

Mindegyik baktérium

- a propellert forgatva megy előre (szimmetriasértés)
- és a csúcsnál akar előre menni, és lassan fordul.

Mivel a propeller mindig azonos irányban forog (megálláskor és induláskor is), ezért a bacik azonos irányban próbálnak fordulni.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület nodelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növekedő baktérium telepel Mozgó baktérium Csavarodó (királi:

Videók

A tanult egyenletek segítségével hasonlítsuk össze a jelenségeket befolyásoló fizikai hatásokat!

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepe Mozgó baktériun

növekedés

Videók

A tanult egyenletek segítségével hasonlítsuk össze a jelenségeket befolyásoló fizikai hatásokat!

Eden Growth Model, 2000 time steps https://youtu.be/hluvLTwMFOs

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció

Elágazó morfológia DLA DLA növeked

baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A tanult egyenletek segítségével hasonlítsuk össze a jelenségeket befolyásoló fizikai hatásokat!

Eden Growth Model, 2000 time steps https://youtu.be/hluvLTwMFOs

Surface growth model, weak diffusion https://youtu.be/sQQyvIdW2sc Esés: függőlegesen. Ragadás: alatta v. mellette lévőhöz. Oldalirányú mozgás a felületen (diffúzió): kicsi.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás prodete

Elágazó morfológia DLA DLA növekedő baktérium telepekn Mozgó baktériumol Csavarodó (királis) növekedés

Videók

A tanult egyenletek segítségével hasonlítsuk össze a jelenségeket befolyásoló fizikai hatásokat!

Eden Growth Model, 2000 time steps https://youtu.be/hluvLTwMFOs

Surface growth model, weak diffusion https://youtu.be/sQQyvIdW2sc Esés: függőlegesen. Ragadás: alatta v. mellette lévőhöz. Oldalirányú mozgás a felületen (diffúzió): kicsi.

Surface growth model, strong diffusion

https://youtu.be/xZfFwZYZOJ0 Esés: függőlegesen. Ragadás: alatta v. mellette lévőhöz. Oldalirányú mozgás felületen (diffúzió): **nagy**.

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A tanult egyenletek segítségével hasonlítsuk össze a jelenségeket befolyásoló fizikai hatásokat!

Eden Growth Model, 2000 time steps https://youtu.be/hluvLTwMFOs

Surface growth model, weak diffusion https://youtu.be/sQQyvIdW2sc Esés: függőlegesen. Ragadás: alatta v. mellette lévőhöz. Oldalirányú mozgás a felületen (diffúzió): kicsi.

Surface growth model, strong diffusion

https://youtu.be/xZfFwZYZOJ0 Esés: függőlegesen. Ragadás: alatta v. mellette lévőhöz. Oldalirányú mozgás felületen (diffúzió): **nagy**.

Diffusion-Limited Aggregation

2d: https://youtu.be/lzUZjfHNir8
3d: https://youtu.be/h301LGe-dBw

Baktériumtelepek geometriája II.

Bevezetés

Baktériumtelepek felszíne

Növekedő felület modelljei Eden modell KPZ modell Befagyott zaj Irányított perkoláció Instabilitás eredete

Elágazó morfológia DLA DLA növekedő baktérium telepekre Mozgó baktériumok Csavarodó (királis) növekedés

Videók

A tanult egyenletek segítségével hasonlítsuk össze a jelenségeket befolyásoló fizikai hatásokat!

Eden Growth Model, 2000 time steps https://youtu.be/hluvLTwMFOs

Surface growth model, weak diffusion https://youtu.be/sQQyvIdW2sc Esés: függőlegesen. Ragadás: alatta v. mellette lévőhöz. Oldalirányú mozgás a felületen (diffúzió): kicsi.

Surface growth model, strong diffusion

https://youtu.be/xZfFwZYZOJ0 Esés: függőlegesen. Ragadás: alatta v. mellette lévőhöz. Oldalirányú mozgás felületen (diffúzió): **nagy**.

Diffusion-Limited Aggregation

2d: https://youtu.be/1zUZjfHNir8
3d: https://youtu.be/h301LGe-dBw

Baktériumtelep körkörös mozgása

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Szinkronizáció a biológiában:

Folytonos modellek

Integrál és tüzel modellek

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfűggő kb

Langevin egyenlet é: Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Sok, periodikusan változó egység (spontán) összehangolódása

Szinkronizáció a biológiában

Bevezetés

Sok, periodikusan változó egység (spontán) összehangolódása

Példák:

• idegsejtek tüzelése

https://youtu.be/watch?v=t3TaMU_qXMc

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Szinkronizáció a biológiában

Revezetés

Sok, periodikusan változó egység (spontán) összehangolódása

Példák:

• idegsejtek tüzelése

https://youtu.be/watch?v=t3TaMU_qXMc

szentjánosbogarak villogása

https://youtu.be/watch?v=sROKYelaWbo

integrál és tü: modellek Egy részecske dinamikája

definíciója Két kölcsönható oszcillátor

Szinkronizáció a biológiában

Revezetés

Sok, periodikusan változó egység (spontán) összehangolódása

- idegsejtek tüzelése https://youtu.be/watch?v=t3TaMU_qXMc
- szentjánosbogarak villogása https://youtu.be/watch?v=sROKYelaWbo
- a szinuszcsomóban található szívizomsejtek összehúzódása
 → szívritmus

Szinkronizáció a biológiában

Revezetés

Sok, periodikusan változó egység (spontán) összehangolódása

- idegsejtek tüzelése https://youtu.be/watch?v=t3TaMU_qXMc
- szentjánosbogarak villogása https://youtu.be/watch?v=sROKYelaWbo
- a szinuszcsomóban található szívizomsejtek összehúzódása
 → szívritmus
- tücskök összehangolt ciripelése

Szinkronizáció a biológiában

Revezetés

Sok, periodikusan változó egység (spontán) összehangolódása

- idegsejtek tüzelése https://youtu.be/watch?v=t3TaMU_qXMc
- szentjánosbogarak villogása https://youtu.be/watch?v=sROKYelaWbo
- a szinuszcsomóban található szívizomsejtek összehúzódása
 → szívritmus
- tücskök összehangolt ciripelése
- kabócák szaporodási ciklusa

Szinkronizáció a biológiában

Revezetés

Sok, periodikusan változó egység (spontán) összehangolódása

- idegsejtek tüzelése https://youtu.be/watch?v=t3TaMU_qXMc
- szentjánosbogarak villogása https://youtu.be/watch?v=sROKYelaWbo
- a szinuszcsomóban található szívizomsejtek összehúzódása
 → szívritmus
- tücskök összehangolt ciripelése
- kabócák szaporodási ciklusa
- emberi fiziológia: lépés, légzés

Szinkronizáció a biológiában

Revezetés

Sok, periodikusan változó egység (spontán) összehangolódása

- idegsejtek tüzelése https://youtu.be/watch?v=t3TaMU_qXMc
- szentjánosbogarak villogása https://youtu.be/watch?v=sROKYelaWbo
- a szinuszcsomóban található szívizomsejtek összehúzódása
 → szívritmus
- tücskök összehangolt ciripelése
- kabócák szaporodási ciklusa
- emberi fiziológia: lépés, légzés
- vastaps

Szinkronizáció a biológiában

Revezetés

Sok, periodikusan változó egység (spontán) összehangolódása

Példák:

- idegsejtek tüzelése https://youtu.be/watch?v=t3TaMU_qXMc
- szentjánosbogarak villogása https://youtu.be/watch?v=sROKYelaWbo
- a szinuszcsomóban található szívizomsejtek összehúzódása
 → szívritmus
- tücskök összehangolt ciripelése
- kabócák szaporodási ciklusa
- emberi fiziológia: lépés, légzés
- vastaps

Közös: oszcillátorok csatolódnak nemlineáris kölcsönhatással

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá: Csatolt oszcillátorok, távolsádfüddő kh.

Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció Sok, periodikusan változó egység (spontán) összehangolódása Közös: oszcillátorok csatolódnak nemlineáris kölcsönhatással

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció Sok, periodikusan változó egység (spontán) összehangolódása Közös: oszcillátorok csatolódnak nemlineáris kölcsönhatással Kétféle jel fordul elő (ábrán mindkét típusra egy példa):

1, rövid impulzusok (delta-szerű "tüzelés")

Idegejtek néhány tüzelési típusa (genesis-sim.org)

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció Sok, periodikusan változó egység (spontán) összehangolódása Közös: oszcillátorok csatolódnak nemlineáris kölcsönhatással Kétféle jel fordul elő (ábrán mindkét típusra egy példa):

1, rövid impulzusok (delta-szerű "tüzelés")

Idegejtek néhány tüzelési típusa (genesis-sim.org)

2, folytonos hullámalak

Szinuszcsomó és AV csomó akciós potenciálja

(tankonyvtar.hu)

Kölcsönható oszcillátorok

jelölések, egy oszcillátor

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Kölcsönható részecskék az idő és a részecskék állapota is folytonos

Kölcsönható oszcillátorok

jelölések, egy oszcillátor

Szinkronizáció a biológiában

Kölcsönható oszcillátorok

Kölcsönható részecskék az idő és a részecskék állapota is folytonos

- φ_i: az i. oszcilláló részecske fázisa (a ciklusában "hol tart")
- t: idő
- T_i: az i. részecske egy oszillációs periodusának ideje
- $\nu_i = 1/T_i$: frekvencia
- $\omega = 2\pi/T_i$: körfrekvencia
- sajátfrekvencia: energia közlés után a magára hagyott rendszer ilyen frekvenciájú rezgést végez (egy rendszernek lehet több sajátfrekvenciája)

Kölcsönható oszcillátorok jelölések, egy oszcillátor

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá: Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Kölcsönható részecskék az idő és a részecskék állapota is folytonos

- φ_i: az *i*. oszcilláló részecske fázisa (a ciklusában "hol tart")
- *t*: idő
- T_i: az i. részecske egy oszillációs periodusának ideje
- $\nu_i = 1/T_i$: frekvencia
- $\omega = 2\pi / T_i$: körfrekvencia
- sajátfrekvencia: energia közlés után a magára hagyott rendszer ilyen frekvenciájú rezgést végez (egy rendszernek lehet több sajátfrekvenciája)

Egyetlen oszcillátor esetén:

$$\frac{d\phi_i}{dt} = \omega$$
több oszcillátor, csatolási tag a Kuramoto modell átlagtér változatában

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Egyetlen oszcillátor esetén: $\frac{d\phi_i}{dt} = \omega$

több oszcillátor, csatolási tag a Kuramoto modell átlagtér változatában

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyeniet e Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció Egyetlen oszcillátor esetén: $\frac{d\phi_i}{dt} = \omega$

N darab, páronként kölcsönható oszcillátor:

több oszcillátor, csatolási tag a Kuramoto modell átlagtér változatában

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá: Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet és

Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Egyetlen oszcillátor esetén: $\frac{d\phi_i}{dt} = \omega$

N darab, páronként kölcsönható oszcillátor:

- átlagtér közelítés: bármelyik pár azonos módon hat kölcsön
- $\Gamma_{i,j}(\Delta \phi)$: csatolás, fáziskülönbségtől függ, 2π -vel periodikus

több oszcillátor, csatolási tag a Kuramoto modell átlagtér változatában

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció Egyetlen oszcillátor esetén: $\frac{d\phi_i}{dt} = \omega$

N darab, páronként kölcsönható oszcillátor:

- átlagtér közelítés: bármelyik pár azonos módon hat kölcsön
- $\Gamma_{i,j}(\Delta \phi)$: csatolás, fáziskülönbségtől függ, 2π -vel periodikus

Tehát az *N* darab oszcillátor esetén (sajátfrekvencia + kölcsönhatás):

$$\frac{d\phi_i}{dt} = \omega + \sum_{j=0}^{N-1} \Gamma_{i,j}(\phi_j - \phi_i) \qquad (i = 0, 1, \dots, N-1)$$

több oszcillátor, csatolási tag a Kuramoto modell átlagtér változatában

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció N darab, páronként kölcsönható oszcillátor:

Egyetlen oszcillátor esetén: $\frac{d\phi_i}{dt} = \omega$

• átlagtér közelítés: bármelyik pár azonos módon hat kölcsön

• $\Gamma_{i,j}(\Delta \phi)$: csatolás, fáziskülönbségtől függ, 2π -vel periodikus

Tehát az *N* darab oszcillátor esetén (sajátfrekvencia + kölcsönhatás):

$$\frac{d\phi_i}{dt} = \omega + \sum_{j=0}^{N-1} \Gamma_{i,j}(\phi_j - \phi_i) \qquad (i = 0, 1, \dots, N-1)$$

A Kuramoto-modell átlagtér változatában: $\Gamma_{i,j}(\Delta \phi) = \frac{K}{N} \sin(\Delta \phi)$

több oszcillátor, csatolási tag a Kuramoto modell átlagtér változatában

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció Egyetlen oszcillátor esetén: $\frac{d\phi_i}{dt} = \omega$

N darab, páronként kölcsönható oszcillátor:

- átlagtér közelítés: bármelyik pár azonos módon hat kölcsön
- $\Gamma_{i,j}(\Delta \phi)$: csatolás, fáziskülönbségtől függ, 2π -vel periodikus

Tehát az *N* darab oszcillátor esetén (sajátfrekvencia + kölcsönhatás):

$$\frac{d\phi_i}{dt} = \omega + \sum_{j=0}^{N-1} \Gamma_{i,j}(\phi_j - \phi_i) \qquad (i = 0, 1, \dots, N-1)$$

A Kuramoto-modell átlagtér változatában: $\Gamma_{i,j}(\Delta \phi) = \frac{K}{N} \sin(\Delta \phi)$ ez a csatolás

- K > 0 esetén a fáziskülönbséget minimalizálja
- kis Δφ-nél lineárisan nő és később telítésbe megy
- ha $\Delta \phi$ átlépi a $\pi/2$ -t, akkor már csökken (de még pozitív)
- utána a $\pi < \Lambda \phi < 2\pi$ tartományon negatív

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorol távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

A Kuramoto-modellben (átlagtér eset) az i. részecske fázisa:

$$\frac{d\phi_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=0}^{N-1} \sin(\phi_j - \phi_i) \qquad (i = 0, 1, \dots, N-1)$$

Acebron et.al. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77:137-185 (2005)

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció

A Kuramoto-modellben (átlagtér eset) az i. részecske fázisa:

$$\frac{d\phi_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=0}^{N-1} \sin(\phi_j - \phi_i) \qquad (i = 0, 1, \dots, N-1)$$

Acebron et.al. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77:137–185 (2005)

Rendeződnek-e ezek a kölcsönható récsecskék?

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy.

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

A Kuramoto-modellben (átlagtér eset) az i. részecske fázisa:

$$\frac{d\phi_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=0}^{N-1} \sin(\phi_j - \phi_i) \qquad (i = 0, 1, \dots, N-1)$$

Acebron et.al. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77:137–185 (2005)

Rendeződnek-e ezek a kölcsönható récsecskék?

Hogyan tudjuk mérni a rendeződést?

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet é: Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció A Kuramoto-modellben (átlagtér eset) az i. részecske fázisa:

$$\frac{d\phi_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=0}^{N-1} \sin(\phi_j - \phi_i) \qquad (i = 0, 1, \dots, N-1)$$

Acebron et.al. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77:137-185 (2005)

Rendeződnek-e ezek a kölcsönható récsecskék?

Hogyan tudjuk mérni a rendeződést?

Rendparaméterrel → Defináljuk a rendparamétert!

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció A Kuramoto-modellben (átlagtér eset) az i. részecske fázisa:

$$\frac{d\phi_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=0}^{N-1} \sin(\phi_j - \phi_i) \qquad (i = 0, 1, \dots, N-1)$$

Acebron et.al. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77:137-185 (2005)

Rendeződnek-e ezek a kölcsönható récsecskék?

Hogyan tudjuk mérni a rendeződést?

Rendparaméterrel -> Defináljuk a rendparamétert!

Tehát a kérdés: Hogyan változik a rendparaméter?

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció A Kuramoto-modellben (átlagtér eset) az i. részecske fázisa:

$$\frac{d\phi_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=0}^{N-1} \sin(\phi_j - \phi_i) \qquad (i = 0, 1, \dots, N-1)$$

Acebron et.al. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77:137–185 (2005)

Rendeződnek-e ezek a kölcsönható récsecskék? Hogyan tudjuk mérni a rendeződést?

Rendparaméterrel -> Defináljuk a rendparamétert!

Tehát a kérdés: Hogyan változik a rendparaméter?

A rendparaméter definíciójához tegyük fel, hogy

- a sajátfrekvenciák egy Gauss szerinti $g(\omega)$ eloszlásúak
- a $g(\omega)$ sűrűségfüggvény várható értéke ω_0 és szórása σ

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatott oszcillatorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció A Kuramoto-modellben (átlagtér eset) az i. részecske fázisa:

$$\frac{d\phi_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=0}^{N-1} \sin(\phi_j - \phi_i) \qquad (i = 0, 1, \dots, N-1)$$

Acebron et.al. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77:137–185 (2005)

Rendeződnek-e ezek a kölcsönható récsecskék? Hogyan tudjuk mérni a rendeződést?

Rendparaméterrel -> Defináljuk a rendparamétert!

Tehát a kérdés: Hogyan változik a rendparaméter?

A rendparaméter definíciójához tegyük fel, hogy

- a sajátfrekvenciák egy Gauss szerinti $g(\omega)$ eloszlásúak
- a $g(\omega)$ sűrűségfüggvény várható értéke ω_0 és szórása σ

$$g(\omega) = \frac{1}{N} \sum_{i=0}^{N-1} \delta(\omega_i - \omega) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(\omega - \omega_0)^2}{2\sigma^2}\right)$$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatott oszcillatorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció A Kuramoto-modellben (átlagtér eset) az i. részecske fázisa:

$$\frac{d\phi_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=0}^{N-1} \sin(\phi_j - \phi_i) \qquad (i = 0, 1, \dots, N-1)$$

Acebron et.al. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77:137–185 (2005)

Rendeződnek-e ezek a kölcsönható récsecskék? Hogyan tudjuk mérni a rendeződést?

Rendparaméterrel -> Defináljuk a rendparamétert!

Tehát a kérdés: Hogyan változik a rendparaméter?

A rendparaméter definíciójához tegyük fel, hogy

- a sajátfrekvenciák egy Gauss szerinti $g(\omega)$ eloszlásúak
- a $g(\omega)$ sűrűségfüggvény várható értéke ω_0 és szórása σ

$$g(\omega) = \frac{1}{N} \sum_{i=0}^{N-1} \delta(\omega_i - \omega) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(\omega - \omega_0)^2}{2\sigma^2}\right)$$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Megjegyzés: ha

• a $g(\omega)$ eloszlás végtelen keskeny, azaz $\sigma = 0$ miatt $g(\omega) = \delta(\omega - \omega_0)$

• és az oszcillátorok **nem átlagtérben, hanem 2d rácson** vannak akkor

Ā

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorol távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció Megjegyzés: ha

- a $g(\omega)$ eloszlás végtelen keskeny, azaz $\sigma = 0$ miatt $g(\omega) = \delta(\omega \omega_0)$
- és az oszcillátorok **nem átlagtérben, hanem 2d rácson** vannak akkor

a 2d ferromágneses XY-modellt kapjuk:

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorol távolságfüggő kh.

Langevin egyenlet (Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció Térjünk vissza a Kuramoto-modell átlagtér esetéhez.

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorol távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció Térjünk vissza a Kuramoto-modell átlagtér esetéhez.

A rendparaméter definíciója érdekében **transzformáljuk** ki a rendszerből az oszcillátorok "átlagos" időfejlődését:

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorol távolságfüggő kh.

Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüzel modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció Térjünk vissza a Kuramoto-modell átlagtér esetéhez.

A rendparaméter definíciója érdekében **transzformáljuk** ki a rendszerből az oszcillátorok "átlagos" időfejlődését:

$$\phi_i \rightarrow \widetilde{\phi}_i = \phi_i - \omega_0 t$$

 $\omega_i \quad \rightarrow \quad \widetilde{\omega}_i = \omega_i - \omega_0$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Térjünk vissza a Kuramoto-modell átlagtér esetéhez.

A rendparaméter definíciója érdekében **transzformáljuk** ki a rendszerből az oszcillátorok "átlagos" időfejlődését:

$$\phi_i \quad \to \quad \widetilde{\phi}_i = \phi_i - \omega_0 t$$

 $\omega_i \quad \rightarrow \quad \widetilde{\omega}_i = \omega_i - \omega_0$

A Kuramoto-modell invariáns a $(\phi_i \rightarrow \widetilde{\phi_i}, \omega_i \rightarrow \widetilde{\omega_i})$ transzformációra, az egyenlet ugyanúgy néz ki a transzformált változókra: $\frac{d\phi_i}{dt} = \widetilde{\omega_i} + \frac{K}{N} \sum_{i=0}^{N-1} \sin(\widetilde{\phi_i} - \widetilde{\phi_i})$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet é: Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció Térjünk vissza a Kuramoto-modell átlagtér esetéhez.

A rendparaméter definíciója érdekében **transzformáljuk** ki a rendszerből az oszcillátorok "átlagos" időfejlődését:

$$\phi_i \quad \to \quad \widetilde{\phi}_i = \phi_i - \omega_0 t$$

 $\omega_i \quad \rightarrow \quad \widetilde{\omega}_i = \omega_i - \omega_0$

A Kuramoto-modell invariáns a $(\phi_i \rightarrow \widetilde{\phi_i}, \omega_i \rightarrow \widetilde{\omega_i})$ transzformációra, az egyenlet ugyanúgy néz ki a transzformált változókra: $\frac{d\phi_i}{dt} = \widetilde{\omega_i} + \frac{K}{N} \sum_{i=0}^{N-1} \sin(\widetilde{\phi_i} - \widetilde{\phi_i})$

Jelölje a transzformált $\widetilde{\phi}_i$ irányú egységvektorok vektori átlagát $\theta(t)$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció Térjünk vissza a Kuramoto-modell átlagtér esetéhez.

A rendparaméter definíciója érdekében **transzformáljuk** ki a rendszerből az oszcillátorok "átlagos" időfejlődését:

$$\phi_i \quad \to \quad \widetilde{\phi}_i = \phi_i - \omega_0 t$$

 $\omega_i \quad \rightarrow \quad \widetilde{\omega}_i = \omega_i - \omega_0$

A Kuramoto-modell invariáns a $(\phi_i \rightarrow \widetilde{\phi_i}, \omega_i \rightarrow \widetilde{\omega_i})$ transzformációra, az egyenlet ugyanúgy néz ki a transzformált változókra: $\frac{d\phi_i}{dt} = \widetilde{\omega_i} + \frac{K}{N} \sum_{i=0}^{N-1} \sin(\widetilde{\phi_i} - \widetilde{\phi_i})$

Jelölje a transzformált $\widetilde{\phi_i}$ irányú egységvektorok vektori átlagát $\theta(t)$

Ezzel, és az $i = \sqrt{-1}$ jelöléssel a rendparaméter definíciója:

$$\underbrace{Z(t)}_{\text{komplex rendp.}} := \underbrace{Z(t)}_{\text{valos rendp.}} e^{i\,\theta(t)} = \frac{1}{N} \sum_{j=0}^{N-1} e^{i\,\widetilde{\phi}_j(t)}$$

a rendparaméter definíciója

Szinkronizáció a biológiában

A rendparaméter definíciója:

 $\underbrace{Z(t)}_{\text{komplex rendp.}} := \underbrace{Z(t)}_{\text{valos rendp.}} e^{i\theta(t)} = \frac{1}{N} \sum_{j=0}^{N-1} e^{i\widetilde{\phi}_j(t)}$

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátoroł távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

A szinkronizáció Kuramoto-modellje (átlagtér) a rendparaméter definíciója

Szinkronizáció a biológiában

A rendparaméter definíciója:

Kuramoto-modell, átlagtér kölcsönhatás

Megjegyzés: Z(t) tényleg a z(t) valós része, azaz Z = |z|.

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció A rendparaméter definíciója:

Megjegyzés: Z(t) tényleg a z(t) valós része, azaz Z = |z|.

Az így kapott Z(t) rendparaméter azt mutatja, hogy a fázisok által definiált egységvektorok egymáshoz közel vannak-e:

A szinkronizáció Kuramoto-modellje (átlagtér) a rendparaméter definíciója

Szinkronizáció a biológiában

A rendparaméter definíciója:

Kuramoto-modell, átlagtér kölcsönhatás

 $Z(t) := Z(t) e^{i\theta(t)} = \frac{1}{N} \sum_{i=0}^{N-1} e^{i\widetilde{\phi}_i(t)}$ komplex rendp. valos rendn

Megjegyzés: Z(t) tényleg a z(t) valós része, azaz Z = |z|.

Az így kapott Z(t) rendparaméter azt mutatia, hogy a fázisok által definiált egységvektorok egymáshoz közel vannak-e:

- $\rightarrow Z \approx 1$, ha a $\widetilde{\phi}_i$ fázisok közel egyenlőek
- $\rightarrow Z \approx 0$, ha a $\widetilde{\phi}_i$ fázisok véletlenszerűek

A szinkronizáció Kuramoto-modellie (átlagtér) a rendparaméter definíciója

Szinkronizáció a biológiában

A rendparaméter definíciója:

Kuramoto-modell, átlagtér kölcsönhatás

 $\underbrace{Z(t)}_{i=0} := \underbrace{Z(t)}_{i=0} e^{i\theta(t)} = \frac{1}{N} \sum_{i=0}^{N-1} e^{i\widetilde{\phi}_i(t)}$

komplex rendn

Megjegyzés: Z(t) tényleg a z(t) valós része, azaz Z = |z|.

Az így kapott Z(t) rendparaméter azt mutatia, hogy a fázisok által definiált egységvektorok egymáshoz közel vannak-e:

- $\rightarrow Z \approx 1$, ha a $\widetilde{\phi}_i$ fázisok közel egyenlőek
- $\rightarrow Z \approx 0$, ha a $\widetilde{\phi}_i$ fázisok véletlenszerűek

Állítás: a mozgásegyenlet és a rendparaméter definíciója alapján $\frac{d\phi_i(t)}{dt} = \widetilde{\omega}_i + KZ \sin[\theta(t) - \widetilde{\phi}_i(t)]$

A szinkronizáció Kuramoto-modellie (átlagtér) a rendparaméter definíciója

Szinkronizáció a biológiában

A rendparaméter definíciója:

Kuramoto-modell átlagtér kölcsönhatás

 $\underbrace{Z(t)}_{i = \infty} := \underbrace{Z(t)}_{i = \infty} e^{i\theta(t)} = \frac{1}{N} \sum_{i=0}^{N-1} e^{i\widetilde{\phi}_i(t)}$ komplex rendn

Megjegyzés: Z(t) tényleg a z(t) valós része, azaz Z = |z|.

Az így kapott Z(t) rendparaméter azt mutatia, hogy a fázisok által definiált egységvektorok egymáshoz közel vannak-e:

- $\rightarrow Z \approx 1$, ha a $\widetilde{\phi}_i$ fázisok közel egyenlőek
- $\rightarrow Z \approx 0$, ha a $\widetilde{\phi}_i$ fázisok véletlenszerűek

Allítás: a mozgásegyenlet és a rendparaméter definíciója alapján $\frac{d\phi_i(t)}{dt} = \widetilde{\omega}_i + KZ \sin[\theta(t) - \widetilde{\phi}_i(t)]$

Ez az egyenlet matematikailag úgy néz ki, mint egy

- nem kölcsönható rendszer.
- és egy nagy oszcillátor (Ω, Z, θ_0 const.): $z(t) = Z e^{i(\Omega t + \theta_0)}$

Kuramoto-modell (átlagtér)

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorol távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Kuramoto: ebben a rendszerben van (Hopf-)bifurkáció, azaz

Kuramoto-modell (átlagtér)

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok távolságfüggő kh. Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Kuramoto: ebben a rendszerben van (Hopf-)bifurkáció, azaz

 \exists egy 0 < K_c < ∞ kritikus kölcsönhatás erősség, amire

- *K* < *K*_c esetén az egyensúly *Z* = 0
- és a $\beta \coloneqq -\frac{1}{16} \pi K_c^3 g''(0)$ definícióval
- kis $\epsilon := (K K_c)/K_c$ esetén $z = e^{i\theta}\sqrt{\epsilon/\beta}$, ahol θ tetsz. konst.

Kuramoto-modell (átlagtér)

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok távolságfüggő kh. Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Kuramoto: ebben a rendszerben van (Hopf-)bifurkáció, azaz

 \exists egy 0 < K_c < ∞ kritikus kölcsönhatás erősség, amire

- *K* < *K*_c esetén az egyensúly *Z* = 0
- és a $\beta \coloneqq -\frac{1}{16} \pi K_c^3 g''(0)$ definícióval
- kis $\epsilon := (K K_c)/K_c$ esetén $z = e^{i\theta}\sqrt{\epsilon/\beta}$, ahol θ tetsz. konst.

Ha a sajátfrekvenciák $g(\omega)$ eloszlása Gauss,

- akkor $K_{c,Gauss} = \sigma \sqrt{8/\pi}$,
- tehát azonos sajátfrekvenciák ($\sigma = 0$) esetén $K_c = 0$.

Kuramoto-modell (átlagtér) szimulációs eredmények – példa

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció Z(t) valós rendparaméter, N = 200 csatolt oszcillátor, $\sigma = 1$ Csatolási erősség: K = 2.5 (fent), 0.5 (középső), 0 (alsó görbe)

Kuramoto-modell (átlagtér) szimulációs eredmények – példa

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció

Z(t) valós rendparaméter, N = 200 csatolt oszcillátor, $\sigma = 1$ Csatolási erősség: K = 2.5 (fent), 0.5 (középső), 0 (alsó görbe)

Kuramoto-modell (átlagtér) szimulációs eredmények – példa

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás

Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció

Z(t) valós rendparaméter, N = 200 csatolt oszcillátor, σ = 1 Csatolási erősség: K = 2.5 (fent), 0.5 (középső), 0 (alsó görbe)

 \rightarrow gyenge (K = 0.5) és nulla csatolás kb azonos eredményt ad

Csatolt oszcillátorok, távolságfüggő kölcsönh.

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhat:

Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

egy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Realisztikusabb kölcsönhatás: nem átlagtér, hanem távolságfüggő

Csatolt oszcillátorok, távolságfüggő kölcsönh.

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá

Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció

Realisztikusabb kölcsönhatás: nem átlagtér, hanem távolságfüggő

Legyen

- minden oszcillátor egy rács pontjaiban,
- r_{i,j} az i. és j. oszcillátor távolsága,
- η normálási együttható,
- és α a távolságfüggés erősségét szabályozó kitevő.
Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá

Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Realisztikusabb kölcsönhatás: nem átlagtér, hanem távolságfüggő

Legyen

- minden oszcillátor egy rács pontjaiban,
- r_{i,j} az i. és j. oszcillátor távolsága,
- η normálási együttható,
- és α a távolságfüggés erősségét szabályozó kitevő.

Legyen az oszcillátorok fázisainak időfejlődése

$$\frac{d\phi_i}{dt} = \omega_i + \frac{K}{\eta} \sum_{j \neq i} \frac{\sin(\phi_j - \phi_i)}{r_{i,j}^{\alpha}}$$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá

Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció

Realisztikusabb kölcsönhatás: nem átlagtér, hanem távolságfüggő

Legyen

- minden oszcillátor egy rács pontjaiban,
- r_{i,j} az i. és j. oszcillátor távolsága,
- η normálási együttható,
- és α a távolságfüggés erősségét szabályozó kitevő.

Legyen az oszcillátorok fázisainak időfejlődése

$$\frac{d\phi_i}{dt} = \omega_i + \frac{K}{\eta} \sum_{j \neq i} \frac{\sin(\phi_j - \phi_i)}{r_{i,j}^{\alpha}}$$

→ analitikusan nem kezelhető!

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá

Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció Realisztikusabb kölcsönhatás: nem átlagtér, hanem távolságfüggő

Legyen

- minden oszcillátor egy rács pontjaiban,
- r_{i,j} az i. és j. oszcillátor távolsága,
- η normálási együttható,
- és α a távolságfüggés erősségét szabályozó kitevő.

Legyen az oszcillátorok fázisainak időfejlődése

$$\frac{d\phi_i}{dt} = \omega_i + \frac{K}{\eta} \sum_{j \neq i} \frac{\sin(\phi_j - \phi_i)}{r_{i,j}^{\alpha}}$$

→ analitikusan nem kezelhető!

- Az α exponenstől való függés:
 - α = 0: nincsen távolságfüggés, átlagtér közelítést visszaadja
 - $\alpha \rightarrow \infty$: a kölcsönh. gyorsan lecseng, csak 1. szomszéd kh.

A K csatolási erősség és az α csatolási kitevő hatása

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhata

Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

cy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Fizikai esetben általában $\alpha = d - 1$

Csatolt oszcillátorok, távolságfüggő kölcsönh. A K csatolási erősség és az α csatolási kitevő hatása

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhata

Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Fizikai esetben általában $\alpha = d - 1$

• Ha $\alpha \ge d$, akkor a csatolási tag \forall *N*-re korlátos:

$$\sum_{\substack{j\neq i\\j=1}}^{N} r_{i,j}^{-\alpha} \sin(\phi_j - \phi_i) \bigg| \leq \sum_{\substack{j\neq i\\j=1}\\j=1}^{N} r_{i,j}^{-\alpha} < \infty$$

ehhez kell az $\alpha \ge d$

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá
- Csatolt oszcillátorok, távolságfüggő kh.
- Langevin egyenlet Fokker-Planck egy. Zajos oszcillátorok
- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor
- Abszorpció

Fizikai esetben általában $\alpha = d - 1$

• Ha $\alpha \ge d$, akkor a csatolási tag \forall *N*-re korlátos:

$$\left|\sum_{\substack{j\neq i\\j=1}}^{N} r_{i,j}^{-\alpha} \sin(\phi_j - \phi_i)\right| \leq \sum_{\substack{j\neq i\\j=1}}^{N} r_{i,j}^{-\alpha} < \infty$$

ehhez kell az $\alpha \ge d$

- Ha $\alpha \leq d$, akkor
 - ω_i-től függően nagy N-re divergálhat a csatolási tag
 - tehát $N \rightarrow \infty$ esetén $\forall K > 0$ értéknél szinkronizáció van

Csatolt oszcillátorok, távolságfüggő kölcsönh. A *K* csatolási erősség és az α csatolási kitevő hatása

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá
- Csatolt oszcillátorok, távolságfüggő kh.
- Langevin egyenlet Fokker-Planck egy. Zajos oszcillátorok
- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Fizikai esetben általában $\alpha = d - 1$

• Ha $\alpha \ge d$, akkor a csatolási tag \forall *N*-re korlátos:

$$\left|\sum_{\substack{j\neq i\\j=1}}^{N} r_{i,j}^{-\alpha} \sin(\phi_j - \phi_i)\right| \leq \underbrace{\sum_{\substack{j\neq i\\j=1}}^{N} r_{i,j}^{-\alpha} < \infty}_{\text{ehhez kell az } \alpha \geq d}$$

• Ha $\alpha \leq d$, akkor

- ω_i-től függően nagy *N*-re divergálhat a csatolási tag
- tehát $N \to \infty$ esetén $\forall K > 0$ értéknél szinkronizáció van

A rendszer "befagy" 1d-ben $\alpha \lessapprox 1$ esetén, 2d-ben $\alpha \lessapprox 2$ esetén:

Csatolt oszcillátorok, távolságfüggő kölcsönh. A K csatolási erősség és az α csatolási kitevő hatása

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá

Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet e Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció

Fizikai esetben általában $\alpha = d - 1$

• Ha $\alpha \ge d$, akkor a csatolási tag \forall *N*-re korlátos:

$$\left|\sum_{\substack{j\neq i\\j=1}}^{N} r_{i,j}^{-\alpha} \sin(\phi_j - \phi_i)\right| \leq \underbrace{\sum_{\substack{j\neq i\\j=1}}^{N} r_{i,j}^{-\alpha} < \infty}_{\sum_{j\neq i}^{N} r_{i,j}^{-\alpha} < \infty}$$

• Ha $\alpha \leq d$, akkor

ehhez kell az $\alpha \ge d$

- ω_i-től függően nagy N-re divergálhat a csatolási tag
- tehát $N \to \infty$ esetén $\forall K > 0$ értéknél szinkronizáció van

A rendszer "befagy" 1d-ben $\alpha \leq 1$ esetén, 2d-ben $\alpha \leq 2$ esetén:

ez a folytonos fázisátalakuláshoz hasonló jelenség, de a kontroll paraméter itt egy kitevő (az α)

$$\lim_{N \to \infty} \lim_{K \to 0^+} Z(\alpha) = \begin{cases} 1 & \text{, ha } \alpha \leq \alpha \\ 0 & \text{, ha } \alpha > \alpha \end{cases}$$

Csatolt oszcillátorok, távolságfüggő kölcsönh. A K csatolási erősség és az α csatolási kitevő hatása

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá

Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Fizikai esetben általában $\alpha = d - 1$

• Ha $\alpha \ge d$, akkor a csatolási tag \forall *N*-re korlátos:

$$\left|\sum_{\substack{j\neq i\\j=1}}^{N} r_{i,j}^{-\alpha} \sin(\phi_j - \phi_i)\right| \leq \underbrace{\sum_{\substack{j\neq i\\j=1}}^{N} r_{i,j}^{-\alpha} < \infty}_{\prod_{j=1}^{N} \prod_{j=1}^{N} \prod_{j=1}$$

• Ha $\alpha \leq d$, akkor

ehhez kell az $\alpha \geq d$

- ω_i-től függően nagy N-re divergálhat a csatolási tag
- tehát $N \rightarrow \infty$ esetén $\forall K > 0$ értéknél szinkronizáció van

A rendszer "befagy" 1d-ben $\alpha \leq 1$ esetén, 2d-ben $\alpha \leq 2$ esetén:

ez a folytonos fázisátalakuláshoz hasonló jelenség, de a kontroll paraméter itt egy kitevő (az α)

$$\lim_{N \to \infty} \lim_{K \to 0^+} Z(\alpha) = \begin{cases} 1 & \text{, ha } \alpha \leq d \\ 0 & \text{, ha } \alpha > d \end{cases}$$

A szinkronizáció gyorsabb lehet, mint a Kuramoto+átlagtér esetben.

Két sztochasztikus diff.egyenlet típus dióhéjban

Langevin egyenlet, Fokker-Planck egyenlet

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet és Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció

Langevin egyenlet (Paul Langevin 1908):

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet és Fokker-Planck egy.

Zajos oszcillátorok

- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Langevin egyenlet (Paul Langevin 1908):

- a gyorsan változó (általában mikroszkopikus) szabadsági fokokat együtt tekintsünk "zajnak"
- az ezekhez képest lassan változó (általában makroszkopikus) néhány szabadsági fokról szól a Langevin egyenlet

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá: Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet és Fokker-Planck egy.

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Langevin egyenlet (Paul Langevin 1908):

- a gyorsan változó (általában mikroszkopikus) szabadsági fokokat együtt tekintsünk "zajnak"
- az ezekhez képest lassan változó (általában makroszkopikus) néhány szabadsági fokról szól a Langevin egyenlet

Példa: Brown mozgás $\frac{d^2 \vec{x}}{dt^2} = \lambda \frac{d \vec{x}}{dt} + \vec{\xi}(t),$

ahol a zaj autokorrelációja $\langle \vec{\xi}_i(t)\vec{\xi}_j(t')\rangle = 2\lambda k_B T \delta_{i,j} \delta(t-t')$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá: Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet és Fokker-Planck egy.

Integrál és tüzel modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció Langevin egyenlet (Paul Langevin 1908):

- a gyorsan változó (általában mikroszkopikus) szabadsági fokokat együtt tekintsünk "zajnak"
- az ezekhez képest lassan változó (általában makroszkopikus) néhány szabadsági fokról szól a Langevin egyenlet

Példa: Brown mozgás $\frac{d^2 \vec{x}}{dt^2} = \lambda \frac{d \vec{x}}{dt} + \vec{\xi}(t),$ ahol a zaj autokorrelációja $\langle \vec{\xi}_i(t) \vec{\xi}_i(t') \rangle = 2 \lambda k_B T \delta_{i,i} \delta(t - t')$

Fokker-Planck egyenlet (Adriaan Fokker 1914, Max Planck 1917):

- részecske mozog, van súrlódás (lineáris) és zaj (sztoch. tag)
- → a részecske sebességének (vagy helyének) valószínűség-sűrűsége hogyan változik időben?

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá: Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet és Fokker-Planck egy.

Integrál és tüzel modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció Langevin egyenlet (Paul Langevin 1908):

- a gyorsan változó (általában mikroszkopikus) szabadsági fokokat együtt tekintsünk "zajnak"
- az ezekhez képest lassan változó (általában makroszkopikus) néhány szabadsági fokról szól a Langevin egyenlet

Példa: Brown mozgás $\frac{d^2 \vec{x}}{dt^2} = \lambda \frac{d \vec{x}}{dt} + \vec{\xi}(t),$ ahol a zaj autokorrelációja $\langle \vec{\xi}_i(t) \vec{\xi}_i(t') \rangle = 2 \lambda k_B T \delta_{i,i} \delta(t-t')$

Fokker-Planck egyenlet (Adriaan Fokker 1914, Max Planck 1917):

- részecske mozog, van súrlódás (lineáris) és zaj (sztoch. tag)
- → a részecske sebességének (vagy helyének) valószínűség-sűrűsége hogyan változik időben?

Példa: Diffúziós egyenlet

$$\frac{\partial p(x,t)}{\partial t} = \frac{1}{2} \frac{\partial^2 p(x,t)}{\partial x^2}$$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá: Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet és Fokker-Planck egy.

Integrál és tüzel modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

Langevin egyenlet (Paul Langevin 1908):

- a gyorsan változó (általában mikroszkopikus) szabadsági fokokat együtt tekintsünk "zajnak"
- az ezekhez képest lassan változó (általában makroszkopikus) néhány szabadsági fokról szól a Langevin egyenlet

Példa: Brown mozgás $\frac{d^2 \vec{x}}{dt^2} = \lambda \frac{d \vec{x}}{dt} + \vec{\xi}(t),$ ahol a zaj autokorrelációja $\langle \vec{\xi}_i(t) \vec{\xi}_i(t') \rangle = 2 \lambda k_B T \delta_{i,i} \delta(t - t')$

Fokker-Planck egyenlet (Adriaan Fokker 1914, Max Planck 1917):

- részecske mozog, van súrlódás (lineáris) és zaj (sztoch. tag)
- → a részecske sebességének (vagy helyének) valószínűség-sűrűsége hogyan változik időben?

Példa: Diffúziós egyenlet $\frac{\partial p(x,t)}{\partial t} = \frac{1}{2} \frac{\partial^2 p(x,t)}{\partial x^2}$ $\Rightarrow p(x,t) = e^{-x^2/(2t)}/\sqrt{2\pi t}$

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh.
- Langevin egyenlet és Fokker-Planck egy.

Zajos oszcillátorok

- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

A valódi oszcillátorok időfejlődése zajos lehet:

- belső zaj (hatások kiértékelése, belső döntések)
- külső zaj (a többi oszcillátor vagy a közeg eltérései)

A kettőt összesítve egy zaj tagba írjuk: ξ .

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh
- Langevin egyenlet é Fokker-Planck egy.
- Zajos oszcillátorok
- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható
- Abszorpció

A valódi oszcillátorok időfejlődése zajos lehet:

- belső zaj (hatások kiértékelése, belső döntések)
- külső zaj (a többi oszcillátor vagy a közeg eltérései)
- A kettőt összesítve egy zaj tagba írjuk: ξ .

Tegyük fel, hogy minden oszcillátor sajátfrekvenciája ω_0 és az *i*. oszcillátornál megjelenő $\xi_i(t)$ zaj

- időben korrelálatlan és
- független a többi oszcillátor zaj tagjától

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.
- Langevin egyenlet é Fokker-Planck egy.
- Zajos oszcillátorok
- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

A valódi oszcillátorok időfejlődése zajos lehet:

- belső zaj (hatások kiértékelése, belső döntések)
- külső zaj (a többi oszcillátor vagy a közeg eltérései)
- A kettőt összesítve egy zaj tagba írjuk: ξ .

Tegyük fel, hogy minden oszcillátor sajátfrekvenciája ω_0 és az *i*. oszcillátornál megjelenő $\xi_i(t)$ zaj

- időben korrelálatlan és
- független a többi oszcillátor zaj tagjától
- \Rightarrow minden oszcillátorra azonos a transzformáció: $\psi_i := \widetilde{\phi}_i = \phi_i \omega_0 t$

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfűggő kb
- Langevin egyenlet é Fokker-Planck egy
- Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

A valódi oszcillátorok időfejlődése zajos lehet:

- belső zaj (hatások kiértékelése, belső döntések)
- külső zaj (a többi oszcillátor vagy a közeg eltérései)

A kettőt összesítve egy zaj tagba írjuk: ξ .

Tegyük fel, hogy minden oszcillátor sajátfrekvenciája ω_0 és az *i*. oszcillátornál megjelenő $\xi_i(t)$ zaj

- időben korrelálatlan és
- független a többi oszcillátor zaj tagjától

 $\begin{array}{l} \Rightarrow \mbox{ minden oszcillátorra azonos a transzformáció: } \psi_i \coloneqq \widetilde{\phi_i} = \phi_i - \omega_0 \ t \\ \mbox{ és azonos a transzformált fázis időfejlődési egyenlete} \\ (i = 0 \dots N - 1): \\ \mbox{ } \frac{d\psi_i}{dt} = \ \frac{K}{N} \sum\limits_{j \neq i \atop i = 0}^{N-1} \sin(\psi_j - \psi_i) + \xi_i(t) \quad \mbox{ (csatolt Langevin-egyenletek) }, \end{array}$

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.
- Langevin egyenlet e Fokker-Planck egy.
- Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

A valódi oszcillátorok időfejlődése zajos lehet:

- belső zaj (hatások kiértékelése, belső döntések)
- külső zaj (a többi oszcillátor vagy a közeg eltérései)

A kettőt összesítve egy zaj tagba írjuk: ξ .

Tegyük fel, hogy minden oszcillátor sajátfrekvenciája ω_0 és az *i*. oszcillátornál megjelenő $\xi_i(t)$ zaj

- időben korrelálatlan és
- független a többi oszcillátor zaj tagjától

 $\begin{array}{l} \Rightarrow \mbox{ minden oszcillátorra azonos a transzformáció: } \psi_i := \widetilde{\phi}_i = \phi_i - \omega_0 t \\ \mbox{ és azonos a transzformált fázis időfejlődési egyenlete} \\ (i = 0 \dots N - 1): \\ \frac{d\psi_i}{dt} = \ \frac{K}{N} \sum\limits_{j=0}^{N-1} \sin(\psi_j - \psi_i) + \xi_i(t) \quad \mbox{ (csatolt Langevin-egyenletek) }, \end{array}$

ahol a $\xi_i(t)$ fehér zaj tag autokorrelációja:

 $\langle \xi_i(t) \rangle_t = 0, \quad \langle \xi_i(t) \xi_j(t') \rangle_t = 2 \sigma^2 \, \delta_{i,j} \, \delta(t-t')$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá: Csatolt oszcillátorok, távolságfüggő kb

Langevin egyenlet é: Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció Erős kölcsönhatás \Rightarrow szinkronzálódhat a rendszer Nagy zaj \Rightarrow "szétfolyik", nincsen szinkronizáció

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet és Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszoroció Erős kölcsönhatás \Rightarrow szinkronzálódhat a rendszer Nagy zaj \Rightarrow "szétfolyik", nincsen szinkronizáció

A rendparaméter
$$Z(t) = X(t) + i Y(t) = \frac{1}{N} \sum_{j} e^{i \psi_{j}}$$

Szinkronizáció a biológiában

E

Zajos oszcillátorok

Erős kölcsönhatás ⇒ szinkronzálódhat a rendszer Nagy zaj ⇒ "szétfolyik", nincsen szinkronizáció

A rendparaméter
$$Z(t) = X(t) + i Y(t) = \frac{1}{N} \sum_{i} e^{i \psi_{i}}$$

Ezzel $\frac{d\psi_{i}}{dt} = K [-X \sin \psi_{i} + Y \cos \psi_{i}] + \xi_{i}(t)$

4

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Abszorpció

Erős kölcsönhatás \Rightarrow szinkronzálódhat a rendszer Nagy zaj \Rightarrow "szétfolyik", nincsen szinkronizáció

A rendparaméter
$$Z(t) = X(t) + i Y(t) = \frac{1}{N} \sum_{j} e^{i \psi_{j}}$$

Ezzel $\frac{d\psi_{i}}{dt} = K [-X \sin \psi_{i} + Y \cos \psi_{i}] + \xi_{i}(t)$

A megoldás érdekében tegyük fel, hogy Z(t) lassan változik a zajhoz képest

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Erős kölcsönhatás \Rightarrow szinkronzálódhat a rendszer Nagy zaj \Rightarrow "szétfolyik", nincsen szinkronizáció

A rendparaméter
$$Z(t) = X(t) + i Y(t) = \frac{1}{N} \sum_{j} e^{i \psi_{j}}$$

Ezzel
$$\frac{d\psi_i}{dt} = K \left[-X \sin \psi_i + Y \cos \psi_i\right] + \xi_i(t)$$

A megoldás érdekében tegyük fel, hogy

Z(t) lassan változik a zajhoz képest

Rövid kitérő:

Hogyan hasonlítsuk össze a rendparaméter és a zaj változási sebességét?

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.
- Langevin egyenlet é Fokker-Planck egy.
- Zajos oszcillátorok
- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Erős kölcsönhatás ⇒ szinkronzálódhat a rendszer Nagy zaj ⇒ "szétfolyik", nincsen szinkronizáció

A rendparaméter
$$Z(t) = X(t) + i Y(t) = \frac{1}{N} \sum_{j} e^{i \psi_{j}}$$

Ezzel
$$\frac{d\psi_i}{dt} = K \left[-X \sin \psi_i + Y \cos \psi_i \right] + \xi_i(t)$$

- A megoldás érdekében tegyük fel, hogy
- Z(t) lassan változik a zajhoz képest

Rövid kitérő:

- Hogyan hasonlítsuk össze a rendparaméter és a zaj változási sebességét?
- Mekkora a fehér zaj jellemző változása egy t méretű időablakban?

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Erős kölcsönhatás ⇒ szinkronzálódhat a rendszer Nagy zaj ⇒ "szétfolyik", nincsen szinkronizáció

A rendparaméter
$$Z(t) = X(t) + i Y(t) = \frac{1}{N} \sum_{j} e^{i \psi_{j}}$$

Ezzel
$$\frac{d\psi_i}{dt} = K \left[-X \sin \psi_i + Y \cos \psi_i \right] + \xi_i(t)$$

A megoldás érdekében tegyük fel, hogy

Z(t) lassan változik a zajhoz képest

Rövid kitérő:

- Hogyan hasonlítsuk össze a rendparaméter és a zaj változási sebességét?
- Mekkora a fehér zaj jellemző változása egy t méretű időablakban?
- \rightarrow a fehér zaj önaffin-e és ha igen, mekkora a H exponense?

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh.
- Langevin egyenlet és Fokker-Planck egy.

Zajos oszcillátorok

- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

- Az $N \rightarrow \infty$ határesetben az *i*-vel index-elt $\psi_i(t)$ fázis helyett:
 - $P(\psi, t)$ eloszlásfüggvény minden t pillanatban
 - jelentése: az oszcillátorok $P(\psi, t)d\psi$ része van a $(\psi, \psi + d\psi)$ fázis tartományban

Szinkronizáció a biológiában

- Bevezetés
- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok, távolságfüggő kh.
- Langevin egyenlet é: Fokker-Planck egy.
- Zajos oszcillátorok
- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

- Az $N \rightarrow \infty$ határesetben az *i*-vel index-elt $\psi_i(t)$ fázis helyett:
 - $P(\psi, t)$ eloszlásfüggvény minden t pillanatban
 - jelentése: az oszcillátorok $P(\psi, t)d\psi$ része van a $(\psi, \psi + d\psi)$ fázis tartományban

Ezt a **rendparaméter**t keressük az $N \rightarrow \infty$ határesetben:

$$Z(t) = \int_{0}^{2\pi} d\psi \, e^{i\psi} \, P(\psi, t)$$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é: Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Az $N \rightarrow \infty$ határesetben az *i*-vel index-elt $\psi_i(t)$ fázis helyett:

- $P(\psi, t)$ eloszlásfüggvény minden t pillanatban
- jelentése: az oszcillátorok P(ψ, t)dψ része van a (ψ, ψ + dψ) fázis tartományban

Ezt a **rendparaméter**t keressük az $N \rightarrow \infty$ határesetben:

$$Z(t) = \int_{0}^{2\pi} d\psi \, e^{i\psi} \, P(\psi, t)$$

Fokker-Planck egyenlet a ψ fázis $P(\psi, t)$ valószínűség-sűrűségére:

$$\frac{\partial P}{\partial t} = K \frac{\partial}{\partial \psi} \left[(X \sin \psi - Y \cos \psi) P \right] + \underbrace{\sigma^2 \frac{\partial^2 P}{\partial \psi^2}}_{\text{diffuzio}}$$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é: Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Az $N \rightarrow \infty$ határesetben az *i*-vel index-elt $\psi_i(t)$ fázis helyett:

- $P(\psi, t)$ eloszlásfüggvény minden t pillanatban
- jelentése: az oszcillátorok P(ψ, t)dψ része van a (ψ, ψ + dψ) fázis tartományban

Ezt a **rendparaméter**t keressük az $N \rightarrow \infty$ határesetben:

$$Z(t) = \int_{0}^{2\pi} d\psi \, e^{i\psi} \, P(\psi, t)$$

Fokker-Planck egyenlet a ψ fázis $P(\psi, t)$ valószínűség-sűrűségére:

$$\frac{\partial P}{\partial t} = K \frac{\partial}{\partial \psi} \left[(X \sin \psi - Y \cos \psi) P \right] + \underbrace{\sigma^2 \frac{\partial^2 P}{\partial \psi^2}}_{\text{diffuzio}}$$

A megoldás érdekében írjuk fel a $P(\psi, t)$ függvény Fourier-sorát:

$$P(\psi,t) = \frac{1}{2\pi} \sum_{\ell} P_{\ell}(t) e^{i\ell\psi}$$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok

Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Legyen $Z = X = i Y = P_1^* = P_{-1}$ az első módus és $P_0 = 1$

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh.
- Langevin egyenlet é: Fokker-Planck egy.

Zajos oszcillátorok

- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Legyen $Z = X = i Y = P_1^* = P_{-1}$ az első módus és $P_0 = 1$

Ha visszaírjuk a Fourier-sort a Fokker-Planck egyenletbe, akkor egy diff.egyenlet rendszert kapunk ($\ell = 1, 2, ...$):

$$\frac{dP_{\ell}}{dt} = -\sigma^2 \,\ell^2 \,P_{\ell} + \frac{\ell \,K \left(P_{\ell-1}P_1 - P_{\ell+1}P_1^*\right)}{2}$$

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.
- Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor
- Abszorpció

Legyen $Z = X = i Y = P_1^* = P_{-1}$ az első módus és $P_0 = 1$

Ha visszaírjuk a Fourier-sort a Fokker-Planck egyenletbe, akkor egy diff.egyenlet rendszert kapunk ($\ell = 1, 2, ...$):

$$\frac{dP_{\ell}}{dt} = -\sigma^2 \,\ell^2 \,P_{\ell} + \frac{\ell \,K \left(P_{\ell-1}P_1 - P_{\ell+1}P_1^*\right)}{2}$$

Az egyenletrendszer első három egyenlete ($\ell = 1, 2, 3$):

$$\frac{dP_1}{dt} = \frac{K}{2} (P_1 - P_2 P_1^*) - \sigma^2 P_1$$
$$\frac{dP_2}{dt} = K (P_1^2 - P_3 P_1^*) - 4 \sigma^2 P_2$$
$$\frac{dP_3}{dt} = \frac{3K}{2} (P_2 P_1 - P_4 P_1^*) - 9 \sigma^2 P_3$$

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.
- Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Legyen $Z = X = i Y = P_1^* = P_{-1}$ az első módus és $P_0 = 1$

Ha visszaírjuk a Fourier-sort a Fokker-Planck egyenletbe, akkor egy diff.egyenlet rendszert kapunk ($\ell = 1, 2, ...$):

$$\frac{dP_{\ell}}{dt} = -\sigma^2 \,\ell^2 \,P_{\ell} + \frac{\ell \,K \left(P_{\ell-1}P_1 - P_{\ell+1}P_1^*\right)}{2}$$

Az egyenletrendszer első három egyenlete ($\ell = 1, 2, 3$):

$$\frac{dP_1}{dt} = \frac{K}{2} (P_1 - P_2 P_1^*) - \sigma^2 P_1$$
$$\frac{dP_2}{dt} = K (P_1^2 - P_3 P_1^*) - 4 \sigma^2 P_2$$
$$\frac{dP_3}{dt} = \frac{3K}{2} (P_2 P_1 - P_4 P_1^*) - 9 \sigma^2 P_3$$

Ennek homogén megoldása: $P_0 = 1$ és \forall más $P_i = 0$

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.
- Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Legyen $Z = X = i Y = P_1^* = P_{-1}$ az első módus és $P_0 = 1$

Ha visszaírjuk a Fourier-sort a Fokker-Planck egyenletbe, akkor egy diff.egyenlet rendszert kapunk ($\ell = 1, 2, ...$):

$$\frac{dP_{\ell}}{dt} = -\sigma^2 \,\ell^2 \,P_{\ell} + \frac{\ell \,K \left(P_{\ell-1}P_1 - P_{\ell+1}P_1^*\right)}{2}$$

Az egyenletrendszer első három egyenlete ($\ell = 1, 2, 3$):

$$\frac{dP_1}{dt} = \frac{K}{2} (P_1 - P_2 P_1^*) - \sigma^2 P_1$$
$$\frac{dP_2}{dt} = K (P_1^2 - P_3 P_1^*) - 4 \sigma^2 P_2$$
$$\frac{dP_3}{dt} = \frac{3K}{2} (P_2 P_1 - P_4 P_1^*) - 9 \sigma^2 P_3$$

Ennek homogén megoldása: $P_0 = 1$ és \forall más $P_i = 0$ aminek a fizikai jelentése: $P(\psi, t)$ =const.
Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolsádfűggő kh

Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Lineáris stabilitás vizsgálat:

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok, távolsádfűggő kb

Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Lineáris stabilitás vizsgálat:

a $P(\psi, t)$ =const. megoldás

 $\begin{cases} \text{stabil, ha} & K < 2\sigma^2 \\ \text{instabil, ha} & K > 2\sigma^2 \end{cases}$

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh.
- Langevin egyenlet é: Fokker-Planck egy.

Zajos oszcillátorok

- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Lineáris stabilitás vizsgálat:

- a $P(\psi, t)$ =const. megoldás
- \Rightarrow a kritikus csatolás $K_c = 2\sigma^2$

 $\begin{cases} \text{stabil, ha} & K < 2\sigma^2 \\ \text{instabil, ha} & K > 2\sigma^2 \end{cases}$

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh
- Langevin egyenlet és Fokker-Planck egy.
- Zajos oszcillátorok
- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Lineáris stabilitás vizsgálat:

- a $P(\psi, t)$ =const. megoldás
- \Rightarrow a kritikus csatolás $K_c = 2\sigma^2$

 $\begin{cases} \text{stabil, ha} & K < 2\sigma^2 \\ \text{instabil, ha} & K > 2\sigma^2 \end{cases}$

- Az átmenet közelében ($K \approx K_c = 2\sigma^2$):
 - az ℓ = 2-es egyenletből: $|P_2| \sim |P_1|$
 - $|P_3| \sim |P_1|^3$
 - $P_2 \approx 0$ és $P_3 \approx 0$

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh
- Langevin egyenlet és Fokker-Planck egy.
- Zajos oszcillátorok
- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Lineáris stabilitás vizsgálat:

- a $P(\psi, t)$ =const. megoldás
- \Rightarrow a kritikus csatolás $K_c = 2\sigma^2$

 $\begin{cases} \text{stabil, ha} & K < 2\sigma^2 \\ \text{instabil, ha} & K > 2\sigma^2 \end{cases}$

- Az átmenet közelében ($K \approx K_c = 2\sigma^2$):
 - az ℓ = 2-es egyenletből: $|P_2| \sim |P_1|$
 - $|P_3| \sim |P_1|^3$
 - $P_2 \approx 0$ és $P_3 \approx 0$

Ezek alapján P2 lassan változik, P1-en keresztül kifejezhető, emiatt:

$$\frac{dZ}{dt} = \left(\frac{K^2}{2} - \sigma^2\right) Z - \frac{K^2}{8\sigma^2} \left|Z\right|^2 Z$$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh

Langevin egyenlet é: Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy reszecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Összefoglalva:

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Összefoglalva:

A rendparaméterre kaptunk egy diff.egyenletet:

$$\frac{dZ}{dt} = \left(\frac{K^2}{2} - \sigma^2\right) Z - \frac{K^2}{8\sigma^2} \left|Z\right|^2 Z,$$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Összefoglalva:

A rendparaméterre kaptunk egy diff.egyenletet:

$$\frac{dZ}{dt} = \left(\frac{K^2}{2} - \sigma^2\right) Z - \frac{K^2}{8\sigma^2} \left|Z\right|^2 Z,$$

aminek a stacionárius megoldása (Hopf-)bifurkációt tartalmaz:

$$|Z|^{2} = \begin{cases} \left(K^{2} - 2\sigma^{2}\right) \frac{4\sigma^{2}}{K^{2}} & \text{, ha } K > K_{c} \\ 0 & \text{, ha } K < K_{c} \end{cases}$$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy.

Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Összefoglalva:

A rendparaméterre kaptunk egy diff.egyenletet:

$$\frac{dZ}{dt} = \left(\frac{K^2}{2} - \sigma^2\right) Z - \frac{K^2}{8\sigma^2} \left|Z\right|^2 Z,$$

aminek a stacionárius megoldása (Hopf-)bifurkációt tartalmaz:

$$|Z|^{2} = \begin{cases} \left(K^{2} - 2\sigma^{2}\right)\frac{4\sigma^{2}}{K^{2}} & \text{, ha } K > K_{c} \\ 0 & \text{, ha } K < K_{c} \end{cases}$$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é: Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüzel modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

A természetben / társadalmakban gyakori az, hogy egy periodikus (ismétlődő) folyamatban

- hosszú ideig semmi látványos nem történik ("integrate")
- a ciklus egy helyén valami rövid látványos esemény ("fire")
- Az integrate-and-fire kifejezés eredete: idegsejtek, elektronika.

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüzel modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció

A természetben / társadalmakban gyakori az, hogy egy periodikus (ismétlődő) folyamatban

- hosszú ideig semmi látványos nem történik ("integrate")
- a ciklus egy helyén valami rövid látványos esemény ("fire")
- Az integrate-and-fire kifejezés eredete: idegsejtek, elektronika.

Definíció. Egy részecske két dolgot tud csinálni: integrál vagy tüzel.

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh. Langevin egyenlet é

Integrál és tüzel modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció A természetben / társadalmakban gyakori az, hogy egy periodikus (ismétlődő) folyamatban

- hosszú ideig semmi látványos nem történik ("integrate")
- a ciklus egy helyén valami rövid látványos esemény ("fire")

Az integrate-and-fire kifejezés eredete: idegsejtek, elektronika.

Definíció. Egy részecske két dolgot tud csinálni: integrál vagy tüzel.

- T ismét az oszcilláció periódusidejét jelöli
- a részecske ϕ fázis a egyenletesen nő: $d\phi(t)/dt = 1/T$
- a részecske állapotváltozója $x = f(\phi(t))$
 - monoton nő az x = 1 küszöbig
 - onnan azonnal visszaugrik az x = 0-ra

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet é:

Zajos oszcillátorok

Integrál és tüzel modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció A természetben / társadalmakban gyakori az, hogy egy periodikus (ismétlődő) folyamatban

- hosszú ideig semmi látványos nem történik ("integrate")
- a ciklus egy helyén valami rövid látványos esemény ("fire")

Az integrate-and-fire kifejezés eredete: idegsejtek, elektronika.

Definíció. Egy részecske két dolgot tud csinálni: integrál vagy tüzel.

- T ismét az oszcilláció periódusidejét jelöli
- a részecske ϕ fázis a egyenletesen nő: $d\phi(t)/dt = 1/T$
- a részecske állapotváltozója $x = f(\phi(t))$
 - monoton nő az x = 1 küszöbig
 - onnan azonnal visszaugrik az x = 0-ra

Az $f(\phi) : [0,1] \rightarrow [0,1]$ függvény sima,

$$\underbrace{\frac{df}{d\phi} > 0}_{} \quad , \quad \underbrace{\frac{d^2f}{d\phi^2} < 0}_{} \quad \text{és} \quad \begin{cases} x = 0 \Leftrightarrow \phi = 0 \\ x = 1 \Leftrightarrow \phi = 1 \end{cases} \quad \text{azaz} \quad \begin{cases} f(0) = 0 \\ f(1) = 1 \end{cases}$$

ሕ

Integrál és tüzel modellek modell definíció: egy részecske dinamikája

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok,

Langevin egyenlet é: Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája

Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció A definíció alapján kölcsönhatás nélkül az oszcilláló részecske x állapotváltozója a saját ϕ fázisa függvényében:

Integrál és tüzel modellek modell definíció: egy részecske dinamikája

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája

Kölcsonnatas definíciója Két kölcsönható oszcillátor Abszorpció A definíció alapján kölcsönhatás nélkül az oszcilláló részecske *x* állapotváltozója a saját ϕ fázisa függvényében:

Integrál és tüzel modellek modell definíció: egy részecske dinamikája

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatá: Csatolt oszcillátorok, távolságfüggő kh.
- Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok
- Integrál és tüze modellek

Egy részecske dinamikája

Kölcsönhatás definíciója Két kölcsönható oszcillátor Abszorpció A definíció alapján kölcsönhatás nélkül az oszcilláló részecske x állapotváltozója a saját ϕ fázisa függvényében:

Kölcsönhatás nélkül ez a dinamika:

- 1, időben integrálás: $\phi = x = 0$ -tól $\phi = x = 1$ -ig
- 2, az x = 1 elérésekor ugrás le x = 0-ra

Integrál és tüzel modellek modell definíció: kölcsönhatás

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh
- Langevin egyenlet és Fokker-Planck egy. Zaios oszcillátorok
- Integrál és tüze modellek
- Egy részecske dinamikája
- Kölcsönhatás definíciója
- Két kölcsönható oszcillátor Abszorpció

A kölcsönhatás definíciója:

- ha egy oszcillátor tüzel (az x_i = 1 állapotban van),
- akkor a többi oszcillátor állapotváltozóját
 - növeli ϵ -nal, tehát $x_j \rightarrow x_j + \epsilon$ lesz,
 - de ha $x_j + \epsilon > 1$, akkor csak az $x_j = 1$ küszöbig mozdítja

Integrál és tüzel modellek modell definíció: kölcsönhatás

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok távolságfüggő kh.

Langevin egyenlet e Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája

Kölcsönhatás definíciója

Két kölcsönható oszcillátor Abszoroció

A kölcsönhatás definíciója:

- ha egy oszcillátor tüzel (az x_i = 1 állapotban van),
- akkor a többi oszcillátor állapotváltozóját
 - növeli ϵ -nal, tehát $x_j \rightarrow x_j + \epsilon$ lesz,
 - de ha $x_j + \epsilon > 1$, akkor csak az $x_j = 1$ küszöbig mozdítja

Tehát

$$x_i(t) = 1 \implies \forall j \neq i : x_i(t^+) = \min[1, x_i(t) + \epsilon]$$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok,

Langevin egyenlet é: Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója

Két kölcsönható oszcillátor A fenti feltételekkel – $f(\phi)$: $[0,1] \rightarrow [0,1]$ monoton nő és konvex – ha **két oszcillátor** sajátfrekvenciája azonos $\omega_i = \omega = 1/T$, akkor

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója

Két kölcsönható oszcillátor A fenti feltételekkel – $f(\phi)$: $[0,1] \rightarrow [0,1]$ monoton nő és konvex – ha **két oszcillátor** sajátfrekvenciája azonos $\omega_i = \omega = 1/T$, akkor

szinkronizálódnak:

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója

Két kölcsönható oszcillátor A fenti feltételekkel – $f(\phi)$: $[0,1] \rightarrow [0,1]$ monoton nő és konvex – ha **két oszcillátor** sajátfrekvenciája azonos $\omega_i = \omega = 1/T$, akkor

szinkronizálódnak:

Magasabb ϕ fázis esetén az x állapotváltozó azonos ϵ -nyi ugrása nagyobb $\Delta \phi$ lépést jelent a ϕ = 1 felé.

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója

Két kölcsönható oszcillátor A fenti feltételekkel – $f(\phi)$: $[0,1] \rightarrow [0,1]$ monoton nő és konvex – ha **két oszcillátor** sajátfrekvenciája azonos $\omega_i = \omega = 1/T$, akkor

szinkronizálódnak:

Magasabb ϕ fázis esetén az x állapotváltozó azonos ϵ -nyi ugrása nagyobb $\Delta \phi$ lépést jelent a ϕ = 1 felé.

Emiatt ha az első oszcillátor a ϕ_1 = 1 fázisban van (éppen tüzel),

- $\bullet\,$ akkor minél közelebb van hozzá a másik oszcillátor ϕ_2 fázisa
- annál jobban növeli a másik oszcillátor φ₂ fázisát

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá: Csatolt oszcillátorok, távolságfűggő kb

Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Abszorpció

Definíció: Lavina – Egy "első" tüzelés által kiváltott, "megszakítás nélküli" tüzelések sorozata.

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh.
- Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok
- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor
- Abszorpció

Definíció: **Lavina** – Egy "első" tüzelés által kiváltott, "megszakítás nélküli" tüzelések sorozata.

- A valóságban a tüzelés után kell egy helyreállítási idő
 - ezalatt az oszcillátor nem érzékeli az újabb tüzeléseket
 - tehát egy lavinában résztvevő oszcillátor nem érzi a lavina során (a saját helyreállítási ideje alatt) utána jövő tüzeléseket

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Abszorpció

Definíció: Lavina – Egy "első" tüzelés által kiváltott, "megszakítás nélküli" tüzelések sorozata.

A valóságban a tüzelés után kell egy helyreállítási idő

- ezalatt az oszcillátor nem érzékeli az újabb tüzeléseket
- tehát egy lavinában résztvevő oszcillátor nem érzi a lavina során (a saját helyreállítási ideje alatt) utána jövő tüzeléseket

A jelenség idősklálái:

- δt idő alatt az oszcillátor felveszi a jelet és tüzel
- Δt idő alatt regenerálódik
- 1 egységnyi idő alatt integrál az oszcillátor: $\phi = 0 \rightarrow 1$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet é Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Abszorpció

Definíció: Lavina – Egy "első" tüzelés által kiváltott, "megszakítás nélküli" tüzelések sorozata.

A valóságban a tüzelés után kell egy helyreállítási idő

- ezalatt az oszcillátor nem érzékeli az újabb tüzeléseket
- tehát egy lavinában résztvevő oszcillátor nem érzi a lavina során (a saját helyreállítási ideje alatt) utána jövő tüzeléseket

A jelenség idősklálái:

- δt idő alatt az oszcillátor felveszi a jelet és tüzel
- Δt idő alatt regenerálódik
- 1 egységnyi idő alatt integrál az oszcillátor: $\phi = 0 \rightarrow 1$

Jellemzően $\delta t \ll \Delta t \ll 1$

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatá: Csatolt oszcillátorok,

Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Abszorpció

Állítás: Ha (i) van abszorpció és (ii) $N \ge 1/\epsilon$ oszcillátor van a rendszerben (egymással kölcsönhatnak),

Szinkronizáció a biológiában

Bevezetés

Folytonos modellek

Kölcsönható oszcillátorok

Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh.

Langevin egyenlet és Fokker-Planck egy. Zajos oszcillátorok

Integrál és tüze modellek

Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Abszorpció

Állítás: Ha (i) van abszorpció és (ii) $N \ge 1/\epsilon$ oszcillátor van a rendszerben (egymással kölcsönhatnak),

akkor \forall monoton $f(\phi)$ függvény esetén van szinkronizáció (nincsen szükség arra, hogy $f(\phi)$ konvex legyen)

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy.
- Zajos oszcillátorok
- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor
- Abszorpció

Állítás: Ha (i) van abszorpció és (ii) $N \ge 1/\epsilon$ oszcillátor van a rendszerben (egymással kölcsönhatnak),

akkor \forall monoton $f(\phi)$ függvény esetén van szinkronizáció (nincsen szükség arra, hogy $f(\phi)$ konvex legyen)

Részletek:

Ha van két olyan oszcillátor, amelynek az állapota $|x_j - x_i| < \epsilon$, akkor

- ketten szinkronizálódnak az abszorpció miatt stabilan!
- mivel az x legfeljebb 1-ig "lökődhet" előre, ezért a már csoportosult oszcillátorok tüzelési lavinái a többi oszcillátort felzárkóztatják magukhoz
- és végül az egész rendszer szinkronizálódik

Szinkronizáció a biológiában

Bevezetés

- Folytonos modellek
- Kölcsönható oszcillátorok
- Kuramoto-modell, átlagtér kölcsönhatás Csatolt oszcillátorok, távolságfüggő kh. Langevin egyenlet és Fokker-Planck egy.
- Integrál és tüze modellek
- Egy részecske dinamikája Kölcsönhatás definíciója Két kölcsönható oszcillátor

Abszorpció

Állítás: Ha (i) van abszorpció és (ii) $N \ge 1/\epsilon$ oszcillátor van a rendszerben (egymással kölcsönhatnak),

akkor \forall monoton $f(\phi)$ függvény esetén van szinkronizáció (nincsen szükség arra, hogy $f(\phi)$ konvex legyen)

Részletek:

Ha van két olyan oszcillátor, amelynek az állapota $|x_j - x_i| < \epsilon$, akkor

- ketten szinkronizálódnak az abszorpció miatt stabilan!
- mivel az x legfeljebb 1-ig "lökődhet" előre, ezért a már csoportosult oszcillátorok tüzelési lavinái a többi oszcillátort felzárkóztatják magukhoz
- és végül az egész rendszer szinkronizálódik

A korábbiakhoz hasonlóan példaként két modellezési lehetőség:

- átlagtér modell (mindenki mindenkit "lát")
- lokális kölcsönhatás a Kuramoto-modellhez hasonló

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

HÁLÓZATOK I: ALAPFOGALMAK Gráfok, szomszédsági mátrix, ritka gráf, fokszám és klaszterezettség, kis világ tulajdonság, skálafüggetlenség.

Hálózatok I.

Bevezetés

- Mi az, hogy hálózal Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Csúcsok jellemzése Kis világ tulajdonsá Fokszámeloszlás és

BEVEZETÉS

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátriv
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Mi az, hogy hálózat?

Hálózatok mindenütt... (Az Internet)

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Grát tipusok Szomszédság mátrix Bitka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok mindenütt... (Emberi kapcsolatok)

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok mindenütt... (Közlekedés)

Hálózatok I.

Bevezetés

Mi az, hogy hálózat?

- A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és

Hálózatok mindenütt... (Fehérie kölcsönhatás)

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusok Szomszédság mátrix Bitko grófok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok mindenütt... (Betegségek)

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok mindenütt... (Gazdaság)

Hálózatok I.

- Mi az, hogy hálózat?

9/1999 11:5":22 > CECDT92.EFS. //cid Trade 1992 (DECD) enhanced 1991 Austchnitt 0.0.0.0.1.0.1.0

A hálózatos megközelítés

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés

A hálózatkutatás alkalmazásai

Gráfoł

Gráf típusol

Szomszédsági mátrix

Ritka gráfoł

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság

Fokszámeloszlás és skálafüggetlenség

• Leonhard Euler (1735):

A königsbergi hidak problémája és a gráfelmélet.

Hálózatok I.

Bevezetés Milaz hogy há

- Történeti áttekintés A hálózatkutatás
- alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

• Leonhard Euler (1735):

A königsbergi hidak problémája és a gráfelmélet.

Hálózatok I.

Bevezetés Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok Gráf típusok Szomszédsági mátrix Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

• Erdős Pál és Rényi Alfréd (1959): véletlen gráfok.

• Stanley Milgram (1967): 6 lépés távolság.

Hálózatok I.

Bevezetés Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok Gráf típu
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

• Duncan Watts és Steven H. Strogatz (1998): Kis világ hálózatok.

• Barabási Albert-László és Albert Réka (1999): Skálafüggetlen hálózatok.

Járványterjedés előrejelzése

Hálózatok I.

Bevezetés Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok
- Gráf típusok Szomszédság
- Ditka gráfok
- Hálózatjellem
- Csúcsok jellemzése Kis világ tulajdonsá Fokszámeloszlás és skálafüggetlenség

A H1N1 terjedésének előrejelzése 2009-ben:

Real

Projected

A hálózatkutatás alkalmazásai Gyógyszerfejlesztés

Hírszerzés, terrorizmus, stb.

Hálózatok I.

Bevezetés

Mi az, hogy hálóza Történeti áttekintés

A hálózatkutatás alkalmazásai

Gráfol

Gráf típusok

Szomszédság mátrix

Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

President

Image 1.2a The network of Saddam Hussein.

Ace of Spades. One of the 55 cards the US military has handed out to the coalitoin forces in Iraq, each listing a top official to be captured following the country's 2003 invasion. The card shows the ace of spades, with the image of Saddam Hussein, Iraq's deposed president and dictator, the top prize of the hunt.

Hírszerzés, terrorizmus, stb.

Hírszerzés, terrorizmus, stb.

Hálózatok I.

Bevezetés Mi az, hogy háló Törtépoti áttekir

A hálózatkutatás alkalmazásai

Gráfoł

Gráf típusok Szomszédsági mátrix

Ritka grátok

Halozatjellemzök Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Network Science Center West Point 2

http://blog.netsciwestpoint.org/

http://www.ns-cta.org/ns-cta-blog/

Szervezetfejlesztési tanácsadás

Hálózatok I.

Bevezetés Mi az, hogy há Történeti áttek

A hálózatkutatás alkalmazásai

- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Szervezetfejlesztési tanácsadás

Hálózatok I.

Bevezetés Mi az, hogy hálóz Történeti áttekinti A hálózatkutatás

alkalmazásai

- Gráfok
- Gráf típusok Szomszédsád
- mátrix
- Ritka gratok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafűngetlenség

Szervezetfejlesztési tanácsadás

Hálózatok I.

Bevezetés Mi az, hogy hál Történeti átteki

A hálózatkutatás alkalmazásai

Gráfok

Gráf típusok Szomszédság mátrix

Ritka gráfoł

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Szervezetfejlesztési tanácsadás

Hálózatok I.

Bevezetés Mi az, hogy hálóz Történeti áttekinti A hálózatkutatás

alkalmazásai

Gráfok

Gráf típusok Szomszédság mátrix

Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafűggetlenség

Hálózatok I.

Bevezetés

Mi az, hogy hálóza Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Gráf típusok Szomszédság mátrix Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

GRÁFOK

Hálózatok I.

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfol

Gráf típusok

Szomszédság mátrix Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok I.

Ugyanazt a rendszert több fajta gráffal is reprezentálhatjuk!

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfol

Gráf típusok

Szomszédság mátrix Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok I.

Ugyanazt a rendszert több fajta gráffal is reprezentálhatjuk!

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

- Gráf típusok
- mátrix Bitka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok I.

Ugyanazt a rendszert több fajta gráffal is reprezentálhatjuk!

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfol

Gráf típusok

mátrix Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok I.

Ugyanazt a rendszert több fajta gráffal is reprezentálhatjuk!

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfol

Gráf típusok

mátrix Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok I.

Ugyanazt a rendszert több fajta gráffal is reprezentálhatjuk!

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

- Gráf típusok
- mátrix Bitka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafűggetlenség

Gráftípusok

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- Szomszédság mátrix Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Gráftípusok

- egyszerű gráf: csak egyszeres élek, önmagával nem lehet összekötve egy csúcs.
- multi gráf: lehetnek többszörös élek, önmagával nem lehet összekötve egy csúcs.
- pszeudo gráf: lehetnek többszörös élek és az is megengedett, hogy egy él ugyanazon csúcson kezdődjön és érjen véget.
- irányított gráf: az éleknek van iránya, aszimmetrikus a kapcsolat.
- irányítatlan gráf: az éleknek nincs iránya, szimmetrikus a kapcsolat.
- súlyozott gráf: az élekhez súly (intenzitás, erősség, stb.) érték társul.
- súlyozatlan gráf: az élek "binárisak".
- páros gráf: két fajta csúcs, az élek csak eltérő fajtájú csúcsok közt húzódhatnak.

Páros gráfok

Hálózatok I.

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfol

Gráf típusok

Szomszédság mátrix Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Pl. a filmek és filszínészek páros gráfja, és annak projekciói:

Páros gráfok

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfol

Gráf típusok

Szomszédság mátrix Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Pl. a filmek és filszínészek páros gráfja, és annak projekciói:

Páros gráfok

Hálózatok I.

Gráf típusok

Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)

Li Fraumeni syndrome

Wilms tumor

Breast cancer

Lung cancer

Prostate cancer

Bladder cancer

Otolaryngeal cancier

Fanconi anemia

Stomach cancer

Histiocytoma

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hogyan tároljunk el egy hálózatot a számítógépen?

Szomszédsági mátrix Definíció

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Szomszédsági mátrix

Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Szomszédsági mátrix

• minden sor és oszlop egy-egy csúcsnak felel meg,

$$A_{ij} = \begin{cases} 1 & \text{ha } i \rightarrow j \\ 0 & \text{egyébként} \end{cases}$$

Szomszédsági mátrix Definíció

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Szomszédsági mátrix

Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Szomszédsági mátrix

• minden sor és oszlop egy-egy csúcsnak felel meg,

$$A_{ij} = \begin{cases} 1 & \text{ha } i \to j \\ 0 & \text{egyébkén} \end{cases}$$

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

• ha a hálózat irányítatlan, ...

- súlyozott hálózatok esetén …
- Egy pozícióvektort A_{ij}-vel szorozva:

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- ha a hálózat irányítatlan, A_{ij} szimmetrikus.
- súlyozott hálózatok esetén ...
 - Egy pozícióvektort A_{ij}-vel szorozva:

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- ha a hálózat irányítatlan, A_{ij} szimmetrikus.
- súlyozott hálózatok esetén A_{ij} valós értékeket vehet fel.
- Egy pozícióvektort A_{ij}-vel szorozva:

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- ha a hálózat irányítatlan, A_{ij} szimmetrikus.
- súlyozott hálózatok esetén A_{ij} valós értékeket vehet fel.
- Egy pozícióvektort A_{ij}-vel szorozva:

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- ha a hálózat irányítatlan, A_{ij} szimmetrikus.
- súlyozott hálózatok esetén A_{ij} valós értékeket vehet fel.
- Egy pozícióvektort A_{ij}-vel szorozva:

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- ha a hálózat irányítatlan, A_{ij} szimmetrikus.
- súlyozott hálózatok esetén A_{ij} valós értékeket vehet fel.
- Egy pozícióvektort A_{ij}-vel szorozva:

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- ha a hálózat irányítatlan, A_{ij} szimmetrikus.
- súlyozott hálózatok esetén A_{ij} valós értékeket vehet fel.
- Egy pozícióvektort A_{ij}-vel szorozva:

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- ha a hálózat irányítatlan, A_{ij} szimmetrikus.
- súlyozott hálózatok esetén A_{ij} valós értékeket vehet fel.
- Egy pozícióvektort A_{ij}-vel szorozva:

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- ha a hálózat irányítatlan, A_{ij} szimmetrikus.
- súlyozott hálózatok esetén A_{ij} valós értékeket vehet fel.
- Egy pozícióvektort A_{ij}-vel szorozva:

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- ha a hálózat irányítatlan, A_{ij} szimmetrikus.
- súlyozott hálózatok esetén A_{ij} valós értékeket vehet fel.
- Egy pozícióvektort A_{ij}-vel szorozva:

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- ha a hálózat irányítatlan, A_{ij} szimmetrikus.
- súlyozott hálózatok esetén A_{ij} valós értékeket vehet fel.
- Egy pozícióvektort A_{ij}-vel szorozva:

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- ha a hálózat irányítatlan, A_{ij} szimmetrikus.
- súlyozott hálózatok esetén A_{ij} valós értékeket vehet fel.
- Egy pozícióvektort A_{ij}-vel szorozva:

Szomszédsági mátrix

Hálózatok I.

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok Gráf típusoł

Szomszédsági mátrix Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafűggetlenség

• A valós hálózatok esetén A_{ij} többnyire nullákból áll...

Hálózatok I.

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok Gráf típusoł

Szomszédsági mátrix Bitka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

• A valós hálózatok esetén A_{ij} többnyire nullákból áll...

• Ez egy ritka gráf!

Hálózatok I.

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Szomszédsági mátrix

Ritka gráfoł

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

• Egy csomó nullát tárolni nem olyan jó ötlet...

Hálózatok I.

- Mi az, hogy hálózať Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- Egy csomó nullát tárolni nem olyan jó ötlet...
- → Hogy lehetne ezt kiküszöbölni?

Hálózatok I.

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- Egy csomó nullát tárolni nem olyan jó ötlet...
- → Hogy lehetne ezt kiküszöbölni?
- Használjunk pl. éllistát helyette.

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafűggetlenség

Hogyan lehetne a "ritkaságot" egy kicsit precízebben definiálni?

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Ritka gráfok

- Jelölje N a gráf csúcsainak számát, M pedig az éleinek számát.
- Egy gráf (hálózat) ritka, ha az N → ∞ határeseteben az élek száma M ~ N.
- Egy gráf (hálózat) sűrű , ha az $N \to \infty$ határesetben az élek száma $M \sim N^2$.

Mi a helyzet a csúcsok átlagos kapcsolatszámával?

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Ritka gráfok

- Jelölje N a gráf csúcsainak számát, M pedig az éleinek számát.
- Egy gráf (hálózat) ritka, ha az N → ∞ határeseteben az élek száma M ~ N.
- Egy gráf (hálózat) sűrű , ha az $N \to \infty$ határesetben az élek száma $M \sim N^2$.

Mi a helyzet a csúcsok átlagos kapcsolatszámával?

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Ritka gráfok

- Jelölje N a gráf csúcsainak számát, M pedig az éleinek számát.
- Egy gráf (hálózat) ritka, ha az N → ∞ határeseteben az élek száma M ~ N.
- Egy gráf (hálózat) sűrű , ha az $N \to \infty$ határesetben az élek száma $M \sim N^2$.

Mi a helyzet a csúcsok átlagos kapcsolatszámával?

- ha ritka: $\langle d \rangle = \frac{2M}{N} \rightarrow \text{const.},$
- ha sűrű: $\langle d \rangle = \frac{2M}{N} \sim N \rightarrow \infty!$

Ritka hálózatok A gyakorlatban

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfol
- Gráf típusok
- Szomszédsági mátrix

Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség Ha egy hálózatban a csúcsokra jutó átlagos kapcsolatszám több nagyságrenddel kisebb mint a rendszerméret, akkor ritkának tekinthető.

Ritka hálózatok

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

- Gráf típusok
- Szomszédsági mátrix

Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

A legtöbb valódi rendszert leíró hálózat ritka!

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference	Nr.
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999	1
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,	
							Pastor-Satorras et al. 2001	2
Movie actors	225, 226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998	- 3
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b	-4
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b	5
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c	6
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b	7
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001	8
Neurosci. coauthorship	209,293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001	- 9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000	12
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000	13
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001	14
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001	15
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998	17

Ritka hálózatok Következmények

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Mik a ritkaság következményei?

- a szomszédsági mátrix helyett az élek listáját tároljuk el,
- $\langle d \rangle \ll N$

Ritka hálózatok Következmények

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Mik a ritkaság következményei?

- a szomszédsági mátrix helyett az élek listáját tároljuk el,
- (*d*) << *N*
- Mi a valószínűsége, hogy két véletlenszerűen választott csúcs össze van kötve?

Ritka hálózatok Következmények

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusol
- Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Mik a ritkaság következményei?

- a szomszédsági mátrix helyett az élek listáját tároljuk el,
- (*d*) << *N*
- Mi a valószínűsége, hogy két véletlenszerűen választott csúcs össze van kötve?
- Ez a valószínűség elhanyagolható! (Azaz 0-hoz tart, ha N → ∞).

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- mátrix
- mika graiok

Hálózatjellemzők

Csúcsok jellemzés Kis világ tulajdonsa Fokszámeloszlás é skálafüggetlenség

HÁLÓZATJELLEMZŐK

Fokszám

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédsáj
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Fokszám

 Egy csúcs fokszáma a hozzá kapcsolódó élek számával egyezik meg. Az i csúcs fokszámát d_i-vel fogjuk jelölni.

 $d_i = 4, d_j = 1.$

• Ha a hálózat irányított $\longrightarrow d_{i,be}$ és $d_{i,ki}$.

$$d_{i,be} = 2, d_{j,ki} = 1.$$

Fokszám

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Gráf típusok Szomszédság mátrix

Ritka gráfoł

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Fokszám

• Súlyozott hálózatok?

Fokszám

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

- Gráf típusok Szomszédsá
- mainx Ritka gráfok
- rinna graion
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és

Fokszám

• Súlyozott hálózatok: csúcs erősség, s_i

 $s_i = 0.9, s_i = 0.3.$

Hálózatok I.

Mennyi az i csúcs fokszáma az alábbi példákban?

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Gráf típusok Szomszédság mátrix Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok I.

Mennyi az i csúcs fokszáma az alábbi példákban?

- Bevezetés
- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok I.

Mennyi az i csúcs fokszáma az alábbi példákban?

• 1d lánc? • • • $d_i = 2$

- Mi az, hogy háló Történeti áttekir
- A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok I.

Mennyi az i csúcs fokszáma az alábbi példákban?

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- 1d lánc? • $d_i = 2$
- 2d négyzetrács?

Hálózatok I.

Mennyi az i csúcs fokszáma az alábbi példákban?

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédsá mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- 1d lánc? • $d_i = 2$
- 2d négyzetrács?
 i d_i = 4

Hálózatok I.

Mennyi az i csúcs fokszáma az alábbi példákban?

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- 1d lánc? • $d_i = 2$
- 2d négyzetrács?
- Egy N csúcsból álló véletlen gráfban, ahol minden csúcspárt p valószínűséggel kötünk össze? (Erdős–Rényi-modell)

Hálózatok I.

Mennyi az i csúcs fokszáma az alábbi példákban?

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- 2d négyzetrács?
- Egy N csúcsból álló véletlen gráfban, ahol minden csúcspárt p valószínűséggel kötünk össze? (Erdős–Rényi-modell)

Fokszám és szomszédsági mátrix

mnopq

0 0

m n

0 p 0 0

q

Hálózatok I.

Csúcsok jellemzése

= ? $d_{\rm n}$

Fokszám és szomszédsági mátrix

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok Gráf típu:

Szomszédsá mátrix Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

	m	n	0	р	q	
m	0	1	1	1	0	
n	1	0	1	0	0	۱
0	1	1	0	0	0	
р	1	0	0	0	1	I
q	0	0	0	1	0	l

 $d_{n} = \sum_{j} A_{jn}$ $= \sum_{i} A_{nj}$

Fokszám és szomszédsági mátrix

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok Gráf típusok Szomszédsáj mátrix
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság

Fokszám és szomszédsági mátrix

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok Gráf típusok Szomszédsáj mátrix
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Anj

Ajn

Anj

Átlagos fokszám

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Gráf típusok Szomszédság mátrix Pitka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Átlagos fokszám

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Gráf típusok Szomszédsá

Ritka gráfoł

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Átlagos fokszám

$$\langle d \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} d_i = \frac{2M}{N},$$

• egy fajta sűrűség.

Irányított hálózatok:

$$\langle d_{\rm be} \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} d_{i,\rm be} = \frac{M}{N} = \langle d_{\rm ki} \rangle$$

Átlagos fokszám

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

- Gráf típusok Szomszédság
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Átlagos fokszám

$$\langle d \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} d_i = \frac{2M}{N},$$

- egy fajta sűrűség.
- Irányított hálózatok:

$$\langle d_{\rm be} \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} d_{i,\rm be} = \frac{M}{N} = \langle d_{\rm ki} \rangle$$

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafjagetlenság

- A barátod barátja neked is barátod?
- Két barátod egymással is barátságban vannak?

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka grátok

Halozatjellemzok Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és

- A barátod barátja neked is barátod?
- Két barátod egymással is barátságban vannak? Sok esetben igen.

Hálózatok I.

- Bevezetés
- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Hálózatieller
- Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- A barátod barátja neked is barátod?
- Két barátod egymással is barátságban vannak? Sok esetben igen.
- → sok háromszög fordul elő az emberi kapcsolatok hálózatában.

Hálózatok I.

- Bevezetés
- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusok Szomszédság mátriy
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság

- A barátod barátja neked is barátod?
- Két barátod egymással is barátságban vannak? Sok esetben igen.
- → sok háromszög fordul elő az emberi kapcsolatok hálózatában.

A tranzitivitás mérése a klaszterezettségi együtthatóval történik.

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfoł

Gráf típusol

Szomszédsá mátrix

Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Klaszterezettségi együttható

• Az i csúcs klaszterezettségi együtthatója:

$$C_i \equiv \frac{2e_i}{d_i(d_i-1)},$$

ahol e_i az *i* szomszédai közt lévő élek száma. (Ennélfogva $C_i \in [0, 1]$).

• Ha $d_i < 2$, akkor definíciószerűen $C_i = 0$.

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusol
- Szomszédsá; mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Klaszterezettségi együttható

• Az i csúcs klaszterezettségi együtthatója:

$$C_i\equiv\frac{2e_i}{d_i(d_i-1)},$$

ahol e_i az i szomszédai közt lévő élek száma. (Ennélfogva $C_i \in [0, 1]$). Példa:

• Ha *d_i* < 2, akkor definíciószerűen *C_i* = 0.

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típuso
- Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Klaszterezettségi együttható

• Az i csúcs klaszterezettségi együtthatója:

$$C_i\equiv\frac{2e_i}{d_i(d_i-1)},$$

ahol e_i az i szomszédai közt lévő élek száma. (Ennélfogva $C_i \in [0, 1]$). Példa: $C_i = \frac{2e_i}{d_i(d_i - 1)} = \frac{2 \cdot 3}{4 \cdot 3} = \frac{2}{4} = \frac{1}{2}$

Ha d_i < 2, akkor definíciószerűen C_i = 0.

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típuso
- Szomszédsá mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Klaszterezettségi együttható

• Az i csúcs klaszterezettségi együtthatója:

$$C_i\equiv\frac{2e_i}{d_i(d_i-1)},$$

ahol e_i az *i* szomszédai közt lévő élek száma. (Ennélfogva $C_i \in [0, 1]$). Példa:

$$C_i = \frac{2e_i}{d_i(d_i - 1)} = \frac{2 \cdot 3}{4 \cdot 3} = \frac{2}{4} = \frac{1}{2}$$

• Ha $d_i < 2$, akkor definíciószerűen $C_i = 0$.

Átlagos klaszterezettségi együttható

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

- Gráf típusok Szomszédsági mátrix Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Átlagos klaszterezettségi együttható

• A hálózat átlagos klaszterezettségi együtthatója

$$\langle C \rangle = \frac{1}{N} \sum_{i=1}^{N} C_i,$$

ahol N a csúcsok száma.

Klaszterezettségi együttható Szemléltetés

Hálózatok I.

Bevezetés

Mi az, hogy hálózať Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Gráf tipusok Szomszédság mátrix

Ritka grátok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

• Ha $\langle d \rangle$ a globális élsűrűséget méri, akkor mit mér $\langle C \rangle$?

Klaszterezettségi együttható Szemléltetés

Hálózatok I.

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Gráf típusok Szomszédság mátrix

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és

- Ha $\langle d \rangle$ a globális élsűrűséget méri, akkor mit mér $\langle C \rangle$?
- → A lokális élsűrűséget!

Klaszterezettségi együttható Szemléltetés

Hálózatok I.

- Bevezetés
- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- Ha $\langle d \rangle$ a globális élsűrűséget méri, akkor mit mér $\langle C \rangle$?
- → A lokális élsűrűséget!

C a valódi rendszereket leíró hálózatokban

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok Gráf típuso
- Szomszédság mátrix Pitka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és

A valós hálózatokban mért $\langle C \rangle$ és az azonos *N* és *M* paraméterekkel rendelkező véletlen gráfokhoz tartozó értékek:

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,
							Pastor-Satorras et al. 2001
Movie actors	225, 226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001
Neurosci. coauthorship	209, 293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook <i>et al.</i> 2001
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998

C a valódi rendszereket leíró hálózatokban

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusok Szomszédsá
- Bitka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és

A valós hálózatokban mért $\langle C \rangle$ és az azonos *N* és *M* paraméterekkel rendelkező véletlen gráfokhoz tartozó értékek:

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,
							Pastor-Satorras et al. 2001
Movie actors	225, 226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001
Neurosci. coauthorship	209, 293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998

A KLASZTEREZETTSÉGI EGYÜTTHATÓ NAGY EZEKBEN A HÁLÓZATOKBAN!

Miért sokkal alacsonyabb a véletlen gráfok *C*-je?

Hálózatok I.

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfol

Gráf tipusok Szomszédság mátrix

.....

Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafilagettenság

Miért sokkal alacsonyabb a véletlen gráfok *C*-je?

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat' Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség
- A *C* szemléletes jelentése: annak valószínűsége, hogy az adott csúcs szomszédai egymásnak is szomszédai.
- → Ha gráf ritka és teljesen véletlenszerű, ez a valószínűség nagyon alacsony lesz...

Miért sokkal alacsonyabb a véletlen gráfok *C*-je?

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Hálózatielle
- Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- A *C* szemléletes jelentése: annak valószínűsége, hogy az adott csúcs szomszédai egymásnak is szomszédai.
- → Ha gráf ritka és teljesen véletlenszerű, ez a valószínűség nagyon alacsony lesz...

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

- Gráf típusok
- Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Távolság (legrövidebb úthossz)

- ℓ_{ij} : az *i*-ből induló, *j*-be érkező legrövidebb útvonal éleinek száma.
- Tulajdonságai:
 - $\ell_{ii} = 0$
 - Irányítatlan hálózatban $\ell_{ij} = \ell_{ji}$.
 - Ha nem lehet *j*-be eljutni *i*-ből, akkor $\ell_{ij} = \infty$.

súlyozott hálózatok?

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

- Gráf típusok
- Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Távolság (legrövidebb úthossz)

- ℓ_{ij} : az *i*-ből induló, *j*-be érkező legrövidebb útvonal éleinek száma.
- Tulajdonságai:
 - $\ell_{ii} = 0$
 - Irányítatlan hálózatban $\ell_{ij} = \ell_{ji}$.
 - Ha nem lehet *j*-be eljutni *i*-ből, akkor $\ell_{ij} = \infty$.
- súlyozott hálózatok?

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

- Gráf típusok
- Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Távolság (legrövidebb úthossz)

- ℓ_{ij} : az *i*-ből induló, *j*-be érkező legrövidebb útvonal éleinek száma.
- Tulajdonságai:
 - $\ell_{ii} = 0$
 - Irányítatlan hálózatban $\ell_{ij} = \ell_{ji}$.
 - Ha nem lehet *j*-be eljutni *i*-ből, akkor $\ell_{ij} = \infty$.
- súlyozott hálózatok: pl. a minimális összesített élsúlyhoz tartozó út.

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Gráf típusok Szomszédsági mátrix

Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Átlagos távolság (átlagos legrövidebb úthossz)

• Egy adott *i* csúcsra:

$$\langle \ell_i \rangle = \frac{1}{N-1} \sum_j \ell_{ij}$$

a teljes hálózatra

$$\langle \ell \rangle = \frac{2}{N(N-1)} \sum_{i < j} \ell_{ij}$$

A kis világ tulajdonság

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusok Szomszédság mátrix
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és

(1887-1938)

A kis világ tulajdonságra elsőként **Karinthy Frigyes** hívta fel a figyelmet az 1920-as években...

Láncszemek (1929)

"Tessék egy akármilyen meghatározható egyént kijelölni a Föld másfél milliárd lakója közül, bármelyik pontján a Földnek – ő fogadást ajánl, hogy legföljebb öt más egyénen keresztül, kik közül az egyik neki személyes ismerőse, kapcsolatot tud létesíteni az illetővel,..."

"A nehezebb feladatot: egy szögecselő munkást a Ford-művek műhelyéből, ezek után magam vállaltam, és négy láncszemmel szerencsésen meg is oldottam. A munkás ismeri műhelyfőnökét, műhelyfőnöke magát Fordot, Ford jóban van a Hearst-lapok vezérigazgatójával, a Hearst-lapok vezérigazgatójával tavaly alaposan összeismerkedett Pásztor Árpád úr, aki nekem nemcsak ismerősöm, de tudtommal kitűnő barátom – csak egy szavamba kerül, hogy sürgönyözzön a vezérigazgatónak, hogy szóljon Fordnak, hogy Ford szóljon a műhelyfőnöknek, hogy az a szögecselő munkás sürgősen szögecseljen nekem össze egy autót, éppen szükségem lenne rá."

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusok Szomszédsági mátrix Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Véletlenszerűen választott embereket megkértek Nebraskában, hogy juttassanak el egy levezőlapot egy számukra ismeretlen bostoni brókerhez a személyes ismerőseiken keresztül.

- ADD YOUR NAME TO THE ROSTER AT THE BOTTOM OF THIS SHEET, so that the next person who receives this letter will know who it came from.
- DETACH ONE POSTCARD. FILL IT AND RETURN IT TO HARVARD UNIVERSITY. No stamp is needed. The postcard is very important. It allows us to keep track of the progress of the folder as it moves toward the target person.
- IF YOU KNOW THE TARGET PERSON ON A PERSONAL BASIS, MAIL THIS FOLDER DIRECTLY TO HIM (HER). Do this only if you have previously met the target person and know each other on a first name basis.
- 4. IF YOU DO NOT KNOW THE TARGET PERSON ON A PERSONAL BASIS. DO NOT TRY TO CONTACT HIM DIRECTLY. INSTEAD, MAIL THIS FOLDER (POST CARDS AND ALL) TO A PERSONAL ACQUAINTANCE WHO IS MORE LIKELY THAN YOU TO KNOW THE TARGET PERSON. You may send the folder to a friend, relative or acquaintance, but it must be someone you know on a first name basis.

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusok Szomszédsági mátrix Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Véletlenszerűen választott embereket megkértek Nebraskában, hogy juttassanak el egy levezőlapot egy számukra ismeretlen bostoni brókerhez a személyes ismerőseiken keresztül.

- ADD YOUR NAME TO THE ROSTER AT THE BOTTOM OF THIS SHEET, so that the next person who receives this letter will know who it came from.
- DETACH ONE POSTCARD. FILL IT AND RETURN IT TO HARVARD UNIVERSITY. No stamp is needed. The postcard is very important. It allows us to keep track of the progress of the folder as it moves toward the target person.
- IF YOU KNOW THE TARGET PERSON ON A PERSONAL BASIS, MAIL THIS FOLDER DIRECTLY TO HIM (HER). Do this only if you have previously met the target person and know each other on a first name basis.
- 4. IF YOU DO NOT KNOW THE TARGET PERSON ON A PERSONAL BASIS. DO NOT TRY TO CONTACT HIM DIRECTLY. INSTEAD, MAIL THIS FOLDER (POST CARDS AND ALL) TO A PERSONAL ACQUAINTANCE WHO IS MORE LIKELY THAN YOU TO KNOW THE TARGET PERSON. You may send the folder to a friend, relative or acquaintance, but it must be someone you know on a first name basis.

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusok Szomszédsági mátrix Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Véletlenszerűen választott embereket megkértek Nebraskában, hogy juttassanak el egy levezőlapot egy számukra ismeretlen bostoni brókerhez a személyes ismerőseiken keresztül.

- ADD YOUR NAME TO THE ROSTER AT THE BOTTOM OF THIS SHEET, so that the next person who receives this letter will know who it came from.
- DETACH ONE POSTCARD. FILL IT AND RETURN IT TO HARVARD UNIVERSITY. No stamp is needed. The postcard is very important. It allows us to keep track of the progress of the folder as it moves toward the target person.
- IF YOU KNOW THE TARGET PERSON ON A PERSONAL BASIS, MAIL THIS FOLDER DIRECTLY TO HIM (HER). Do this only if you have previously met the target person and know each other on a first name basis.
- 4. IF YOU DO NOT KNOW THE TARGET PERSON ON A PERSONAL BASIS, DO NOT TRY TO CONTACT HIM DIRECTLY. INSTEAD, MAIL THIS FOLDER (POST CARDS AND ALL) TO A PERSONAL ACQUAINTANCE WHO IS MORE LIKELY THAN YOU TO KNOW THE TARGET PERSON. You may send the folder to a friend, relative or acquaintance, but it must be someone you know on a first name basis.

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusok Szomszédsági mátrix Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Véletlenszerűen választott embereket megkértek Nebraskában, hogy juttassanak el egy levezőlapot egy számukra ismeretlen bostoni brókerhez a személyes ismerőseiken keresztül.

- ADD YOUR NAME TO THE ROSTER AT THE BOTTOM OF THIS SHEET, so that the next person who receives this letter will know who it came from.
- DETACH ONE POSTCARD. FILL IT AND RETURN IT TO HARVARD UNIVERSITY. No stamp is needed. The postcard is very important. It allows us to keep track of the progress of the folder as it moves toward the target person.
- IF YOU KNOW THE TARGET PERSON ON A PERSONAL BASIS, MAIL THIS FOLDER DIRECTLY TO HIM (HER). Do this only if you have previously met the target person and know each other on a first name basis.
- 4. IF YOU DO NOT KNOW THE TARGET PERSON ON A PERSONAL BASIS. DO NOT TRY TO CONTACT HIM DIRECTLY. INSTEAD MAIL THIS FOLDER (POST CARDS AND ALL) TO A PERSONAL ACQUAINTANCE WHO IS MORE LIKELY THAN YOU TO KNOW THE TARGET PERSON. You may send the folder to a friend, relative or acquaintance, but it must be someone you know on a first name basis.

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

A kísérlet eredményei:

- Meglepő módon a levelezőlapok egy része eljutott a célszemélyhez, átlagosan nagyjából 6 lépés alatt.
- Ez alapján (l) durva becslése az USA-ban 6, ami több nagyságrenddel kisebb mint a populáció mérete...
- Ez egy kis világ.

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

A kísérlet eredményei:

- Meglepő módon a levelezőlapok egy része eljutott a célszemélyhez, átlagosan nagyjából 6 lépés alatt.
- Ez alapján ⟨ℓ⟩ durva becslése az USA-ban 6, ami több nagyságrenddel kisebb mint a populáció mérete...
- Ez egy kis világ.

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

A kísérlet eredményei:

- Meglepő módon a levelezőlapok egy része eljutott a célszemélyhez, átlagosan nagyjából 6 lépés alatt.
- Ez alapján ⟨ℓ⟩ durva becslése az USA-ban 6, ami több nagyságrenddel kisebb mint a populáció mérete...
- Ez egy kis világ.

$\langle \ell \rangle$ becslése egy véletlen gráf esetén

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Graf típusok Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Tegyük fel, hogy:

- N kellően nagy,
- viszont $\langle d \rangle$ kicsi, azaz a hálózat ritka.
- Válasszunk véletlenszerűen egy csúcsot:
 - első szomszédok száma?

$\langle \ell \rangle$ becslése egy véletlen gráf esetén

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Graf típusok Szomszédsági mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Tegyük fel, hogy:

- N kellően nagy,
- viszont $\langle d \rangle$ kicsi, azaz a hálózat ritka.
- Válasszunk véletlenszerűen egy csúcsot:
 - első szomszédok száma $\simeq \langle d \rangle$

$\langle \ell \rangle$ becslése egy véletlen gráf esetén

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- Tegyük fel, hogy:
 - N kellően nagy,
 - viszont $\langle d \rangle$ kicsi, azaz a hálózat ritka.
- Válasszunk véletlenszerűen egy csúcsot:
 - első szomszédok száma $\simeq \langle d \rangle$
 - másodszomszédok száma?
Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típus
- Szomszédság mátrix
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és

- Tegyük fel, hogy:
 - N kellően nagy,
 - viszont $\langle d \rangle$ kicsi, azaz a hálózat ritka.
- Válasszunk véletlenszerűen egy csúcsot:
 - első szomszédok száma $\simeq \langle d \rangle$
 - másodszomszédok száma $\simeq \langle d \rangle^2$

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típus
- Szomszédság mátrix
- Hitka gratok
- Halozatjellemzok Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafűggetlenség

Tegyük fel, hogy:

- N kellően nagy,
- viszont $\langle d \rangle$ kicsi, azaz a hálózat ritka.
- Válasszunk véletlenszerűen egy csúcsot:
 - első szomszédok száma $\simeq \langle d \rangle$
 - másodszomszédok száma $\simeq \langle d \rangle^2$
 - harmadik szomszédok száma?

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típus
- Szomszédság mátrix
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság

- Tegyük fel, hogy:
 - N kellően nagy,
 - viszont $\langle d \rangle$ kicsi, azaz a hálózat ritka.
- Válasszunk véletlenszerűen egy csúcsot:
 - első szomszédok száma $\simeq \langle d \rangle$
 - másodszomszédok száma $\simeq \langle d \rangle^2$
 - harmadik szomszédok száma $\simeq \langle d \rangle^3$

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típus
- Szomszédság mátrix
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság
- Fokszámeloszlás és skálafüggetlenség

Tegyük fel, hogy:

- N kellően nagy,
- viszont $\langle d \rangle$ kicsi, azaz a hálózat ritka.
- Válasszunk véletlenszerűen egy csúcsot:
 - első szomszédok száma $\simeq \langle d \rangle$
 - másodszomszédok száma $\simeq \langle d \rangle^2$
 - harmadik szomszédok száma $\simeq \langle d \rangle^3$
 - etc.

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusc
- Szomszédság mátrix
- Hálózatjellem
- Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Tegyük fel, hogy:

- N kellően nagy,
- viszont $\langle d \rangle$ kicsi, azaz a hálózat ritka.
- Válasszunk véletlenszerűen egy csúcsot:
 - első szomszédok száma $\simeq \langle d \rangle$
 - másodszomszédok száma $\simeq \langle d \rangle^2$
 - harmadik szomszédok száma $\simeq \langle d \rangle^3$
 - etc.
 - $\langle d \rangle^{\langle \ell \rangle} \simeq N$

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusc
- Szomszédság mátrix
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság
- Fokszámeloszlás é skálafüggetlenség

- Tegyük fel, hogy:
 - N kellően nagy,
 - viszont $\langle d \rangle$ kicsi, azaz a hálózat ritka.
- Válasszunk véletlenszerűen egy csúcsot:
 - első szomszédok száma ≃ ⟨d⟩
 - másodszomszédok száma $\simeq \langle d \rangle^2$
 - harmadik szomszédok száma $\simeq \langle d \rangle^3$
 - etc.
 - $\langle d \rangle^{\langle \ell \rangle} \simeq N$
 - Ennélfogva

$$\langle \ell \rangle \simeq \frac{\ln N}{\ln \langle d \rangle}$$

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédsági mátrix Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

A kis világ tulajdonság

 Egy hálózat kis világ tulajdonságú ha (ℓ) ~ ln N, (vagy ⟨ℓ⟩ még lassabban nő).

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és

A VALÓS RENDSZEREKET REPREZENTÁLÓ HÁLÓZATOK KIS VILÁG TULAJDONSÁGÚAK!

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference	Nr.
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999	1
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,	
							Pastor-Satorras et al. 2001	2
Movie actors	225, 226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998	3
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b	4
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b	5
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c	6
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b	7
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001	8
Neurosci. coauthorship	209,293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001	9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000	12
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000	13
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001	14
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001	15
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998	17

- Többnyire az összes véletlengráf-modell szintén kis világ tulajdonságú.
- Példa NEM kis világ tulajdonságú hálózatra?

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és

A VALÓS RENDSZEREKET REPREZENTÁLÓ HÁLÓZATOK KIS VILÁG TULAJDONSÁGÚAK!

Network	Size	$\langle k \rangle$	l	lrand	C	Crand	Reference	Nr.
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999	1
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,	-
,							Pastor-Satorras et al. 2001	2
Movie actors	225, 226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998	3
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b	4
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b	5
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c	6
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b	7
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001	8
Neurosci. coauthorship	209,293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001	9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000	12
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000	13
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001	14
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001	15
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998	17

Többnyire az összes véletlengráf-modell szintén kis világ tulajdonságú.

• Példa NEM kis világ tulajdonságú hálózatra?

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- mátrix
- Ritka gráfoł
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és ekéletűregetlesztás

A VALÓS RENDSZEREKET REPREZENTÁLÓ HÁLÓZATOK KIS VILÁG TULAJDONSÁGÚAK!

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference	Nr.
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999	1
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,	
							Pastor-Satorras et al. 2001	2
Movie actors	225, 226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998	3
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b	4
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b	5
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c	6
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b	7
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001	8
Neurosci. coauthorship	209,293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001	9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000	12
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000	13
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001	14
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001	15
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998	17

- Többnyire az összes véletlengráf-modell szintén kis világ tulajdonságú.
- Példa NEM kis világ tulajdonságú hálózatra?

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és

A VALÓS RENDSZEREKET REPREZENTÁLÓ HÁLÓZATOK KIS VILÁG TULAJDONSÁGÚAK!

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference	Nr.
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999	1
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,	
							Pastor-Satorras et al. 2001	2
Movie actors	225, 226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998	3
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b	4
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b	5
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c	6
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b	7
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001	8
Neurosci. coauthorship	209,293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001	9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000	12
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000	13
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001	14
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001	15
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998	17

- Többnyire az összes véletlengráf-modell szintén kis világ tulajdonságú.
- Példa NEM kis világ tulajdonságú hálózatra: szabályos rácsok.

Hálózatok I.

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Gráf típusok Szomszédsági mátrix Bitka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Hálózatok I.

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Szomszédsági mátrix

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Hálózatok I.

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

 \rightarrow Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Történeti áttekinté: A hálózatkutatás

- Gráfok
- Gráf típusok Szomszédsá mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

• egy szabályos rácson, mint pl. egy városban:

 a bennfoglalt épületek száma nagyjából n ∼ ℓ^d szerint nő, (n ∼ ℓ² szerint egy városban)

Hálózatok I.

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

 \rightarrow Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Történeti áttekintés

- A hálózatkutatá alkalmazásai
- Gráfok
- Gráf típusok Szomszédsá mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- a bennfoglalt épületek száma nagyjából n ∼ ℓ^d szerint nő, (n ∼ ℓ² szerint egy városban)
- ahhoz, hogy "lefedjük" az egész rendszert, $\ell \sim N^{1/d}$ lépés kell.

Hálózatok I.

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Mi az, hogy

- Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédsá
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- a bennfoglalt épületek száma nagyjából n ∼ ℓ^d szerint nő, (n ∼ ℓ² szerint egy városban)
- ahhoz, hogy "lefedjük" az egész rendszert, ℓ ~ N^{1/d} lépés kell.
- (pl. egy 100.000 épületből álló város esetén ℓ ≃ 300!)

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

→ Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

 \rightarrow Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

• egy valós hálózat esetén, (pl. emberi kapcsolatok):

 a bennfoglalt csúcsok száma exponenciálisan nő, n ~ (d)^ℓ!

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

 \rightarrow Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

- a bennfoglalt csúcsok száma exponenciálisan nő, n ~ (d)^ℓ!
- ahhoz, hogy "lefedjük" az egész rendszert, csak néhány lépés kell!

Hálózatok I.

Kis világ tulajdonság

Mik az $\langle \ell \rangle \sim \ln N$ következményei?

 \rightarrow Vizsgáljuk meg egy csúcs első-, másod-, harmad-, stb. szomszédságait:

- a bennfoglalt csúcsok száma exponenciálisan nő, n ~ (d)^ℓ!
- ahhoz, hogy "lefedjük" az egész rendszert, csak néhány lépés kell!
- (pl. egy N = 100.000 csúcsból álló, $\langle d \rangle = 5$ átlagos fokszámú hálózat esetén $\ell \simeq 7!$)

Fokszámeloszlás

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Grát tipusok Szomszédság mátrix Bitka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Fokszámeloszlás

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Fokszámeloszlás

- A hálózat fokszámeloszlása, p(d), annak valószínűsége, hogy egy véletlenszerűen választott csúcs fokszáma d.
- Egy N csúcsból álló hálózat esetén,

$$p(d)=rac{N_d}{N},$$

ahol *N_d* a *d* fokszámú csúcsok száma.

 Máshogy megfogalmazva p(d) szimplán a d fokszámú csúcsok aránya a hálózatban.

Fokszámeloszlás

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Fokszámeloszlás

- A hálózat fokszámeloszlása, p(d), annak valószínűsége, hogy egy véletlenszerűen választott csúcs fokszáma d.
- Egy N csúcsból álló hálózat esetén,

$$p(d)=rac{N_d}{N},$$

ahol N_d a d fokszámú csúcsok száma.

 Máshogy megfogalmazva p(d) szimplán a d fokszámú csúcsok aránya a hálózatban.

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

 Mi a fokszámeloszlás egy Erdős–Rényi-gráfban, mely N csúcsból áll és minden csúcspárt p valószínűséggel összekötünk?

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfoł
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- Mi a fokszámeloszlás egy Erdős–Rényi-gráfban, mely N csúcsból áll és minden csúcspárt p valószínűséggel összekötünk?
 - Az i és j csúcsok között:

$$\mathcal{P}(e_{ij} = 1) = p$$

$$\mathcal{P}(e_{ij} = 0) = 1 - p$$

(Ez a Bernoulli-eloszlás.)

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- Mi a fokszámeloszlás egy Erdős–Rényi-gráfban, mely N csúcsból áll és minden csúcspárt p valószínűséggel összekötünk?
 - Az i és j csúcsok között:

$$\mathcal{P}(e_{ij} = 1) = p$$

$$\mathcal{P}(e_{ij} = 0) = 1 - p$$

- (Ez a Bernoulli-eloszlás.)
- Egy adott csúcs N 1 lehetséges szomszéd közül választhat, amik egymástól függetlenül kerülnek bekötésre,
- $\rightarrow p(d)$ binomiális eloszlású lesz:

$$p(d) = \binom{N-1}{d} p^d (1-p)^{N-1-d}.$$

Hálózatok I.

Bevezetés

- Mi az, hogy hálózatá Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédsá
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

- Általában elhanyagoljuk a –1-et: $p(d) = \binom{N}{d} p^d (1-p)^{N-d},$
- és az N → ∞ határesetben a binomiális eloszlást Poisson-eloszlással közelítjük:

$$p(d) = {\binom{N}{d}} p^{d} (1-p)^{N-d}$$

$$\downarrow$$

$$p(d) \simeq \frac{\langle d \rangle^{d}}{d!} e^{-\langle d \rangle}, \qquad \langle d \rangle = Np^{d}$$
Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típuso
- Szomszédsá mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Általában elhanyagoljuk a –1-et:

$$p(d) = \binom{N}{d} p^d (1-p)^{N-d},$$

 és az N → ∞ határesetben a binomiális eloszlást Poisson-eloszlással közelítjük:

$$p(d) = {\binom{N}{d}} p^{d} (1-p)^{N-d}$$

$$\downarrow$$

$$p(d) \simeq \frac{\langle d \rangle^{d}}{d!} e^{-\langle d \rangle}, \qquad \langle d \rangle = Np$$

Hálózatok I.

Fokszámeloszlás és skálafüggetlenség

A binomiális eloszlás közelítése Poisson-eloszlással

$p(d) = \frac{N(N-1)\cdots(N-d+1)}{d!} \frac{\langle d \rangle^d}{N^d} \left(1 - \frac{\langle d \rangle}{N}\right)^N \left(1 - \frac{\langle d \rangle}{N}\right)^{-d}$ $= \frac{\langle d \rangle^d}{d!} \underbrace{\left(1 - \frac{\langle d \rangle}{N}\right)^N}_{\simeq e^{-\langle d \rangle}} \underbrace{\frac{N(N-1)\cdots(N-d+1)}{N^d}}_{\simeq 1} \underbrace{\left(1 - \frac{\langle d \rangle}{N}\right)^{-d}}_{\simeq 1}$

Az utolsó két tényező 1-hez tart:

$$\lim_{N \to \infty} \frac{N(N-1)\cdots(N-d+1)}{N^d} =$$
$$\lim_{N \to \infty} \left(1 - \frac{\langle d \rangle}{N}\right)^{-d} = 1,$$

ezzel párhuzamosai

$$\lim_{N\to\infty}\left(1-\frac{\langle d\rangle}{N}\right)^N=e^{-\langle d\rangle}$$

Ezek alapján

$$p(d) \simeq \frac{\langle d \rangle^d}{d!} e^{-\langle d \rangle}.$$

Hálózatok I.

A binomiális eloszlás közelítése Poisson-eloszlással

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok
- Gráf típusok
- mátrix
- Ritka grátok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

$$d) = \frac{N(N-1)\cdots(N-d+1)}{d!} \frac{\langle d \rangle^d}{N^d} \left(1 - \frac{\langle d \rangle}{N}\right)^N \left(1 - \frac{\langle d \rangle}{N}\right)^{-d}$$
$$= \frac{\langle d \rangle^d}{d!} \underbrace{\left(1 - \frac{\langle d \rangle}{N}\right)^N}_{\simeq e^{-\langle d \rangle}} \underbrace{\frac{N(N-1)\cdots(N-d+1)}{N^d}}_{\simeq 1} \underbrace{\left(1 - \frac{\langle d \rangle}{N}\right)^{-d}}_{\simeq 1}$$

Az utolsó két tényező 1-hez tart:

$$\lim_{N \to \infty} \frac{N(N-1)\cdots(N-d+1)}{N^d} = 1$$
$$\lim_{N \to \infty} \left(1 - \frac{\langle d \rangle}{N}\right)^{-d} = 1,$$

ezzel párhuzamosai

p(

$$\lim_{N\to\infty}\left(1-\frac{\langle d\rangle}{N}\right)^N=e^{-\langle d\rangle}$$

Ezek alapján

$$p(d) \simeq rac{\langle d
angle^d}{d!} e^{-\langle d
angle}.$$

Hálózatok I.

A binomiális eloszlás közelítése Poisson-eloszlással

A hálózatkutatá alkalmazásai

Gráfok

Gráf típusok Szomszéds:

matrix Ditko grófok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

$$d) = \frac{N(N-1)\cdots(N-d+1)}{d!} \frac{\langle d \rangle^d}{N^d} \left(1 - \frac{\langle d \rangle}{N}\right)^N \left(1 - \frac{\langle d \rangle}{N}\right)^{-d}$$
$$= \frac{\langle d \rangle^d}{d!} \underbrace{\left(1 - \frac{\langle d \rangle}{N}\right)^N}_{\simeq e^{-\langle d \rangle}} \underbrace{\frac{N(N-1)\cdots(N-d+1)}{N^d}}_{\simeq 1} \underbrace{\left(1 - \frac{\langle d \rangle}{N}\right)^{-d}}_{\simeq 1}$$

Az utolsó két tényező 1-hez tart:

$$\lim_{N \to \infty} \frac{N(N-1)\cdots(N-d+1)}{N^d} = 1$$
$$\lim_{N \to \infty} \left(1 - \frac{\langle d \rangle}{N}\right)^{-d} = 1,$$

ezzel párhuzamosan

p(

$$\lim_{N\to\infty}\left(1-\frac{\langle d\rangle}{N}\right)^N=e^{-\langle d\rangle}$$

Ezek alapján

$$p(d) \simeq rac{\langle d
angle^{d}}{d!} e^{-\langle d
angle}.$$

Hálózatok I.

A binomiális eloszlás közelítése Poisson-eloszlással

Gráf típusok Szomszédsá

Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

$$d) = \frac{N(N-1)\cdots(N-d+1)}{d!} \frac{\langle d \rangle^d}{N^d} \left(1 - \frac{\langle d \rangle}{N}\right)^N \left(1 - \frac{\langle d \rangle}{N}\right)^{-d}$$
$$= \frac{\langle d \rangle^d}{d!} \underbrace{\left(1 - \frac{\langle d \rangle}{N}\right)^N}_{\simeq e^{-\langle d \rangle}} \underbrace{\frac{N(N-1)\cdots(N-d+1)}{N^d}}_{\simeq 1} \underbrace{\left(1 - \frac{\langle d \rangle}{N}\right)^{-d}}_{\simeq 1}$$

Az utolsó két tényező 1-hez tart:

$$\lim_{N \to \infty} \frac{N(N-1)\cdots(N-d+1)}{N^d} = 1$$
$$\lim_{N \to \infty} \left(1 - \frac{\langle d \rangle}{N}\right)^{-d} = 1,$$

ezzel párhuzamosan

p(

$$\lim_{N\to\infty}\left(1-\frac{\langle d\rangle}{N}\right)^N=e^{-\langle d\rangle}$$

Ezek alapján,

$$p(d) \simeq \frac{\langle d \rangle^d}{d!} e^{-\langle d \rangle}$$

Hálózatok I.

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok Gráf típusok Szomszédsági mátrix Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok I.

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok Gráf típusok Szomszédsági mátrix Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

p(d) valódi rendszereket reprezentáló hálózatokban

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok Gráf típusok Szomszédság mátrix Ritka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Nodes: WWW documents Links: URL links

Over 3 billion documents

ROBOT: collects all URL's found in a document and follows them recursively

(Barabási A.-L. fóliái alapján)

Skálafüggetlen és Poisson-eloszlás

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Az Internet fokszámeloszlása (AS szinten), összehasonlítva egy vele azonos méretű és sűrűségű Erdős–Rényi-gráf fokszámeloszlásával:

p(d) valódi rendszereket reprezentáló hálózatokban

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédsá
- Bitka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).

(Barabási A.-L. fóliái alapján)

p(d) valódi rendszereket reprezentáló hálózatokban

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusok Szomszéds
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).

(Barabási A.-L. fóliái alapján)

Skálafüggetlen hálózatok

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Skálafüggetlen hálózatok

 Egy hálózat skálafüggetlen ha a fokszámeloszlása a nagy fokszámok tartományán hatványszerűen csökken, azaz skálázó.

 $p(d) \sim d^{-\gamma}$.

A γ exponens az ún. fokszám lecsengési exponens vagy fokszám exponens.

Alapvető eltérések a skálafüggetlen és a Poisson-eloszlás között!

Hálózatok I.

Mi az, hogy hálózat': Történeti áttekintés A hálózatkutatás alkalmazásai

Gráf típusok Szomszédság mátrix Pitka gráfok

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

(Barabási A.-L. fóliái alapján)

Alapvető eltérések a skálafüggetlen és a Poisson-eloszlás között!

Hálózatok I.

Bevezetés

Mi az, hogy hálózat Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

- Gráf típusok
- Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

• "HUB"-ok!

- ⟨d⟩ << d.
- Emiatt nincs értelme "tipikus" fokszámról beszélni.
- A fokszámeloszlás nagyon inhomogén.

Hálózatok I.

Fokszámeloszlás és skálafüggetlenség

Nodes: pape	ers	Institute	Country	Floid	avg. cites	total art.	total cites	rank total c
Links. citations		Princeton (U)	USA, NI	High-energy (T)	168	138	23235	ł
		UCSB (U)	USA, CA	Senaic			05	2
Cisva	RJ	Bell Labs (I)	USA, NJ	Super 1 2 · ·			25	3
TS and Tangging	B	Bell Labs (I)	USA, NJ	Supen	*		1	-18
Ploog	K.	Max-Planck (NL)	Gormany	Semio			/	5
1134.9hes	3	Buro Nuclear Cent.	Switzerland	Astrop			/	6
1.21:535.	Z	Florida State (U)	USA, FL	Solid:	- 1		<u></u>	7
Cardona	2~2	Max Planck (NL)	Germany	Sensie	1 1			8
Nanopoulos	DV	Texas A&M (U)	USA, TX	3:13:23:00				9
Ficeger	A.3	UCSB (U)	USA, CA	Polym LLE O	4 1			EO
Lances	PA			H.E. S	tanie	у,		E 1
Suzaki*	~§*					-		12
Anderson	4700 DE		. 1843	Solid :			.	13
Suzakt*	1736 PF	(L papers (1988)			****	****	N	1.4
Preeman	A 101		Course LL	Solid:	1 1 1	1111	Υ.	1.5
Tana	0.0000000			//////	1111	1111	11	ŁG
Maile 1000	-	and the second se	land	Superce 1	111	1111	11	17
Schus	ŧ		13	Supers		** **	\ \	18
Chora	F		- A	Optics 1231	• • •		. 578	19
Work	[Semic 1234			010.	19
Totalia	[225	Semic				21
Ches 7,100	F		- 28	Superconductivity (E)	- 44	213	9453	2.2
Bedn 🖌	E		iand	Supercond Brog (E)	V-1	83	9311	23
Cohe	F		5A.	Solid State Clo	~ N '	284	931 E	23
Defi contage	t			Superconductivity (E)	86	EOS.	9300	2.5
W 832	[13	Superconductivity	57	162	9170	26
Shira 10	F .		- 1°Y'	Superconded iver (*)	33	269	8841	27
Wieg	E		- 13	Semiconductors (E)	85	1.04	\$822	28
Vand	F	Ľ,		Magnetism (E)	67	129	\$686	29
Uchic		Y	\ 1		28	301	8520	3.0
htor.	1	٩	` 1 %	Superconductivity (E)	72	119	8512	31
ivi aarp		· · · · · · · · · · · · · · · · · · ·		Astronomy (E)	E L E	76	8439	3.2
Birge	1 10	100 1000	1000(1.4	Superconductivity (E)) ≪1 E	286	8375	33
lorge		r		Superconductivity (E	50	LG7	8298	3.4
(O Hinks		Argonne (NL)	USA, IL	Superconductivity (E)	37	223	8263	3.5
(S. Hedner, 1	1998)							

Out of over 500,000 Examined

(Barabási A.-L. fóliái alapján)

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusok Szomszédsági mátrix Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

⁽Barabási A.-L. fóliái alapján)

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Gráf típusok Szomszédság mátrix

Ritka grátok

Halozatjellemzök Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség Nodes: online user Links: email contact

> Kiel University log files 112 days, N=59,912 nodes

⁽Barabási A.-L. fóliái alapján)

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

Gráfok

Gráf típusok Szomszédság mátrix

Ritka gráfoł

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok
- Szomszédság mátrix
- Ritka gráfok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

(Barabási A.-L. fóliái alapján)

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusok Szomszédság mátrix
- Ritka gráfok
- Halozatjellemzök Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)

(Barabási A.-L. fóliái alapján)

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gratok
- Graf tipusok Szomszédság mátrix
- ника graiok
- Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok Gráf típusok Szomszédság mátrix Bitko grófok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafüggetlenség

Nodes: people (Females; Males) Links: sexual relationships

4781 Swedes; 18-74; 59% response rate.

Liljeros et al. Nature 2001

(Barabási A.-L. fóliái alapján)

Skálafüggetlen hálózatok

Hálózatok I.

Bevezetés

Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai

- Gráfok
- Gráf típusok Szomszédsá mátrix
- Ritka gráfoł

Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafűggetlenség

Skálafüggetlen fokszámeloszlás: $p(d) \sim d^{-\gamma}$.

Network	Size	$\langle k \rangle$	κ	γ_{out}	γ_{in}	ℓ_{real}	ℓ_{rand}	ℓ_{pow}	Reference
WWW	325,729	4.51	900	2.45	2.1	11.2	8.32	4.77	Albert, Jeong, Barabási 1999
WWW	4×10^{7}	7		2.38	2.1				Kumar et al. 1999
WWW	2×10^{8}	7.5	4,000	2.72	2.1	16	8.85	7.61	Broder et al. 2000
WWW, site	260,000				1.94				Huberman, Adamic 2000
Internet, domain*	3,015 - 4,389	3.42 - 3.76	30 - 40	2.1 - 2.2	2.1 - 2.2	4	6.3	5.2	Faloutsos 1999
Internet, router*	3,888	2.57	30	2.48	2.48	12.15	8.75	7.67	Faloutsos 1999
Internet, router*	150,000	2.66	60	2.4	2.4	11	12.8	7.47	Govindan 2000
Movie actors*	212, 250	28.78	900	2.3	2.3	4.54	3.65	4.01	Barabási, Albert 1999
Coauthors, SPIRES*	56,627	173	1,100	1.2	1.2	4	2.12	1.95	Newman 2001b,c
Coauthors, neuro.*	209, 293	11.54	400	2.1	2.1	6	5.01	3.86	Barabási et al. 2001
Coauthors, math*	70,975	3.9	120	2.5	2.5	9.5	8.2	6.53	Barabási et al. 2001
Sexual contacts*	2810			3.4	3.4				Liljeros et al. 2001
Metabolic, E. coli	778	7.4	110	2.2	2.2	3.2	3.32	2.89	Jeong et al. 2000
Protein, S. cerev.*	1870	2.39		2.4	2.4				Mason et al. 2000
Ythan estuary*	134	8.7	35	1.05	1.05	2.43	2.26	1.71	Montoya, Solé 2000
Silwood park*	154	4.75	27	1.13	1.13	3.4	3.23	2	Montoya, Solé 2000
Citation	783, 339	8.57			3				Redner 1998
Phone-call	53×10^{6}	3.16		2.1	2.1				Aiello et al. 2000
Words, cooccurence*	460,902	70.13		2.7	2.7				Cancho, Solé 2001
Words, synonyms*	22,311	13.48		2.8	2.8				Yook et al. 2001

Összefoglalás

Hálózatok I.

Bevezetés

- Mi az, hogy hálózat? Történeti áttekintés A hálózatkutatás alkalmazásai
- Gráfok
- Gráf típusoł
- Szomszédság mátrix Bitko grófok
- Hálózatjellemzők Csúcsok jellemzése Kis világ tulajdonság Fokszámeloszlás és skálafűggetlenség

A valódi rendszereket reprezentáló hálózatok

• **RITKÁK**: $\langle d \rangle << N$,

• MAGASAN KLASZTEREZETTEK:

 $\langle {\it C} \rangle$ sokkal nagyobb mint egy ugyanolyan méretű és sűrűségű E-R gráfban,

• KIS VILÁG TULAJDONSÁGÚAK: $\langle \ell \rangle \sim \ln N$,

• SKÁLAFÜGGETLENEK: $p(k) \sim k^{-\gamma}$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis vilag ettektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

HÁLÓZATOK II: MODELLEK

Erdős–Rényi-modell, Watts–Strogatz-modell, Barabási–Albert-modell, konfigurációs modell, determinisztikus skálafüggetlen modellek, gráfsokaságok, topologikus fázisátalakulások.

Hálózatok II.

Erdős–Rényimodell

- Tulajdonságok Perkoláció E-R gráf és való: hálózatok
- Watts-Strogatz modell
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

AZ ERDŐS-RÉNYI-MODELL

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

- Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Az Erdős-Rényi-modell (klasszikus véletlen gráf)

- N csúcs,
- páronként függetlenül p valószínűséggel összekötjük őket.

- Ezt szokták G(N, p) modellnek is hívni.
- A G(N, M) modell nagyon hasonló: M darab élt kell egymástól függetlenül véletlenszerűen szétosztani N csúcs között.

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

- Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Az Erdős-Rényi-modell (klasszikus véletlen gráf)

- N csúcs,
- páronként függetlenül p valószínűséggel összekötjük őket.

- Ezt szokták *G*(*N*,*p*) modellnek is hívni.
- A G(N, M) modell nagyon hasonló: M darab élt kell egymástól függetlenül véletlenszerűen szétosztani N csúcs között.

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

- Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Az Erdős-Rényi-modell (klasszikus véletlen gráf)

- N csúcs,
- páronként függetlenül p valószínűséggel összekötjük őket.

- Ezt szokták *G*(*N*,*p*) modellnek is hívni.
- A G(N, M) modell nagyon hasonló: M darab élt kell egymástól függetlenül véletlenszerűen szétosztani N csúcs között.

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

- Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Az Erdős-Rényi-modell (klasszikus véletlen gráf)

- N csúcs,
- páronként függetlenül p valószínűséggel összekötjük őket.

- Ezt szokták *G*(*N*,*p*) modellnek is hívni.
- A G(N, M) modell nagyon hasonló: M darab élt kell egymástól függetlenül véletlenszerűen szétosztani N csúcs között.

Erdős–Rényimodell

- Tulajdonságok
- Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és renormálás

Barabási–Albertmodell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások Az Erdős-Rényi-gráf tulajdonságai:

• kis világ tulajdonság?

Erdős–Rényimodell

Tulajdonságok

Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások Az Erdős–Rényi-gráf tulajdonságai:

• kis világ tulajdonság.

Erdős–Rényimodell

- Tulajdonságok
- Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Az Erdős–Rényi-gráf tulajdonságai:
 - kis világ tulajdonság.
 - átlagos fokszám?

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások Az Erdős-Rényi-gráf tulajdonságai:

- kis világ tulajdonság.
- átlagos fokszám: $\langle d \rangle = (N-1)p \simeq Np$,

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások Az Erdős-Rényi-gráf tulajdonságai:

- kis világ tulajdonság.
- átlagos fokszám: $\langle d \rangle = (N-1)p \simeq Np$,
- élek várható száma?

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások Az Erdős-Rényi-gráf tulajdonságai:

- kis világ tulajdonság.
- átlagos fokszám: $\langle d \rangle = (N-1)p \simeq Np$,
- élek várható száma: M = pN(N-1)/2.

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

- Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pret kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Már korábban levezettük,

$$p(d) = {\binom{N-1}{d}} p^d (1-p)^{N-1-d} \simeq {\binom{N}{d}} p^d (1-p)^{N-d}$$
 (binomiális)
$$\simeq \frac{(d)^d}{d!} e^{-(d)}$$
 (Poisson)

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

- Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Erdős–Rényimodell

Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts–Strogatzmodell Kis világ effektus Skálázás és

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku: skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Az E-R gráf fokszámeloszlása Variancia

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és renormálás

Barabási–Albertmodell Növekedés és Pref. kapcs.

Kiaszterezettseg

Konfigurációs modell Randomizáció

Determinisztiku: skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Mi a *p*(*d*) szórásnégyzete?

Az eloszlás binomiális,

$$p(d) = \binom{N}{d} p^d (1-p)^{N-d},$$

→ a várható érték és a szórásnégyzet

Az E-R gráf fokszámeloszlása Variancia

Hálózatok II.

Erdős–Rényimodell

- Tulajdonságok
- Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Mi a *p*(*d*) szórásnégyzete?
 - Az eloszlás binomiális,

$$p(d) = \binom{N}{d} p^d (1-p)^{N-d},$$

→ a várható érték és a szórásnégyzet

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ ettektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku: skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások Mi történik az N → ∞ határesetben egy "realisztikus" E-R gráfban? (Egy olyan E-R gráfban, amivel egy valós rendszert szeretnénk modellezni).

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku: skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások Mi történik az N → ∞ határesetben egy "realisztikus" E-R gráfban? (Egy olyan E-R gráfban, amivel egy valós rendszert szeretnénk modellezni).

Ritkának kell maradnia! $\rightarrow \langle d \rangle$ =const.,

$$\begin{cases} N \to \infty \\ \langle d \rangle = Np \to \text{const.} \end{cases} \Rightarrow p \to 0$$

$$\operatorname{Var}(d) = Np(1-p) = \langle d \rangle (1-p)$$

 $\rightarrow \quad \text{Var}(d) \rightarrow \langle d \rangle = \text{const.}$

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

Perkoláció E-R gráf és valós hálózatok

Watts-Strogatzmodell

Kis világ effektus Skálázás és

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztiku skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások Mi történik az N → ∞ határesetben egy "realisztikus" E-R gráfban? (Egy olyan E-R gráfban, amivel egy valós rendszert szeretnénk modellezni).

Ritkának kell maradnia! $\rightarrow \langle d \rangle$ =const.,

 $\left. \begin{array}{l} N \to \infty \\ (d) = Np \to \text{const.} \end{array} \right\} \Rightarrow p \to 0$

$$\operatorname{Var}(d) = Np(1-p) = \langle d \rangle (1-p)$$

 $\rightarrow \quad \text{Var}(d) \rightarrow \langle d \rangle = \text{const.}$

A szórásnégyzet konstans, ami elhanyagolhatóvá válik a rendszermérethez képest!

Hálózatok II.

Erdős–Rényimodell

- Tulajdonságok
- Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Folytonos formalizmusban:

$$\mathcal{P}(d > d_0) = \int_{d_0}^{\infty} p(z) dz = \int_{d_0}^{\infty} \frac{\langle d \rangle^z}{z!} e^{-\langle d \rangle} dz.$$

Pl. ha (d) = 10:

- egy $d \ge 20$ csúcs valószínűsége $P(d \ge 20) = 0.00158826$,
- egy d ≤ 1 csúcs valószínűsége P(d ≤ 1) = 0.00049,
- egy $d \ge 100$ csúcs valószínűsége $P(d \ge 100) = 1.79967152 \times 10^{-13}$.
- A szociológusok szerint egy tipikus személy d ~ 1000 ismerőssel rendelkezik.
- → annak valószínűsége, hogy találunk valakit, akinél d ≥ 2000, az nagyjából P(d ≥ 2000) ≃ 10⁻²⁷!
- → Egy ilyen teljesen véletlenszerű társadalom nagyon homogén lenne, kilógó egyének teljes hiányával!

Az E-R gráf fokszámeloszlása Variancia

Hálózatok II.

Erdős–Rényimodell

- Tulajdonságok
- Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Folytonos formalizmusban:

$$\mathcal{P}(d > d_0) = \int_{d_0}^{\infty} p(z) dz = \int_{d_0}^{\infty} \frac{\langle d \rangle^z}{z!} e^{-\langle d \rangle} dz.$$

Pl. ha (d) = 10:

- egy d ≥ 20 csúcs valószínűsége P(d ≥ 20) = 0.00158826,
- egy d ≤ 1 csúcs valószínűsége P(d ≤ 1) = 0.00049,
- egy $d \ge 100$ csúcs valószínűsége $P(d \ge 100) = 1.79967152 \times 10^{-13}$.
- A szociológusok szerint egy tipikus személy d ~ 1000 ismerőssel rendelkezik.
- → annak valószínűsége, hogy találunk valakit, akinél d ≥ 2000, az nagyjából P(d ≥ 2000) ≃ 10⁻²⁷!
- → Egy ilyen teljesen véletlenszerű társadalom nagyon homogén lenne, kilógó egyének teljes hiányával!

Hálózatok II.

Erdős–Rényimodell

- Tulajdonságok
- Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Folytonos formalizmusban:

$$\mathcal{P}(d > d_0) = \int_{d_0}^{\infty} p(z) dz = \int_{d_0}^{\infty} \frac{\langle d \rangle^z}{z!} e^{-\langle d \rangle} dz.$$

Pl. ha (d) = 10:

- egy d ≥ 20 csúcs valószínűsége P(d ≥ 20) = 0.00158826,
- egy d ≤ 1 csúcs valószínűsége P(d ≤ 1) = 0.00049,
- egy $d \ge 100$ csúcs valószínűsége $P(d \ge 100) = 1.79967152 \times 10^{-13}$.
- A szociológusok szerint egy tipikus személy d ~ 1000 ismerőssel rendelkezik.
- → annak valószínűsége, hogy találunk valakit, akinél $d \ge 2000$, az nagyjából $P(d \ge 2000) \simeq 10^{-27}!$
- → Egy ilyen teljesen véletlenszerű társadalom nagyon homogén lenne, kilógó egyének teljes hiányával!

Az E-R gráf klaszterezettsége

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Mekkora a (C) egy E-R gráfban?

Az E-R gráf klaszterezettsége

Hálózatok II.

Erdős–Rényimodell

- Tulajdonságok
- Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Mekkora a (*C*) egy E-R gráfban?
- Az E-R gráf nagyon demokratikus, ezért minden csúcsnak nagyjából azonos a klaszterezettségi együtthatója, C_i ~ (C).
- *C_i* úgy is interpretálható, mint az *i* szomszédai közt húzódó élek valószínűslge.
- Mivel az E-R gráf élei egymástól függetlenek, az i szomszédai közt is p valószínűséggel keletkezik él.
- Ennélfogva az E-R gráfban $\langle C \rangle = p$.

Egy hálózat komponensei

Hálózatok II.

Erdős–Rényimodell Tulajdonságok **Perkoláció** E-R gráf és valós hálózatok

Watts-Strogatzmodell Kis világ effektus

- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Komponens

Egy komponens olyan maximális részgráf, melyen belül bármely csúcsból el lehet jutni bármely más csúcsba az éleken keresztül.

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

(Barabási A.-L. fóliáiról)

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció
- E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Hogyan lehetne meghatározni a legnagyobb komponens S = ^{s1}/_N relatív méretét?

- Erdős–Rényimodell
- Tulajdonságol
- Perkoláció
- E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Albe modell
- Növekedés és Pret kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens $S = \frac{s_1}{N}$ relatív méretét?
 - Jelölje u = 1 S azon csúcsok hányadát melyek NEM részei a legnagyobb komponensnek.

- Erdős–Rényimodell
- Tulajdonságoł
- Perkoláció
- E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens $S = \frac{s_1}{N}$ relatív méretét?
 - Jelölje u = 1 S azon csúcsok hányadát melyek NEM részei a legnagyobb komponensnek.
 - Tegyük fel, hogy i NINCS BENNE a legnagyobb komponensben, és vizsgáljuk meg az i és j közt húzódó élt:

- Erdős–Rényimodell
- Tulajdonságoł
- Perkoláció
- E-R gráf és való: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- renormálás Barabási-Alb
- modell Növekedés és Pret kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens $S = \frac{s_1}{N}$ relatív méretét?
 - Jelölje u = 1 S azon csúcsok hányadát melyek NEM részei a legnagyobb komponensnek.
 - Tegyük fel, hogy i NINCS BENNE a legnagyobb komponensben, és vizsgáljuk meg az i és j közt húzódó élt:
 - vagy nem létezik

- Erdős–Rényimodell
- Tulajdonságol
- Perkoláció
- E-R gráf és való: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- renormálás
- Barabası–Albert modell Növekedés és Pref kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens $S = \frac{s_1}{N}$ relatív méretét?
 - Jelölje <u>u</u> = 1 S azon csúcsok hányadát melyek NEM részei a legnagyobb komponensnek.
 - Tegyük fel, hogy i NINCS BENNE a legnagyobb komponensben, és vizsgáljuk meg az i és j közt húzódó élt:
 - vagy nem létezik \rightarrow ennek valószínűsége = 1 p,

- Perkoláció

- Hogyan lehetne meghatározni a legnagyobb komponens $S = \frac{s_1}{M}$ relatív méretét?
 - Jelölje u = 1 S azon csúcsok hányadát melyek NEM részei a legnagyobb komponensnek.
 - Tegyük fel, hogy i NINCS BENNE a legnagyobb komponensben, és vizsgáljuk meg az i és i közt húzódó élt:

 - vagy nem létezik \rightarrow ennek valószínűsége = 1 p.
 - vagy *j* sincs benne az óriás komponensben

- Erdős–Rényimodell
- Tulajdonságoł
- Perkoláció
- E-R gráf és való: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- renormálás
- Barabási–Albert modell Növekedés és Pret kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens $S = \frac{s_1}{N}$ relatív méretét?
 - Jelölje <u>u</u> = 1 S azon csúcsok hányadát melyek NEM részei a legnagyobb komponensnek.
 - Tegyük fel, hogy i NINCS BENNE a legnagyobb komponensben, és vizsgáljuk meg az i és j közt húzódó élt:
 - vagy nem létezik →
- \rightarrow ennek valószínűsége = 1 p,
 - vagy j sincs
 benne az óriás
 komponensben
- → ennek valószínűsége = pu

Hálózatok II.

- Perkoláció

- Hogyan lehetne meghatározni a legnagyobb komponens $S = \frac{s_1}{M}$ relatív méretét?
 - Jelölje u = 1 S azon csúcsok hányadát melyek NEM részei a legnagyobb komponensnek.
 - Tegyük fel, hogy i NINCS BENNE a legnagyobb komponensben, és vizsgáljuk meg az i és i közt húzódó élt:

 - vagy nem létezik \rightarrow ennek valószínűsége = 1 p.
 - vagy *j* sincs komponensben
 - benne az óriás → ennek valószínűsége = pu
 - → Annak valószínűsége, i NINCS BENNE a legnagyobb komponensben

 $(1 - p + pu)^{N-1}$

Hálózatok II.

- Perkoláció

- Hogyan lehetne meghatározni a legnagyobb komponens $S = \frac{s_1}{M}$ relatív méretét?
 - Jelölje u = 1 S azon csúcsok hányadát melyek NEM részei a legnagyobb komponensnek.
 - Tegyük fel, hogy i NINCS BENNE a legnagyobb komponensben, és vizsgáljuk meg az i és j közt húzódó élt:

 - vagy nem létezik \rightarrow ennek valószínűsége = 1 p.
 - vagy *j* sincs komponensben
 - benne az óriás → ennek valószínűsége = pu
 - → Annak valószínűsége, i NINCS BENNE a legnagyobb komponensben

$$(1-p+pu)^{N-1}$$

Másfelől ez a valószínűség definíció szerint u, ami alapján

$$u=\left(1-p+pu\right)^{N-1}.$$

- Erdős–Rényimodell
- Tulajdonságo
- Perkoláció
- E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Albe modell
- Növekedés és Prel kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens S = ^{s1}/_N relatív méretét?
 - Jelölje u = 1 S azon csúcsok hányadát melyek NEM részei a legnagyobb komponensnek.

$$u=(1-p+pu)^{N-1}.$$

- Erdős–Rényimodell
- Tulajdonságol
- Perkoláció
- E-R gráf és való: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- renormálás
- modell Növekedés és Prei kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens S = ^{s1}/_N relatív méretét?
 - Jelölje u = 1 S azon csúcsok hányadát melyek NEM részei a legnagyobb komponensnek.

$$u=\left(1-p+pu\right)^{N-1}.$$

$$u = (1 - p(1 - u))^{N-1} = \left(1 - \frac{\langle d \rangle}{N - 1}(1 - u)\right)^{N-1}$$

- Erdős–Rényimodell
- Tulajdonságo
- Perkoláció
- E-R gráf és való: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Albe modell
- Növekedés és Pre kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens S = ^{s1}/_N relatív méretét?
 - Jelölje u = 1 S azon csúcsok hányadát melyek NEM részei a legnagyobb komponensnek.

$$u=\left(1-p+pu\right)^{N-1}.$$

$$u = (1 - p(1 - u))^{N-1} = \left(1 - \frac{\langle d \rangle}{N - 1}(1 - u)\right)^{N-1}$$

$$\ln u = (N - 1) \ln \left[1 - \frac{\langle d \rangle}{N - 1}(1 - u)\right]$$

- Erdős–Rényimodell
- Tulajdonságol
- Perkoláció
- E-R gráf és való: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Alber modell Növekedés és Pre
- kapcs.
- riduziorezoitoog
- Konfiguracios modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens S = ^{s1}/_N relatív méretét?
 - Jelölje <u>u</u> = 1 <u>S</u> azon csúcsok hányadát melyek <u>NEM</u> részei a legnagyobb komponensnek.

$$u=\left(1-p+pu\right)^{N-1}.$$

$$u = (1 - p(1 - u))^{N-1} = \left(1 - \frac{\langle d \rangle}{N - 1}(1 - u)\right)^{N-1}$$

$$\ln u = (N - 1) \ln \left[1 - \frac{\langle d \rangle}{N - 1}(1 - u)\right]$$

$$\ln u \approx -(N - 1) \left[\frac{\langle d \rangle}{N - 1}(1 - u)\right]$$

- Erdős–Rényimodell
- Tulajdonságol
- Perkoláció
- E-R gráf és való: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Alber modell Növekedés és Pre
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens S = ^{s1}/_N relatív méretét?
 - Jelölje <u>u</u> = 1 <u>S</u> azon csúcsok hányadát melyek <u>NEM</u> részei a legnagyobb komponensnek.

$$u=\left(1-p+pu\right)^{N-1}.$$

$$u = (1 - p(1 - u))^{N-1} = \left(1 - \frac{\langle d \rangle}{N - 1}(1 - u)\right)^{N-1}$$

$$\ln u = (N - 1) \ln \left[1 - \frac{\langle d \rangle}{N - 1}(1 - u)\right]$$

$$\ln u \approx -(N - 1) \left[\frac{\langle d \rangle}{N - 1}(1 - u)\right]$$

$$u \approx e^{-\langle d \rangle(1 - u)}$$

- Erdős–Rényimodell
- Tulajdonságol
- Perkoláció
- E-R gráf és való: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási-Alt
- Növekedés és Pref kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens $S = \frac{s_1}{N}$ relatív méretét?
 - Jelölje u = 1 S azon csúcsok hányadát melyek NEM részei a legnagyobb komponensnek.

$$u=(1-p+pu)^{N-1}.$$

$$u \approx e^{-\langle d \rangle (1-u)}.$$

- Erdős–Rényimodell
- Tulajdonságol
- Perkoláció
- E-R gráf és való: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- renormálás
- modell Növekedés és Pret
- . Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens S = ^{s1}/_N relatív méretét?
 - Jelölje <u>u</u> = 1 <u>S</u> azon csúcsok hányadát melyek <u>NEM</u> részei a legnagyobb komponensnek.

$$u=(1-p+pu)^{N-1}.$$

$$u \approx e^{-\langle d \rangle (1-u)}.$$

$$S\approx 1-e^{-\langle d\rangle S}$$
.

Hálózatok II.

- Erdős–Rényimodell
- Tulajdonsago
- Perkoláció
- E-R gráf és való hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Albe modell
- Növekedés és Pre kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehetne meghatározni a legnagyobb komponens S = ^{s1}/_N relatív méretét?
 - Jelölje <u>u</u> = 1 <u>S</u> azon csúcsok hányadát melyek <u>NEM</u> részei a legnagyobb komponensnek.

$$u=(1-p+pu)^{N-1}.$$

$$u \approx e^{-\langle d \rangle (1-u)}.$$

$$S \approx 1 - e^{-\langle d \rangle S}$$

Ezt az egyenletet numerikusan meg lehet oldani tetszőleges (*d*) mellet, mely a következő eredményeket adja *S*-re:

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció

E-R gráf és valós hálózatok

Watts-Strogatz modell

Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku: skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Hol van a kritikus pont?

Hálózatok II.

Erdős–Rényimodell Tulajdonságok

Perkoláció E-R gráf és való

Watts-Strogatz modell

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku: skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Hol van a kritikus pont?

• A kritikus pont ott van ahol S nagyobb lesz mint nulla.

Hálózatok II.

- Erdős–Rényimodell
- Perkoláció
- E-R gráf és való
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Albe modell
- Növekedés és Prel kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Hol van a kritikus pont?

- A kritikus pont ott van ahol S nagyobb lesz mint nulla.
- Oldjuk meg az $S = 1 e^{-\langle d \rangle S}$ egyenletet "grafikusan":

Hálózatok II.

- Erdős–Rényimodell
- Perkoláció
- E-R gráf és való hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Hol van a kritikus pont?

- A kritikus pont ott van ahol S nagyobb lesz mint nulla.
- Oldjuk meg az $S = 1 e^{-\langle d \rangle S}$ egyenletet "grafikusan":

→ Mi a nemtriviális megoldás létezésének feltétele?

Hálózatok II.

- Erdős–Rényimodell
- Perkoláció
- E-R gráf és való: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Albert modell Növekedés és Pref kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztiku skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Hol van a kritikus pont?

- A kritikus pont ott van ahol S nagyobb lesz mint nulla.
- Oldjuk meg az $S = 1 e^{-\langle d \rangle S}$ egyenletet "grafikusan":

→ Mi a nemtriviális megoldás létezésének feltétele?

$$\frac{d}{dS}\left(1-e^{-\langle d\rangle S}\right)\geq 1\Big|_{S=0}$$

Hálózatok II.

Hol van a kritikus pont?

• A kritikus pont ott van ahol S nagyobb lesz mint nulla.

$$\frac{d}{dS}\left(1-e^{-\langle d\rangle S}\right)\geq 1\Big|_{S=0}$$

Watts-Strogatz modell

Perkoláció

- Kis világ effektus Skálázás és
- Barabási–Albert modell Növekedés és Pret
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Hálózatok II.

Perkoláció

Hol van a kritikus pont?

• A kritikus pont ott van ahol S nagyobb lesz mint nulla.

$$\frac{d}{dS} \left(1 - e^{-\langle d \rangle S} \right) \ge 1 \Big|_{S=0}$$
$$\langle d \rangle e^{-\langle d \rangle S} \Big|_{S=0} \ge 1$$

|S=0

Hálózatok II.

Perkoláció

Hol van a kritikus pont?

• A kritikus pont ott van ahol S nagyobb lesz mint nulla.

$$\frac{d}{dS} \left(1 - e^{-(d)S} \right) \ge 1 \Big|_{S=0}$$
$$\langle d \rangle \left. e^{-(d)S} \right|_{S=0} \ge 1$$
$$\rightarrow \langle d \rangle \ge 1$$

≧

Hálózatok II.

Perkoláció

Hol van a kritikus pont?

• A kritikus pont ott van ahol S nagyobb lesz mint nulla.

$$\frac{d}{dS} \left(1 - e^{-\langle d \rangle S} \right) \ge 1 \Big|_{S=0}$$
$$\langle d \rangle \left. e^{-\langle d \rangle S} \right|_{S=0} \ge 1$$

$$\rightarrow \langle d \rangle \geq 1$$

 A kritikus pont (d) = 1-nél van, és (d) ≥ 1 esetén az E-R gráf tartalmaz egy óriás komponenst.

E-R gráf és valós hálózatok

E-R gráf és valós hálózatok Kis világ tulajdonság

Hálózatok II.

Erdős-Rényi modell

Tulajdonságo

Perkoláció

E-R gráf és valós hálózatok

Watts-Strogatzmodell Kis világ effektus Skálázás és

Barabási–Albert modell Növekedés és Pref

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,
							Pastor-Satorras et al. 2001
Movie actors	225, 226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001
Neurosci. coauthorship	209,293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998

E-R gráf és valós hálózatok Kis világ tulajdonság

Hálózatok II.

Jóslat:

Erdős–Rényimodell

Tulajdonságok

E-R gráf és valós

hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és

Barabási–Albert modell Növekedés és Pref

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

E-R gráf és valós hálózatok

Hálózatok II.

Erdős-Rényi modell

Tulajdonságo

Perkoláció

E-R gráf és valós hálózatok

Watts-Strogatzmodell Kis világ effektus Skálázás és

Barabási–Albert modell Növekedés és Pref

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,
							Pastor-Satorras et al. 2001
Movie actors	225, 226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001
Neurosci. coauthorship	209,293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998

E-R gráf és valós hálózatok Klaszterezettség

Tulajdonsagok Perkoláció

E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis vilag effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

E-R gráf és valós hálózatok Fokszámeloszlás

Hálózatok II.
E-R gráf és valós
hálózatok
Watts-Strogatz-
Determinisztikus
modell

E-R gráf és valós hálózatok

Hálózatok II.

Erdős–Rényimodell

- Tulajdonságok Perkeláció
- E-R gráf és valós hálózatok
- Watts-Strogatz modell Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

$p(d) = \binom{N}{d} p^d (1-p)^{N-d} \simeq \frac{\langle d \rangle^d}{d!} e^{-\langle d \rangle}$

Adatok:

Jóslat:

 $p(d) \sim d^{-\gamma}$

E-R gráf és valós hálózatok Összefoglalás

Hálózatok II.		
Erdős–Rényi- modell Tulajdonságok Perkoláció E-R gráf és valós hálózatok	Az E-R gráf és a valódi rends	szereket leíró hálózatok összehasonlítása:
Watts-Strogatz- modell		
Kis világ effektus Skálázás és renormálás	-Kis világ tulajdonság?	ОК
Barabási–Albert- modell	-magas klaszterezettség?	NEM!
kapcs. Klaszterezettség	-skálafüggetlenség?	NEM!
Konfigurációs modell Randomizáció		
Determinisztikus skálafüggetlen		

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós

Watts-Strogatzmodell

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

A WATTS-STROGATZ-MODELL

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós

Watts-Strogatzmodell

- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Duncan Watts and Steven H. Strogatz, (1998):

Hogyan lehetne egy egyszerű véletlengráf-modellt alkotni úgy, hogy a kis világ tulajdonság és a magas klaszterezettség egyszerre teljesüljenek?

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatzmodell

- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

A Watts-Strogatz-modell (1998)

- Egy szabályos gyűrűből indulunk, melyben minden csúcs össze van kötve a gyűrű mentén számolt *q* első szomszédaival.
 - Minden élt β valószínűséggel átkötünk egy véletlenszerűen választott csúcsra.

S. Watts and D. H. Strogatz, Nature 393,409 (1998)

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatzmodell

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

A Watts-Strogatz-modell (1998)

- Egy szabályos gyűrűből indulunk, melyben minden csúcs össze van kötve a gyűrű mentén számolt *q* első szomszédaival.
- Minden élt β valószínűséggel átkötünk egy véletlenszerűen választott csúcsra.

S. Watts and D. H. Strogatz, Nature 393,409 (1998)

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatzmodell

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások • *β* = 0:

$$\langle \ell \rangle \simeq \frac{N}{4q}$$

$$\langle C \rangle = C = \frac{q(q-1)\frac{3}{2}}{q(2q-1)} = \frac{3q-3}{4q-2}$$

• $\beta = 1$: olyan mint az E-R-modell, G(N,M) verzió.

$$\langle \ell \rangle \sim \log N$$

 $\langle C \rangle = p_{\rm ER} = \frac{2q}{N-1}$

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Albe modell
- kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus

Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

 Egy viszonylag széles β tartományban a C még relatíve magas, míg ℓ már kellően alacsony!

→ MAGAS KLASZTEREZETTSÉG és KIS VILÁG!

A Watts-Strogatz-modell Miért működik?

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós

Watts-Strogatz modell

Kis világ effektus

Skálázás és renormálás

Barabási–Albertmodell Növekedés és Pref. kapcs.

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Take home message:

Viszonylag kicsi véletlenszerűség már elég ahhoz, hogy fellépjen a kis világ effektus, viszont nagyon sok átkötés kell ahhoz, hogy leromboljuk a klaszterezettséget.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Véletlenszerűen átkötött élek száma?

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Véletlenszerűen átkötött élek száma: βqN.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Véletlenszerűen átkötött élek száma: βqN.
- Mi történik, ha βqN << 1 ?

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Véletlenszerűen átkötött élek száma: βqN.
- Ha $\beta qN \ll 1$, akkor nincsenek véletlenszerűen átkötött élek és $\langle \ell \rangle \sim N$.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Véletlenszerűen átkötött élek száma: βqN.
- Ha βqN << 1, akkor nincsenek véletlenszerűen átkötött élek és (ℓ) ~ N.
- Mi történik, ha $\beta qN >> 1$?

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Véletlenszerűen átkötött élek száma: βqN.
- Ha $\beta qN \ll 1$, akkor nincsenek véletlenszerűen átkötött élek és $\langle \ell \rangle \sim N$.
- Ha $\beta qN >> 1$, akkor sok a véletlenszerűen átkötött él és $\langle \ell \rangle \sim \ln N$.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Véletlenszerűen átkötött élek száma: βqN.
- Ha $\beta qN \ll 1$, akkor nincsenek véletlenszerűen átkötött élek és $\langle \ell \rangle \sim N$.
- Ha $\beta qN >> 1$, akkor sok a véletlenszerűen átkötött él és $\langle \ell \rangle \sim \ln N$.
- Mi az egyszerű tipp az átalakulás "kritikus" pontjára ?

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Véletlenszerűen átkötött élek száma: βqN.
- Ha $\beta qN \ll 1$, akkor nincsenek véletlenszerűen átkötött élek és $\langle \ell \rangle \sim N$.
- Ha $\beta qN >> 1$, akkor sok a véletlenszerűen átkötött él és $\langle \ell \rangle \sim \ln N$.
- Az átalakulás valahol β_cqN = 1 környékén történik.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós bálózatok
- Watts-Strogatzmodell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Véletlenszerűen átkötött élek száma: βqN.
- Ha $\beta qN \ll 1$, akkor nincsenek véletlenszerűen átkötött élek és $\langle \ell \rangle \sim N$.
- Ha $\beta qN >> 1$, akkor sok a véletlenszerűen átkötött él és $\langle \ell \rangle \sim \ln N$.
- Az átalakulás valahol $\beta_c q N = 1$ környékén történik.
- → Az (ℓ) skálázásából kiindulva megvizsgáljuk, hogy egy egyszerű "renormálási" transzformáció mit ad pontosan a kritikus pontra.

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós

Watts-Strogatz modell

Kis világ effektus

Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref kapcs. Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások Alternatív megfogalmazása a problémának: rögzített β mellett változtatjuk *N*-et.

→ Ilyenkor $\langle \ell \rangle$ a következő módon skálázik *N*-el:

• kis N:
$$\beta q N \ll 1 \rightarrow \langle \ell \rangle \sim N$$
,

- nagy N: $\beta q N >> 1 \rightarrow \langle \ell \rangle \sim ln N$.
- A két eltérő skálázást összefoglalhatjuk egy képletbe egy univerzális f(x) függvény segítségével a következő módon:

$$\ell = N \cdot f(N/N_c), \qquad f(x) = \begin{cases} \text{const.} & x \ll 1\\ \ln(x)/x & x \gg 1 \end{cases}$$

• (Itt nem részletezett) numerikus szimulációk alapján $N_c \sim \beta^{-\tau}$,

$$\rightarrow \langle \ell \rangle = N \cdot f(\beta^{\tau} N).$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós bálózatok
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Alternatív megfogalmazása a problémának: rögzített β mellett változtatjuk *N*-et.
- → Ilyenkor $\langle \ell \rangle$ a következő módon skálázik *N*-el:

• kis N:
$$\beta q N \ll 1 \rightarrow \langle \ell \rangle \sim N$$
,

- nagy $N: \beta qN >> 1 \rightarrow \langle \ell \rangle \sim InN$.
- A két eltérő skálázást összefoglalhatjuk egy képletbe egy univerzális f(x) függvény segítségével a következő módon:

$$\ell = N \cdot f(N/N_c), \qquad f(x) = \begin{cases} \text{const.} & x \ll 1\\ \ln(x)/x & x \gg 1 \end{cases}$$

• (Itt nem részletezett) numerikus szimulációk alapján $N_c \sim \beta^{-\tau}$,

$$\rightarrow \langle \ell \rangle = \mathbf{N} \cdot f(\beta^{\tau} \mathbf{N}).$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós bélőzetek
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Alternatív megfogalmazása a problémának: rögzített β mellett változtatjuk *N*-et.
- → Ilyenkor $\langle \ell \rangle$ a következő módon skálázik *N*-el:

• kis N:
$$\beta q N \ll 1 \rightarrow \langle \ell \rangle \sim N$$
,

- nagy N: $\beta q N >> 1 \rightarrow \langle \ell \rangle \sim ln N$.
- A két eltérő skálázást összefoglalhatjuk egy képletbe egy univerzális f(x) függvény segítségével a következő módon:

$$\ell = N \cdot f(N/N_c), \qquad f(x) = \begin{cases} \text{const.} & x << 1\\ \ln(x)/x & x >> 1 \end{cases}$$

• (Itt nem részletezett) numerikus szimulációk alapján $N_c \sim \beta^{-\tau}$,

$$\rightarrow \langle \ell \rangle = N \cdot f(\beta^{\tau} N).$$
Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós bálózatok
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Alternatív megfogalmazása a problémának: rögzített β mellett változtatjuk *N*-et.
- → Ilyenkor $\langle \ell \rangle$ a következő módon skálázik *N*-el:

• kis N:
$$\beta q N \ll 1 \rightarrow \langle \ell \rangle \sim N$$
,

- nagy N: $\beta q N >> 1 \rightarrow \langle \ell \rangle \sim ln N$.
- A két eltérő skálázást összefoglalhatjuk egy képletbe egy univerzális f(x) függvény segítségével a következő módon:

$$\ell = N \cdot f(N/N_c), \qquad f(x) = \begin{cases} \text{const.} & x << 1\\ \ln(x)/x & x >> 1 \end{cases}$$

• (Itt nem részletezett) numerikus szimulációk alapján $N_c \sim \beta^{-\tau}$,

$$\rightarrow \langle \ell \rangle = \boldsymbol{N} \cdot \boldsymbol{f}(\beta^{\tau} \boldsymbol{N}).$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós bélőzetek
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Alternatív megfogalmazása a problémának: rögzített β mellett változtatjuk *N*-et.
- → Ilyenkor $\langle \ell \rangle$ a következő módon skálázik *N*-el:

• kis N:
$$\beta q N \ll 1 \rightarrow \langle \ell \rangle \sim N$$
,

- nagy N: $\beta q N >> 1 \rightarrow \langle \ell \rangle \sim ln N$.
- A két eltérő skálázást összefoglalhatjuk egy képletbe egy univerzális f(x) függvény segítségével a következő módon:

$$\ell = N \cdot f(N/N_c), \qquad f(x) = \begin{cases} \text{const.} & x << 1\\ \ln(x)/x & x >> 1 \end{cases}$$

• (Itt nem részletezett) numerikus szimulációk alapján $N_c \sim \beta^{-\tau}$,

$$\rightarrow \langle \ell \rangle = N \cdot f(\beta^{\tau} N).$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• A Watts-Strogatz-modell "renormálása":

- Egy kiinduló W-S gráfról áttérünk egy kisebb méretű W-S gráfra:
 - a gyűrű mentén "összeejtünk" szomszédos csúcsokat,
 - az eredményül kapott csúcsok megöröklik az eredeti csúcsok éleit.
- Természetesen az eredményül kapott W-S gráf paraméterei különböznek az eredeti gráfétól, viszont mindkettőre igaz, hogy

$$\langle \ell \rangle = \boldsymbol{N} \cdot \boldsymbol{f}(\beta^{\tau} \boldsymbol{N}).$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs. Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- A Watts-Strogatz-modell "renormálása":
 - Egy kiinduló W-S gráfról áttérünk egy kisebb méretű W-S gráfra:
 - a gyűrű mentén "összeejtünk" szomszédos csúcsokat,
 - az eredményül kapott csúcsok megöröklik az eredeti csúcsok éleit.
 - Természetesen az eredményül kapott W-S gráf paraméterei különböznek az eredeti gráfétól, viszont mindkettőre igaz, hogy

 $\langle \ell \rangle = \boldsymbol{N} \cdot \boldsymbol{f}(\boldsymbol{\beta}^{\tau} \boldsymbol{N}).$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- A Watts-Strogatz-modell "renormálása":
 - Egy kiinduló W-S gráfról áttérünk egy kisebb méretű W-S gráfra:
 - a gyűrű mentén "összeejtünk" szomszédos csúcsokat,
 - az eredményül kapott csúcsok megöröklik az eredeti csúcsok éleit.
 - Természetesen az eredményül kapott W-S gráf paraméterei különböznek az eredeti gráfétól, viszont mindkettőre igaz, hogy

 $\langle \ell \rangle = N \cdot f(\beta^{\tau} N).$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- A Watts–Strogatz-modell "renormálása":
 - Egy kiinduló W-S gráfról áttérünk egy kisebb méretű W-S gráfra:
 - a gyűrű mentén "összeejtünk" szomszédos csúcsokat,
 - az eredményül kapott csúcsok megöröklik az eredeti csúcsok éleit.
 - Természetesen az eredményül kapott W-S gráf paraméterei különböznek az eredeti gráfétól, viszont mindkettőre igaz, hogy

 $\langle \ell \rangle = \boldsymbol{N} \cdot \boldsymbol{f}(\boldsymbol{\beta}^{\tau} \boldsymbol{N}).$

Hálózatok II.

Ha q = 1, a következő módon "renormálunk":

- Erdos-Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Hálózatok II.

Ha q = 1, a következő módon "renormálunk":

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs.
- Konfigurációs modell
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

 $q' = q, \quad N' = N/2, \quad \beta' = 2\beta, \quad \left\langle \ell' \right\rangle = \left\langle \ell \right\rangle /2,$

Hálózatok II.

Ha q = 1, a következő módon "renormálunk":

Watts-Strogatz modell

Kis világ effektus

Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref kapcs. Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

$$\begin{aligned} q' &= q, \quad N' = N/2, \quad \beta' = 2\beta, \quad \left\langle \ell' \right\rangle = \left\langle \ell \right\rangle /2, \\ \frac{\ell'}{N'} &= \frac{\ell}{N} \quad \rightarrow \quad f([\beta']^{\tau}N') = f(\beta^{\tau}N) \end{aligned}$$

Hálózatok II.

Ha q = 1, a következő módon "renormálunk":

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pret kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

$$q' = q, \quad N' = N/2, \quad \beta' = 2\beta, \quad \langle \ell' \rangle = \langle \ell \rangle /2,$$
$$\frac{\ell'}{N'} = \frac{\ell}{N} \quad \rightarrow \quad f([\beta']^{\top} N') = f(\beta^{\top} N)$$
$$\rightarrow \quad \left(\frac{\beta'}{\beta}\right)^{\top} = \frac{N}{N'} \quad \rightarrow \quad \tau = \frac{\ln(N/N')}{\ln(\beta'/\beta)} = 1.$$

Hálózatok II.

Ha q > 1, a következő módon "renormálunk":

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ ettektu Skálázás és

renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Konfigurációs modell

Determinisztikus skálafüggetlen modell

Hálózatok II.

Ha q > 1, a következő módon "renormálunk":

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ ettektu Skálázás és

renormálás Barabási-All

MODEII Növekedés és Pre kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

$$q'=1, \hspace{0.2cm} N'=N/q, \hspace{0.2cm} eta'=q^2eta, \hspace{0.2cm} ig \ell'ig
angle$$

Hálózatok II.

Ha q > 1, a következő módon "renormálunk":

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ ettektu Skálázás és

renormálás Barabási-All

Növekedés és Prel kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

$$q' = 1, \quad N' = N/q, \quad \beta' = q^2 \beta, \quad \left\langle \ell' \right\rangle = \left\langle \ell \right\rangle,$$
$$\rightarrow \quad \left\langle \ell \right\rangle = \frac{N}{q} f(\beta q N) \qquad \left(\left\langle \ell \right\rangle = N \cdot f(N/N_c) \right)$$

Hálózatok II.

Ha q > 1, a következő módon "renormálunk":

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektu Skálázás és renormálás

Barabási–Alber modell Növekedés és Pre kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Å

$$q' = 1, \quad N' = N/q, \quad \beta' = q^2 \beta, \quad \langle \ell' \rangle = \langle \ell \rangle,$$

$$\Rightarrow \quad \langle \ell \rangle = \frac{N}{q} f(\beta q N) \qquad \left(\langle \ell \rangle = N \cdot f(N/N_c) \right)$$

$$\Rightarrow \quad N_c = \frac{1}{\beta q}$$

$$f(x) = \frac{4}{\sqrt{x^2 + 4x}} \tanh^{-1} \frac{4}{\sqrt{x^2 + 4x}}$$

Hálózatok II.

Ha q > 1, a következő módon "renormálunk":

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis vilag ettekti. Skálázás és

renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztiku: skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

$$q' = 1, \quad N' = N/q, \quad \beta' = q^2 \beta, \quad \langle \ell' \rangle = \langle \ell \rangle$$

$$\rightarrow \quad \langle \ell \rangle = \frac{N}{q} f(\beta q N) \qquad \left(\langle \ell \rangle = N \cdot f(N/N_c) \right)$$

$$\rightarrow \quad N_c = \frac{1}{\beta q}$$

$$f(x) = \frac{4}{\sqrt{x^2 + 4x}} \tanh^{-1} \frac{4}{\sqrt{x^2 + 4x}}$$

→ Az átalakulás $\beta q N = 1$ -nél történik!

Hálózatok II.

Ha q > 1, a következő módon "renormálunk":

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effekti Skálázás és

renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

$$q' = 1, \quad N' = N/q, \quad \beta' = q^2 \beta, \quad \left\{\ell'\right\} = \left\{\ell\right\},$$

$$\rightarrow \quad \left\{\ell\right\} = \frac{N}{q} f(\beta q N) \qquad \left(\left\{\ell\right\} = N \cdot f(N/N_c)\right)$$

$$\rightarrow \quad N_c = \frac{1}{\beta q}$$

$$f(x) = \frac{4}{\sqrt{x^2 + 4x}} \tanh^{-1} \frac{4}{\sqrt{x^2 + 4x}}$$

 \rightarrow Az átalakulás $\beta q N = 1$ -nél történik!

→ Az ℓ(β) görbék egy univerzális görbére ejthetők össze minden W-S-gráf esetén!

$$\langle \ell \rangle = \frac{N}{q} f(\beta q N).$$

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus

Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref. kapcs.

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

M. E. J. Newman and D. J. Watts, Physics Letters A 263, 341-346 (1999)

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Skálázás és renormálás

Barabási-Albertmodell

- Növekedés és Pre kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

A BARABÁSI-ALBERT-MODELL

Gráfmodellek és valós hálózatok

Hálózatok II.

- Erdős–Rényimodell
- Tulajdorisagok
- E-R gráf és valós
- hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és

Barabási-Albertmodell

- Növekedés és Pref kapcs. Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

	E-R	W-S
- Kis világ tulajdonság ?	ОК	ОК
- Magas klaszterezettség ?	NEM!	ОК
- Skálafüggetlenség?	NEM!	NEM!

Gráfmodellek és valós hálózatok

- Erdős–Rényimodell Tulajdonságok
- Perkoláció
- hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és

Barabási-Albertmodell

- Növekedés és Pref kapcs.
- Konfigurációs modell
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

	E-R	W-S
- Kis világ tulajdonság ?	ОК	ОК
- Magas klaszterezettség ?	NEM!	ОК
- Skálafüggetlenség?	NEM!	NEM!

Hogyan lehetne egy skálafüggetlen véletlen gráfot generálni?

A Barabási–Albert-modell Motiváció

- Erdős–Rényimodell Tulaidonságok
- Perkoláció
- E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás

Barabási-Albertmodell

- Növekedés és Pret kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Barabási Albert-László és Albert Réka (1999):

- skálafüggetlen véletlen gráf,
- egy egyszerű mechanizmus, mely ad egy lehetséges magyarázatot a skálafüggetlen p(d) kialakulására.

A Barabási–Albert-modell Növekvő hálózatok...

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok
- Perkoláció
- E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás

Barabási-Albertmodell

- Növekedés és Pret kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Erdős–Rényi-modell: rögzített N, (statikus)
- Watts-Strogatz-modell: rögzített N, (statikus)
- Valódi rendszerek?

A Barabási–Albert-modell

Hálózatok II.

Erdős–Rényimodell

Tulajdonságok

Perkoláció

hálózatok

Watts-Strogatz modell

Skálázás és renormálás

Barabási-Albertmodell

Növekedés és Pre kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Actor network

Number of movies in IMDB

Herr II, Bruce W., Ke, Weimao, Hardy, Elisha, and Börner, Katy. (2007) Movies and Actors: Mapping the Internet Movie Database. In Conference Proceedings of 11th Annual Information Visualization Intermational Conference (IV 2007), Zurich, Switzerland, July 4-6, pp. 465-469.

(Barabási A.-L. fóliáiról)

Movies

Internet

Growth of the Internet routing table

http://www.trainsignaltraining.com/ccna-ipv6

A Barabási–Albert-modell Növekvő hálózatok...

http://website101.com/define-ecommerce-web-terms-definitions/

http://www.kk.org/thetechnium/archives/2008/10/the expansion o.php

(Barabási A.-L. fóliáiról)

A Barabási–Albert-modell

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatzmodell

Kis világ effektus Skálázás és renormálás

Barabási–Alber modell

Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

A Barabási–Albert-modell

 Növekvő modell: minden időlépésben egy új csúcs kötődik be a hálózatba m új éllel.

 Az új élek másik végét a preferenciális kapcsolódási szabály alapján kötjük be:

 $\mathcal{P}(i \text{ választása}) \equiv \mathcal{P}_i \sim d_i,$

azaz a csúcs választásának valószínűsége arányos a fokszámával.

A Barabási–Albert-modell

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatzmodell

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell

Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

A Barabási–Albert-modell

 Növekvő modell: minden időlépésben egy új csúcs kötődik be a hálózatba m új éllel.

 Az új élek másik végét a preferenciális kapcsolódási szabály alapján kötjük be:

 $\mathcal{P}(i \text{ választása}) \equiv \mathcal{P}_i \sim d_i,$

azaz a csúcs választásának valószínűsége arányos a fokszámával.

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és renormálás

Barabási–Alber modell

Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások Nagy t esetén a csúcsok és élek számát közelíthetjük úgy mint

 $N \simeq t,$ $M \simeq mt.$

• Az i választásának valószínűsége:

→ A di kis változásának "átlagtér" közelítése egy időlépés alatt:

$$\frac{\Delta d_i}{\Delta t} \simeq m \mathcal{P}_i \quad \rightarrow \quad \frac{\partial d_i}{\partial t} = m \frac{d_i}{\sum_j d_j}$$

Mivel a fokszámok összege: ∑_i d_i = 2M = 2mt

$$\rightarrow \frac{\partial d_i}{\partial t} = \frac{d_i}{2t}.$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Alber modell
- Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Nagy t esetén a csúcsok és élek számát közelíthetjük úgy mint

 $\begin{array}{l} N\simeq t,\\ M\simeq mt. \end{array}$

• Az i választásának valószínűsége:

$$\mathcal{P}_i = \frac{d_i}{\sum_j d_j}.$$

A di kis változásának "átlagtér" közelítése egy időlépés alatt:

$$\frac{\Delta d_i}{\Delta t} \simeq m \mathcal{P}_i \quad \Rightarrow \quad \frac{\partial d_i}{\partial t} = m \frac{d_i}{\sum_j d_j}$$

Vivel a fokszámok összege: ∑_i d_i = 2M = 2mt

$$\rightarrow \frac{\partial d_i}{\partial t} = \frac{d_i}{2t}.$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Alber modell
- Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Nagy t esetén a csúcsok és élek számát közelíthetjük úgy mint

 $\begin{array}{l} N\simeq t,\\ M\simeq mt. \end{array}$

• Az i választásának valószínűsége:

$$\mathcal{P}_i = \frac{d_i}{\sum_j d_j}.$$

→ A *d_i* kis változásának "átlagtér" közelítése egy időlépés alatt:

$$\frac{\Delta d_i}{\Delta t} \simeq m \mathcal{P}_i \quad \rightarrow \quad \frac{\partial d_i}{\partial t} = m \frac{d_i}{\sum_j d_j}$$

Nivel a fokszámok összege: $\sum_i d_i = 2M = 2mt_i$

$$\rightarrow \frac{\partial d_i}{\partial t} = \frac{d_i}{2t}.$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Alber modell
- Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Nagy t esetén a csúcsok és élek számát közelíthetjük úgy mint

 $N \simeq t,$ $M \simeq mt.$

• Az i választásának valószínűsége:

$$\mathcal{P}_i = \frac{d_i}{\sum_j d_j}.$$

→ A d_i kis változásának "átlagtér" közelítése egy időlépés alatt:

$$\frac{\Delta d_i}{\Delta t} \simeq m \mathcal{P}_i \quad \rightarrow \quad \frac{\partial d_i}{\partial t} = m \frac{d_i}{\sum_j d_j}$$

Mivel a fokszámok összege: $\sum_i d_i = 2M = 2mt$,

$$\rightarrow \frac{\partial d_i}{\partial t} = \frac{d_i}{2t}.$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Alber modell
- Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• A diffe. megoldása:

$$\frac{\partial d_i}{\partial t} = \frac{d_i}{2t} \rightarrow \frac{\partial d_i}{d_i} = \frac{\partial t}{2t} \rightarrow \int \frac{dd_i}{k_i} = \int \frac{dt}{2t}$$
$$\rightarrow \quad \ln d_i = \frac{1}{2} \ln t + \text{const.} \rightarrow d_i(t) = ct^{\frac{1}{2}}$$

- Hogyan lehet a c konstanst meghatározni?
 - A $t = t_i$ lépésnél, ahol *i* megjelenik a rendszerben: $d_i = m$, azaz

$$d_i(t) = m \left(\frac{t}{t_i}\right)^{\frac{1}{2}}.$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Alber modell
- Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• A diffe. megoldása:

$$\frac{\partial d_i}{\partial t} = \frac{d_i}{2t} \rightarrow \frac{\partial d_i}{d_i} = \frac{\partial t}{2t} \rightarrow \int \frac{dd_i}{k_i} = \int \frac{dt}{2t}$$
$$\rightarrow \quad \ln d_i = \frac{1}{2} \ln t + \text{const.} \rightarrow d_i(t) = ct^{\frac{1}{2}}$$

Hogyan lehet a c konstanst meghatározni?

A $t = t_i$ lépésnél, ahol *i* megjelenik a rendszerben: $d_i = m$, azaz

$$d_i(t) = m \left(\frac{t}{t_i}\right)^{\frac{1}{2}}.$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Alber modell
- Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• A diffe. megoldása:

$$\frac{\partial d_i}{\partial t} = \frac{d_i}{2t} \rightarrow \frac{\partial d_i}{d_i} = \frac{\partial t}{2t} \rightarrow \int \frac{dd_i}{k_i} = \int \frac{dt}{2t}$$
$$\rightarrow \quad \ln d_i = \frac{1}{2} \ln t + \text{const.} \rightarrow d_i(t) = ct^{\frac{1}{2}}$$

- Hogyan lehet a c konstanst meghatározni?
 - A $t = t_i$ lépésnél, ahol *i* megjelenik a rendszerben: $d_i = m$, azaz

$$d_i(t) = m \left(\frac{t}{t_i}\right)^{\frac{1}{2}}.$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Alber modell
- Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• A diffe. megoldása:

$$\frac{\partial d_i}{\partial t} = \frac{d_i}{2t} \rightarrow \frac{\partial d_i}{d_i} = \frac{\partial t}{2t} \rightarrow \int \frac{dd_i}{k_i} = \int \frac{dt}{2t}$$
$$\rightarrow \quad \ln d_i = \frac{1}{2} \ln t + \text{const.} \rightarrow d_i(t) = ct^{\frac{1}{2}}$$

- Hogyan lehet a c konstanst meghatározni?
 - A $t = t_i$ lépésnél, ahol *i* megjelenik a rendszerben: $d_i = m$, azaz

$$d_i(t) = m \left(\frac{t}{t_i}\right)^{\frac{1}{2}}.$$

A Barabási–Albert-modell Fokszámeloszlás

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Skálázás és renormálás
- Barabási–Alber modell
- Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Hogyan lehet d_i(t) alapján meghatározni a fokszámeloszlást?
- → A legegyszerűbb a kumulatív eloszlásfüggvényen keresztül.

A Barabási–Albert-modell Fokszámeloszlás

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Alber modell
- Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Az eloszlásfüggvény:

$$\begin{split} \mathcal{P}(d) &\equiv \mathcal{P}(d_i < d) = \mathcal{P}(m(t/t_i)^{1/2} < d) = \mathcal{P}(t/t_i < (d/m)^2) = \\ \mathcal{P}(t_i/t > (m/d)^2). \end{split}$$

• Az időlépések:

 $P(d) = 1 - \left(\frac{m}{d}\right)^2$ $\rightarrow \mathbf{p}(\mathbf{d}) = 2m^2 \mathbf{d}^{-3}$
A Barabási–Albert-modell Fokszámeloszlás

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási-Albertmodell Növekedés és Pref.
- Növekedés és Pre kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Az eloszlásfüggvény:

$$\begin{aligned} \mathcal{P}(d) &\equiv & \mathcal{P}(d_i < d) = \mathcal{P}(m(t/t_i)^{1/2} < d) = \mathcal{P}(t/t_i < (d/m)^2) = \\ & \mathcal{P}(t_i/t > (m/d)^2). \end{aligned}$$

• Az időlépések:

$$\begin{array}{c} 0 & t_i & t \\ \hline \\ 0 & t_i/t & 1 \end{array} \qquad P(d) = 1 - \left(\frac{m}{d}\right)^2 \\ p(d) = 2m^2 d^{-3}$$

A Barabási–Albert-modell Fokszámeloszlás

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref.
- Növekedés és Pre kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Az eloszlásfüggvény:

$$\begin{split} \mathcal{P}(d) &\equiv & \mathcal{P}(d_i < d) = \mathcal{P}(m(t/t_i)^{1/2} < d) = \mathcal{P}(t/t_i < (d/m)^2) = \\ & \mathcal{P}(t_i/t > (m/d)^2). \end{split}$$

• Az időlépések:

$$\begin{array}{cccc} 0 & t_i & t \\ \hline \\ 0 & t_{i/t} & 1 \end{array} \end{array} \qquad P(d) = 1 - \left(\frac{m}{d}\right)^2 \\ \rightarrow \mathbf{p}(\mathbf{d}) = 2m^2 \mathbf{d}^{-3}$$

A Barabási–Albert-modell Fokszámeloszlás

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref.
- kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Az eloszlásfüggvény:

$$\begin{split} \mathcal{P}(d) &\equiv & \mathcal{P}(d_i < d) = \mathcal{P}(m(t/t_i)^{1/2} < d) = \mathcal{P}(t/t_i < (d/m)^2) = \\ & \mathcal{P}(t_i/t > (m/d)^2). \end{split}$$

• Az időlépések:

$$P(d) = 1 - \left(\frac{m}{d}\right)^2$$

$$\rightarrow \mathbf{p}(d) = 2m^2 d^{-3}$$

• A fokszámeloszlás **SKÁLAFÜGGETLEN**, az exponens $\gamma = 3!$


```
Skálázás és
renormálás
```

Barabási-Albertmodell Növekedés és Pref. kapcs.

Klaszterezettsén

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

(Barabási A.-L. fóliáiról)

Átlagos távolság skálafüggetlen hálózatokban

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós bálózatok
- Watts-Strogatzmodell Kis világ effektus Skálázás és
- Barabási–Albe

Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku: skálafüggetlen modell

$$\ell \rangle \sim \left\{ \begin{array}{cc} \text{const.} & \gamma \leq 2 \\ \frac{\ln \ln N}{\ln(\gamma - 1)} & 2 < \gamma < 3 \end{array} \right\} \quad \text{Ultra kis világ} \\ \frac{\ln N}{\ln \ln N} & \gamma = 3 \\ \ln N & \gamma > 3 & \text{Kis világ} \end{array} \right.$$

Klaszterezettségi együttható

Hálózatok II.

Mekkora $\langle C \rangle$ a B-A modellben?

- Az *i* csúcs fokszáma $d_i(t) = m(\frac{t}{t_i})^{1/2}$
 - → Annak valószínűsége, hogy a t = t_j lépésben születő j csúccsal összekapcsolódik:

$$\mathcal{P}(i-j) = m \frac{d_i}{2mt} = \frac{d_i}{2t} = \frac{m\left(\frac{t_j}{t_i}\right)^{\frac{1}{2}}}{2t_j} = \frac{m}{2}(t_i t_j)^{-\frac{1}{2}}.$$

 A hálózatgenerálás végén N = t. Ekkor a k csúcs szomszédai közt várható élek száma:

$$\begin{split} n_k &= \frac{1}{2} \sum_{l_i=1}^N \sum_{l_j=1}^N \mathcal{P}(k-i) \mathcal{P}(k-j) \mathcal{P}(i-j) \\ &= \frac{1}{2} \int_1^N dt_i \int_1^N dt_j \mathcal{P}(k-i) \mathcal{P}(k-j) \mathcal{P}(i-j) \\ &= \frac{m^3}{16} \int_1^N dt_i \int_1^N dt_j (t_k t_i)^{-\frac{1}{2}} (t_k t_j)^{-\frac{1}{2}} (t_i t_j)^{-\frac{1}{2}} \\ &= \frac{m^3}{16t_k} \int_1^N dt_i \frac{1}{t_i} \int_1^N dt_j \frac{1}{t_j} = \frac{m^3}{16t_k} (\ln N)^2 \,. \end{split}$$

Növekedés és Pre kapcs. Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Klaszterezettségi együttható

Hálózatok II.

Mekkora $\langle C \rangle$ a B-A modellben?

- Az *i* csúcs fokszáma $d_i(t) = m(\frac{t}{t_i})^{1/2}$
- → Annak valószínűsége, hogy a t = t_j lépésben születő j csúccsal összekapcsolódik:

$$\mathcal{P}(i-j) = m \frac{d_i}{2mt} = \frac{d_i}{2t} = \frac{m\left(\frac{t_j}{t_i}\right)^{\frac{1}{2}}}{2t_j} = \frac{m}{2}(t_i t_j)^{-\frac{1}{2}}.$$

 A hálózatgenerálás végén N = t. Ekkor a k csúcs szomszédai közt várható élek száma:

$$\begin{split} n_k &= \frac{1}{2} \sum_{l_j=1}^N \sum_{l_j=1}^N \mathcal{P}(k-i) \mathcal{P}(k-j) \mathcal{P}(i-j) \\ &= \frac{1}{2} \int_1^N dt_i \int_1^N dt_j \mathcal{P}(k-i) \mathcal{P}(k-j) \mathcal{P}(i-j) \\ &= \frac{m^3}{16} \int_1^N dt_i \int_1^N dt_j (t_k t_i)^{-\frac{1}{2}} (t_k t_j)^{-\frac{1}{2}} (t_i t_j)^{-\frac{1}{2}} \\ &= \frac{m^3}{16t_k} \int_1^N dt_i \frac{1}{t_j} \int_1^N dt_j \frac{1}{t_j} = \frac{m^3}{16t_k} (\ln N)^2 \,. \end{split}$$

Klaszterezettség Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Klaszterezettségi együttható

Hálózatok II.

Mekkora $\langle C \rangle$ a B-A modellben?

- Az *i* csúcs fokszáma $d_i(t) = m(\frac{t}{t_i})^{1/2}$
- → Annak valószínűsége, hogy a t = t_j lépésben születő j csúccsal összekapcsolódik:

$$\mathcal{P}(i-j) = m \frac{d_i}{2mt} = \frac{d_i}{2t} = \frac{m\left(\frac{t_j}{t_i}\right)^{\frac{1}{2}}}{2t_j} = \frac{m}{2}(t_i t_j)^{-\frac{1}{2}}.$$

 A hálózatgenerálás végén N = t. Ekkor a k csúcs szomszédai közt várható élek száma:

$$\begin{split} n_k &= \frac{1}{2} \sum_{t_j=1}^N \sum_{t_j=1}^N \mathcal{P}(k-i) \mathcal{P}(k-j) \mathcal{P}(i-j) \\ &= \frac{1}{2} \int_1^N dt_i \int_1^N dt_j \mathcal{P}(k-i) \mathcal{P}(k-j) \mathcal{P}(i-j) \\ &= \frac{m^3}{16} \int_1^N dt_i \int_1^N dt_j (t_k t_i)^{-\frac{1}{2}} (t_k t_j)^{-\frac{1}{2}} (t_i t_j)^{-\frac{1}{2}} \\ &= \frac{m^3}{16t_k} \int_1^N dt_i \frac{1}{t_i} \int_1^N dt_j \frac{1}{t_j} = \frac{m^3}{16t_k} (\ln N)^2 \,. \end{split}$$

modell Növekedés és Pref kapcs. Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku: skálafüggetlen modell

A Barabási–Albert-modell Klaszterezettségi együttható

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hólózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• A lehetséges élek száma a k szomszédai között t = N lépés után:

$$\frac{d_k(d_k-1)}{2} \simeq \frac{d_k^2}{2} = \frac{1}{2} \left[m \left(\frac{t}{t_k} \right)^2 \right]^2 = \frac{m^2 N}{2t_k}$$

• Ez alapján k klaszterezettségi együtthatója:

$$C_k = \frac{m^3}{16t_k} (\ln N)^2 \frac{2t_k}{m^2 N} = \frac{m(\ln N)^2}{8N}.$$

 Mivel semmilyen extra feltételezésünk nem volt k-val kapcsolatban, és mivel C_k nem függ k-tól, a kapott eredmény a B-A modell átlagos klaszterezettsége:

$$C=\frac{m(\ln N)^2}{8N}.$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós bálózatok
- Watts-Strogatzmodell Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.

Klaszterezettség

- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

 $\langle C \rangle = \frac{m(\ln N)^2}{8N} \rightarrow \text{Ez jó vagy rossz?}$

- → Hasonlítsuk össze az Erdős–Rényi-gráffal:
 - Erdős–Rényi: $\langle C \rangle \simeq \frac{\langle d \rangle}{N} \sim \frac{1}{N}$

- Barabási–Albert:
$$\langle C \rangle = \frac{m(\ln N)^2}{8N} \sim \frac{(\ln N)^2}{N}$$

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatzmodell Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások $\langle C \rangle = \frac{m(\ln N)^2}{8N} \rightarrow \text{Ez jó vagy rossz?}$

- → Hasonlítsuk össze az Erdős–Rényi-gráffal:
 - Erdős–Rényi: $\langle C \rangle \simeq \frac{\langle d \rangle}{N} \sim \frac{1}{N}$
 - Barabási–Albert: $\langle C \rangle = \frac{m(\ln N)^2}{8N} \sim \frac{(\ln N)^2}{N}$

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell Kis világ effektus Skálázás és

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások $\langle C \rangle = \frac{m(\ln N)^2}{8N} \rightarrow \text{Ez jó vagy rossz?}$

- → Hasonlítsuk össze az Erdős–Rényi-gráffal:
 - Erdős–Rényi: $\langle C \rangle \simeq \frac{\langle d \rangle}{N} \sim \frac{1}{N}$
 - Barabási–Albert: $\langle C \rangle = \frac{m(\ln N)^2}{8N} \sim \frac{(\ln N)^2}{N}$

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell Kis világ effektus Skálázás és

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások $\langle C \rangle = \frac{m(\ln N)^2}{8N} \rightarrow \text{Ez jó vagy rossz?}$

- → Hasonlítsuk össze az Erdős–Rényi-gráffal:
 - Erdős–Rényi: $\langle C \rangle \simeq \frac{\langle d \rangle}{N} \sim \frac{1}{N}$

- Barabási–Albert:
$$\langle C \rangle = \frac{m(\ln N)^2}{8N} \sim \frac{(\ln N)^2}{N}$$

A Barabási–Albert-modell Összefoglalás

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Növekedés és preferenciális kapcsolódás,
- Dinamikus exponens: $d(t) \sim t^{\beta}$, $\beta = \frac{1}{2}$,
- SKÁLAFÜGGETLEN: $p(d) \sim d^{-3}$, $\gamma = 3$,
- Kis világ: $\langle \ell \rangle \sim \frac{\ln N}{\ln \ln N}$,
- $C \sim \frac{(\ln N)^2}{N}$.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció
- E-H graf es valo: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Az új csúcsokat a pref. kapcs. szabály alapján kötjük be.
- Minden lépés után p valószínűséggel m háromszöget hozunk létre az új csúcs, a neki választott szomszédok és azok véletlenszerűen választott szomszédai között.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogat
- MODEII Kis világ effektus Skálázás és
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Az új csúcsokat a pref. kapcs. szabály alapján kötjük be.
- Minden lépés után p valószínűséggel m háromszöget hozunk létre az új csúcs, a neki választott szomszédok és azok véletlenszerűen választott szomszédai között.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Az új csúcsokat a pref. kapcs. szabály alapján kötjük be.
- Minden lépés után p valószínűséggel m háromszöget hozunk létre az új csúcs, a neki választott szomszédok és azok véletlenszerűen választott szomszédai között.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és repormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.

Klaszterezettség

- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Az új csúcsokat a pref. kapcs. szabály alapján kötjük be.
- Minden lépés után p valószínűséggel m háromszöget hozunk létre az új csúcs, a neki választott szomszédok és azok véletlenszerűen választott szomszédai között.

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Skálázás és renormálás

Barabási–Albertmodell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Bandomizáció

Determinisztiku skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Holme-Kim-modell:

→ állítható klaszterezettségi együttható!

P. Holme and B. J. Kim, Phys. Rev. E 65, 026107 (2002)

Mi okozhat preferenciális kapcsolódást?

Mi okozhat preferenciális kapcsolódást?

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Csúcsok duplázódása: véletlenszerűen választunk egy csúcsot, és lemásoljuk az összes élével együtt. (Esetleg néhány élt véletlenszerűen törlünk az új csúcsról). Pl.: génduplikáció.
- Élekhez kapcsolódás: véletlenszerűen választunk egy élt, és az új csúcsot a két végpontjához kötjük hozzá.
- Bolyongás a hálózaton: az új csúcs egy v.v. csúcs első, másod, stb. szomszédjához kapcsolódik.
- stb.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ ettektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.

Konfigurációs modell

- Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

A KONFIGURÁCIÓS MODELL

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok
- E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség

Konfigurációs modell

Randomizáció

- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

 Mi van, ha egy alkalmazás szempontjából csak az a fontos, hogy a fokszámeloszlás skálafüggetlen legyen, és a konkrét mechanizmus aminek révén egy ilyen hálózat előáll kevésbé számít?

Hogyan lehet egy tetszőleges, de előre rögzített p(d)-vel rendelkező véletlen gráfot generálni?

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.

Konfigurációs modell

- Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- A cél az, hogy egy N csúcsból álló, adott p(d) fokszámeloszlással rendelkező véletlen gráfot állítsunk elő, mely megfelel az összes, ennek a két feltételnek megfelelő gráfok által alkotott sokaságból való véletlen mintavételnek.
 - Először véletlenszerűen kisorsolunk N fokszámot a p(d) alapján.
 - Ezután a "fél éleket" teljesen véletlenszerűen kötögetjük össze.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.

Konfigurációs modell

- Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- A cél az, hogy egy N csúcsból álló, adott p(d) fokszámeloszlással rendelkező véletlen gráfot állítsunk elő, mely megfelel az összes, ennek a két feltételnek megfelelő gráfok által alkotott sokaságból való véletlen mintavételnek.
- Először véletlenszerűen kisorsolunk *N* fokszámot a *p*(*d*) alapján.
 - Ezután a "fél éleket" teljesen véletlenszerűen kötögetjük össze.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.

Konfigurációs modell

- Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- A cél az, hogy egy N csúcsból álló, adott p(d) fokszámeloszlással rendelkező véletlen gráfot állítsunk elő, mely megfelel az összes, ennek a két feltételnek megfelelő gráfok által alkotott sokaságból való véletlen mintavételnek.
- Először véletlenszerűen kisorsolunk N fokszámot a p(d) alapján.
- Ezután a "fél éleket" teljesen véletlenszerűen kötögetjük össze.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.

Konfigurációs modell

- Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- A cél az, hogy egy N csúcsból álló, adott p(d) fokszámeloszlással rendelkező véletlen gráfot állítsunk elő, mely megfelel az összes, ennek a két feltételnek megfelelő gráfok által alkotott sokaságból való véletlen mintavételnek.
- Először véletlenszerűen kisorsolunk N fokszámot a p(d) alapján.
- Ezután a "fél éleket" teljesen véletlenszerűen kötögetjük össze.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség

Konfigurációs modell

- Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Az összekötögetés a nehéz része az eljárásnak, ha egyszerű gráfokban gondolkodunk...
- Hogyan lehetne elkerülni a többszörös élek és az egyazon csúcshoz két véggel kapcsolódó élek létrejöttét?

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség

Konfigurációs modell

Randomizáció

- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Általában az a taktika, hogy először nagy fokszámú csúcsok "fél éleit" kötjük be.
- Azonban az így kapott gráf nem tekinthető egy teljesen homogén mintavételezés eredményének a lehetséges gráfok sokaságából...
- → Randomizáció szükséges!

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Kis vilag effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell
- Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

• Ha csak N és M rögzített:

- A cél, hogy minden, az élősszekötési folyamatból származó extra korrelációtól megszabaduljunk a fokszámeloszlás megtartásával.
- Hogyan lehetne megőrizni fokszámokat a randomizáció során?

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell
- Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Ha csak N és M rögzített:
 - → Erdős–Rényi-gráf.
- A cél, hogy minden, az élösszekötési folyamatból származó extra korrelációtól megszabaduljunk a fokszámeloszlás megtartásával.
- Hogyan lehetne megőrizni fokszámokat a randomizáció során?

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell
- Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

- Ha csak N és M rögzített:
 - → Erdős–Rényi-gráf.
- A cél, hogy minden, az élösszekötési folyamatból származó extra korrelációtól megszabaduljunk a fokszámeloszlás megtartásával.
- Hogyan lehetne megőrizni fokszámokat a randomizáció során?

Élrandomizáció

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell Kis világ effektus Skálázás és
- Barabási–Albert modell Növekedés és Pref kapcs.
- Klaszterezettség
- Konfigurációs modell

Randomizáció

- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Csúcsrandomizáció

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell Kis világ effektus Skálázás és
- Barabási–Albert modell Növekedés és Pret kapcs.
- Klaszterezettség
- Konfigurációs modell
- Randomizáció
- Determinisztiku skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs.
- Klaszterezettség
- Konfigurációs modell
- Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

 Ha egy valós rendszert reprezentáló hálózatot szeretnénk a konfigurációs modellben vizsgálni:

→ nem kell a fokszámeloszlásból kisorsolni a fokszámokat, egyszerűen csak randomizáljuk az eredeti hálózatot.

"Szignifkancia" mérése randomizációval

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-B gráf és valós
- hálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell
- Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

 A valós rendszereket leíró hálózatok általában se nem teljesen véletlenszerűek, se nem teljesen szabályosak...

 Annak eldöntésére, hogy egy adott jelenség vagy "mintázat" vajon csak a véletlen műve, vagy valamilyen lényeges tulajdonság hálózatos "vetülete", általában elég randomizálni a hálózatot.
Hálózatok II.

- Erdos-Renyimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Konfigurációs modell Bandomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

DETERMINISZTIKUS SKÁLAFÜGGETLEN MODELL

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- THUSEIGIGEORDOG
- Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

Skálafüggetlen fokszámeloszlású gráfot determinisztikus úton is elő lehet állítani:

• Egy kisméretű gráfból indulunk ki,

- és a fraktálrajzoláshoz hasonlóan minden lépésben több példányban lemásoljuk az előző lépésnél kapott eredményt.
- A másolatok "leveleit" hozzákötjük az eredeti gráf "gyökeréhez".

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások Skálafüggetlen fokszámeloszlású gráfot determinisztikus úton is elő lehet állítani:

- Egy kisméretű gráfból indulunk ki,
- és a fraktálrajzoláshoz hasonlóan minden lépésben több példányban lemásoljuk az előző lépésnél kapott eredményt.
 - A másolatok "leveleit" hozzákötjük az eredeti gráf "gyökeréhez".

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások Skálafüggetlen fokszámeloszlású gráfot determinisztikus úton is elő lehet állítani:

- Egy kisméretű gráfból indulunk ki,
- és a fraktálrajzoláshoz hasonlóan minden lépésben több példányban lemásoljuk az előző lépésnél kapott eredményt.
- A másolatok "leveleit" hozzákötjük az eredeti gráf "gyökeréhez".

A.-L. Barabási, E. Ravasz and T. Vicsek, Physica A 299, 559-564 (2001).

Gráfsokaságok Szabadenergia Topologikus fázisátalakulások

A.-L. Barabási, E. Ravasz and T. Vicsek, Physica A 299, 559-564 (2001).

Hálózatok II.

- Erdős–Rényimodell
- Parkoláció
- E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

- Számoljuk úgy a lépéseket, hogy a 0. lépésnél van 1 csúcs, az 1. lépésnél 3, stb.
- Az *i*-ik lépésnél a gyökér fokszáma 2ⁱ⁺¹ – 2.

- A következő lépésben két ilyen fokszámú csúcs lesz,
- az n-ik lépésnél meg már 2 · 3ⁿ⁻ⁱ⁻¹ darab
- A kumulatív fokszámeloszlás:

$$P_n(2^{i+1}-2) = P(d < 2^{i+1}-2) = 1 - P(d \ge 2^{i+1}-2) = 1 - \frac{1}{3^n} \left[\sum_{k=i}^{n-1} 2 \cdot 3^{n-k-1} + 1 \right] = 1 - \frac{1}{3^n} \left[2 \sum_{q=0}^{n-i-1} 3^q + 1 \right] = 1 - \frac{1}{3^n} \left[2 \frac{3^{n-i}-1}{2} + 1 \right] = 1 - 3^{-i}.$$

- Ezek alapján a komplementer kumulatív eloszlás lecsengése ~ d^{-ln3/ln2},
- → a fokszámeloszlás lecsengése ~ $d^{-(1+\ln 3/\ln 2)}$ azaz γ = 1 + ln 3/ln 2.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok
- Perkoláció E-R gráf és valós
- hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

- Számoljuk úgy a lépéseket, hogy a 0. lépésnél van 1 csúcs, az 1. lépésnél 3, stb.
- Az *i*-ik lépésnél a gyökér fokszáma 2^{*i*+1} – 2.

- A következő lépésben két ilyen fokszámú csúcs lesz,
- az n-ik lépésnél meg már 2 · 3ⁿ⁻ⁱ⁻¹ darab.
- A kumulatív fokszámeloszlás:

$$P_n(2^{i+1}-2) = P(d < 2^{i+1}-2) = 1 - P(d \ge 2^{i+1}-2) = 1 - \frac{1}{3^n} \left[\sum_{k=i}^{n-1} 2 \cdot 3^{n-k-1} + 1 \right] = 1 - \frac{1}{3^n} \left[2 \sum_{q=0}^{n-i-1} 3^q + 1 \right] = 1 - \frac{1}{3^n} \left[2 \frac{3^{n-i}-1}{2} + 1 \right] = 1 - 3^{-i}.$$

- Ezek alapján a komplementer kumulatív eloszlás lecsengése ~ d^{-in3/ln2},
- → a fokszámeloszlás lecsengése ~ $d^{-(1+\ln 3/\ln 2)}$ azaz γ = 1 + ln 3/ln 2.

Hálózatok II.

- Erdős–Rényimodell Tulaidonságok
- Perkoláció
- E-H graf es valo: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

- Számoljuk úgy a lépéseket, hogy a 0. lépésnél van 1 csúcs, az 1. lépésnél 3, stb.
- Az *i*-ik lépésnél a gyökér fokszáma 2^{*i*+1} – 2.

- A következő lépésben két ilyen fokszámú csúcs lesz,
- az n-ik lépésnél meg már 2 · 3ⁿ⁻ⁱ⁻¹ darab.
- A kumulatív fokszámeloszlás:

$$P_n(2^{i+1} - 2) = P(d < 2^{i+1} - 2) = 1 - P(d \ge 2^{i+1} - 2) =$$

$$1 - \frac{1}{3^n} \left[\sum_{k=i}^{n-1} 2 \cdot 3^{n-k-1} + 1 \right] = 1 - \frac{1}{3^n} \left[2 \sum_{q=0}^{n-i-1} 3^q + 1 \right] =$$

$$1 - \frac{1}{3^n} \left[2 \frac{3^{n-i} - 1}{2} + 1 \right] = 1 - 3^{-i}.$$

- Ezek alapján a komplementer kumulatív eloszlás lecsengése ~ d^{-ln3/ln2},
- → a fokszámeloszlás lecsengése ~ $d^{-(1+\ln 3/\ln 2)}$ azaz γ = 1 + ln 3/ln 2.

Hálózatok II.

- Erdős–Rényimodell
- Perkoláció
- E-H graf es valo: hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

- Számoljuk úgy a lépéseket, hogy a 0. lépésnél van 1 csúcs, az 1. lépésnél 3, stb.
- Az *i*-ik lépésnél a gyökér fokszáma 2^{*i*+1} – 2.

- A következő lépésben két ilyen fokszámú csúcs lesz,
- az n-ik lépésnél meg már 2 · 3ⁿ⁻ⁱ⁻¹ darab.
 - A kumulatív fokszámeloszlás:

$$P_n(2^{i+1} - 2) = P(d < 2^{i+1} - 2) = 1 - P(d \ge 2^{i+1} - 2) = 1 - \frac{1}{3^n} \left[\sum_{k=i}^{n-i-1} 2 \cdot 3^{n-k-1} + 1 \right] = 1 - \frac{1}{3^n} \left[2 \sum_{q=0}^{n-i-1} 3^q + 1 \right] = 1 - \frac{1}{3^n} \left[2 \frac{3^{n-i} - 1}{2} + 1 \right] = 1 - 3^{-i}.$$

- Ezek alapján a komplementer kumulatív eloszlás lecsengése ~ d^{-ln3/ln2},
- → a fokszámeloszlás lecsengése ~ $d^{-(1+\ln 3/\ln 2)}$ azaz γ = 1 + ln 3/ln 2.

Hálózatok II.

- Erdős-Rényimodell
- Perkoláció
- E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

- Számoljuk úgy a lépéseket, hogy a 0. lépésnél van 1 csúcs, az 1. lépésnél 3, stb.
- Az *i*-ik lépésnél a gyökér fokszáma 2^{*i*+1} – 2.

- A következő lépésben két ilyen fokszámú csúcs lesz,
- az n-ik lépésnél meg már 2 · 3ⁿ⁻ⁱ⁻¹ darab.
- A kumulatív fokszámeloszlás:

$$P_n(2^{i+1}-2) = P(d < 2^{i+1}-2) = 1 - P(d \ge 2^{i+1}-2) = 1 - \frac{1}{3^n} \left[\sum_{k=i}^{n-1} 2 \cdot 3^{n-k-1} + 1 \right] = 1 - \frac{1}{3^n} \left[2 \sum_{q=0}^{n-i-1} 3^q + 1 \right] = 1 - \frac{1}{3^n} \left[2 \frac{3^{n-i}-1}{2} + 1 \right] = 1 - 3^{-i}.$$

- Ezek alapján a komplementer kumulatív eloszlás lecsengése ~ d^{-ln3/ln2},
- → a fokszámeloszlás lecsengése ~ $d^{-(1+\ln 3/\ln 2)}$ azaz γ = 1 + ln 3/ln 2.

Hálózatok II.

- Erdős-Rényimodell
- Perkoláció
- E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

- Számoljuk úgy a lépéseket, hogy a 0. lépésnél van 1 csúcs, az 1. lépésnél 3, stb.
- Az *i*-ik lépésnél a gyökér fokszáma 2^{*i*+1} – 2.

- A következő lépésben két ilyen fokszámú csúcs lesz,
- az n-ik lépésnél meg már 2 · 3ⁿ⁻ⁱ⁻¹ darab.
- A kumulatív fokszámeloszlás:

$$P_n(2^{i+1}-2) = P(d < 2^{i+1}-2) = 1 - P(d \ge 2^{i+1}-2) = 1 - \frac{1}{3^n} \left[\sum_{k=i}^{n-i-1} 2 \cdot 3^{n-k-1} + 1 \right] = 1 - \frac{1}{3^n} \left[2 \sum_{q=0}^{n-i-1} 3^q + 1 \right] = 1 - \frac{1}{3^n} \left[2 \frac{3^{n-i}-1}{2} + 1 \right] = 1 - 3^{-i}.$$

- Ezek alapján a komplementer kumulatív eloszlás lecsengése ~ d^{-in3/ln2},
- → a fokszámeloszlás lecsengése ~ $d^{-(1+\ln 3/\ln 2)}$ azaz $\gamma = 1 + \ln 3/\ln 2$.

Hálózatok II.

- Erdős-Rényimodell
- Perkoláció
- E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

- Számoljuk úgy a lépéseket, hogy a 0. lépésnél van 1 csúcs, az 1. lépésnél 3, stb.
- Az *i*-ik lépésnél a gyökér fokszáma 2^{*i*+1} – 2.

- A következő lépésben két ilyen fokszámú csúcs lesz,
- az n-ik lépésnél meg már 2 · 3ⁿ⁻ⁱ⁻¹ darab.
- A kumulatív fokszámeloszlás:

$$P_n(2^{i+1}-2) = P(d < 2^{i+1}-2) = 1 - P(d \ge 2^{i+1}-2) = 1 - \frac{1}{3^n} \left[\sum_{k=i}^{n-1} 2 \cdot 3^{n-k-1} + 1 \right] = 1 - \frac{1}{3^n} \left[2 \sum_{q=0}^{n-i-1} 3^q + 1 \right] = 1 - \frac{1}{3^n} \left[2 \frac{3^{n-i}-1}{2} + 1 \right] = 1 - 3^{-i}.$$

- Ezek alapján a komplementer kumulatív eloszlás lecsengése ~ d^{-ln3/ln2},
- → a fokszámeloszlás lecsengése ~ $d^{-(1+\ln 3/\ln 2)}$ azaz $\gamma = 1 + \ln 3/\ln 2$.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell Kis világ effektus
- Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell

Gráfsokaságok

Szabadenergia Topologikus fázisátalakulások

GRÁFSOKASÁGOK

Hálózatok átstrukturálódása

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós bálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Alber modell Növekedés és Pre kapcs
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

- Bizonyos hálózatokban az élek átrendeződése ugyanolyan fontos mint a növekedés és az új csúcsok bekötődése.
 - gazdasági hálózatok,
 - bizonyos emberi kapcsolathálók, pl. iskolai osztályközösség,
 - élő szervezet biológiai, biokémiai hálózatai, ahol különböző "élethelyzetekhez" kell alkalmazkodni, (pl. egy baktérium tápanyaglebontását leíró metabolikus hálózat tápanyagban gazdag vagy tápanyagban szegény környezetben),
 - stb.
- Miként lehetne az ilyen rendszereket egy általános keretrendszerben modellezni?

Hálózatok átstrukturálódása

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós bálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Alber modell Növekedés és Pre
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

- Bizonyos hálózatokban az élek átrendeződése ugyanolyan fontos mint a növekedés és az új csúcsok bekötődése.
 - gazdasági hálózatok,
 - bizonyos emberi kapcsolathálók, pl. iskolai osztályközösség,
 - élő szervezet biológiai, biokémiai hálózatai, ahol különböző "élethelyzetekhez" kell alkalmazkodni, (pl. egy baktérium tápanyaglebontását leíró metabolikus hálózat tápanyagban gazdag vagy tápanyagban szegény környezetben),
 - stb.
- Miként lehetne az ilyen rendszereket egy általános keretrendszerben modellezni?

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció

- E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia

Topologikus fázisátalakulások

Kanonikus gráfsokaság

- Az összes lehetséges, N csúcsból álló és M éllel rendelkező gráf,
- melyek előfordulási valószínűségét egy *E* energiafüggvény és egy *T* effektív hőmérséklet szabja meg:

$$P(\mathcal{G}_i) = \frac{e^{-E_i/T}}{Z(T)} = \frac{e^{-E_i/T}}{\sum\limits_{\{\mathcal{G}_j\}} e^{-E_j/T}},$$

ahol a partíciós függvény

$$Z(T) = \sum_{\{\mathcal{G}_j\}} e^{-E_j/T}$$

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós

Watts-Strogatzmodell

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok

Topologikus fázisátalakulások

Kanonikus gráfsokaság

- Az összes lehetséges, N csúcsból álló és M éllel rendelkező gráf,
- melyek előfordulási valószínűségét egy *E* energiafüggvény és egy *T* effektív hőmérséklet szabja meg:

$$P(\mathcal{G}_i) = \frac{e^{-E_i/T}}{Z(T)} = \frac{e^{-E_i/T}}{\sum\limits_{\{\mathcal{G}_j\}} e^{-E_j/T}},$$

ahol a partíciós függvény

$$Z(T) = \sum_{\{\mathcal{G}_j\}} e^{-E_j/T}$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell Kis világ effektus
- Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztiku: skálafüggetlen modell

Gráfsokaságok

Szabadenergia Topologikus fázisátalakulások

A hálózat átrendeződésének modellezése:

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell

Gráfsokaságok

Szabadenergia Topologikus fázisátalakulások

A hálózat átrendeződésének modellezése:

 Monte–Carlo-szimuláció, egy lépés egy v.v. él egyik végének véletlenszerű átkötése,

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és repormálás
- Barabási–Albert modell Növekedés és Pref.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell

Gráfsokaságok

Szabadenergia Topologikus fázisátalakulások

A hálózat átrendeződésének modellezése:

- Monte–Carlo-szimuláció, egy lépés egy v.v. él egyik végének véletlenszerű átkötése,
- az átmeneti valószínűség a kiinduló gráf G_i és a végállapot G_j energiájának különbségétől függ:

$$P(\mathcal{G}_i \to \mathcal{G}_j) = \begin{cases} 1 & \text{ha } E_j \le E_i \\ e^{\frac{E_j - E_i}{T}} & \text{ha } E_j > E_i \end{cases}$$

(Metropolis-Hastings-algoritmus)

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Bandomizáció
- Determinisztikus skálafüggetlen modell

Gráfsokaságok

Szabadenergia Topologikus fázisátalakulások

A hálózat átrendeződésének modellezése:

- Monte–Carlo-szimuláció, egy lépés egy v.v. él egyik végének véletlenszerű átkötése,
- az átmeneti valószínűség a kiinduló gráf G_i és a végállapot G_j energiájának különbségétől függ:

$$P(\mathcal{G}_i \to \mathcal{G}_j) = \begin{cases} 1 & \text{ha } E_j \le E_i \\ e^{\frac{E_j - E_i}{T}} & \text{ha } E_j > E_i \end{cases}$$

(Metropolis-Hastings-algoritmus)

• Milyen hálózatot kapunk, ha $T \rightarrow \infty$?

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós bálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia

Topologikus fázisátalakulások

A hálózat átrendeződésének modellezése:

- Monte–Carlo-szimuláció, egy lépés egy v.v. él egyik végének véletlenszerű átkötése,
- az átmeneti valószínűség a kiinduló gráf G_i és a végállapot G_j energiájának különbségétől függ:

$$P(\mathcal{G}_i \to \mathcal{G}_j) = \begin{cases} 1 & \text{ha } E_j \le E_i \\ e^{\frac{E_j - E_i}{T}} & \text{ha } E_j > E_i \end{cases}$$

(Metropolis-Hastings-algoritmus)

- Milyen hálózatot kapunk, ha $T \to \infty$?
- → Ilyenkor minden véletlenszerű átkötést elfogadunk, ezért egy E-R-gráfba megy át a hálózat.

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell Kis világ effektus

Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku: skálafüggetlen modell

Gráfsokaságok

Szabadenergia Topologikus fázisátalakulásol

Az élátrendeződési dinamika ekvivalens egy Kawasaki-féle rácsgáz dinamikájával:

- A rácspontok a lehetséges éleknek felelnek meg, összesen N(N – 1)/2 rácspont.
- A betöltött rácspontok felelnek meg a létező élek aktuális helyzetének.

Szabadenergia

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

- A partíciós függvényben nagyon sok izomorf tag van, hiszen minden lehetséges N csúcsból és M élből álló gráf szerepel benne.
- → Tegyük fel, hogy E csak a topológiától függ és vonjuk össze Z(T)-ben az izomorf tagokat:

$$Z(T) = \sum_{\{\mathcal{G}_j\}} e^{-E_j/T} = \sum_{\{\mathcal{T}_\alpha\}} \mathcal{N}_\alpha e^{-E_\alpha/T},$$

ahol a T_{α} topológián belül összesen N_{α} módon lehet permutálni a csúcsindexeket, és E_{α} a topológiához tartozó energia.

• A szabadenergiát így vezethetjük be:

$$Z(T) = \sum_{\{\mathcal{T}_{\alpha}\}} e^{-E_{\alpha}/T + \ln \mathcal{N}_{\alpha}} = \sum_{\{\mathcal{T}_{\alpha}\}} e^{-F_{\alpha}/T},$$

$$F_{\alpha} = E_{\alpha} - T \ln \mathcal{N}_{\alpha} = E_{\alpha} - TS_{\alpha},$$

ahol $S_{\alpha} = \ln \mathcal{N}_{\alpha}$ az entrópia

Szabadenergia

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

- A partíciós függvényben nagyon sok **izomorf** tag van, hiszen minden lehetséges *N* csúcsból és *M* élből álló gráf szerepel benne.
- → Tegyük fel, hogy *E* csak a topológiától függ és vonjuk össze Z(T)-ben az izomorf tagokat:

$$Z(T) = \sum_{\{\mathcal{G}_j\}} e^{-E_j/T} = \sum_{\{\mathcal{T}_\alpha\}} \mathcal{N}_\alpha e^{-E_\alpha/T},$$

ahol a T_{α} topológián belül összesen \mathcal{N}_{α} módon lehet permutálni a csúcsindexeket, és E_{α} a topológiához tartozó energia.

• A szabadenergiát így vezethetjük be:

$$Z(T) = \sum_{\{\mathcal{T}_{\alpha}\}} e^{-E_{\alpha}/T + \ln \mathcal{N}_{\alpha}} = \sum_{\{\mathcal{T}_{\alpha}\}} e^{-F_{\alpha}/T},$$

$$F_{\alpha} = E_{\alpha} - T \ln \mathcal{N}_{\alpha} = E_{\alpha} - TS_{\alpha},$$

ahol $S_{\alpha} = \ln N_{\alpha}$ az entrópia

Szabadenergia

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

- A partíciós függvényben nagyon sok **izomorf** tag van, hiszen minden lehetséges *N* csúcsból és *M* élből álló gráf szerepel benne.
- → Tegyük fel, hogy *E* csak a topológiától függ és vonjuk össze Z(T)-ben az izomorf tagokat:

$$Z(T) = \sum_{\{\mathcal{G}_j\}} e^{-E_j/T} = \sum_{\{\mathcal{T}_\alpha\}} \mathcal{N}_\alpha e^{-E_\alpha/T},$$

ahol a T_{α} topológián belül összesen \mathcal{N}_{α} módon lehet permutálni a csúcsindexeket, és E_{α} a topológiához tartozó energia.

• A szabadenergiát így vezethetjük be:

$$Z(T) = \sum_{\{\mathcal{T}_{\alpha}\}} e^{-E_{\alpha}/T + \ln \mathcal{N}_{\alpha}} = \sum_{\{\mathcal{T}_{\alpha}\}} e^{-F_{\alpha}/T},$$

$$F_{\alpha} = E_{\alpha} - T \ln \mathcal{N}_{\alpha} = E_{\alpha} - TS_{\alpha},$$

ahol $S_{\alpha} = \ln N_{\alpha}$ az entrópia

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

Egy Ising-modellel ekvivalens energiafüggvény:

 Minden élpár, melyek egyik végükkel egy közös csúcshoz kapcsolódnak, egy – *J* járulékot ad az energiához,

$$E=-J\sum_{i=1}^N d_i(d_i-1).$$

A rácsgázképben ez

$$E = -J \sum_{(\alpha,\beta)} b_{\alpha} b_{\beta}, \qquad b_{\alpha} = \begin{cases} 1 & \text{ha } \alpha \text{ betöltött,} \\ 0 & \text{egyébként,} \end{cases}$$

ahol az összegzés a szomszédos rácspontokra megy.

• Áttérünk egy $z_{\alpha} = \pm 1$ spin jellegű változóra:

$$\Xi = -J \sum_{\langle \alpha, \beta \rangle} b_{\alpha} b_{\beta} = -J \sum_{\langle \alpha, \beta \rangle} \frac{1 + z_{\alpha}}{2} \frac{1 + z_{\beta}}{2} = -\frac{J}{4} \sum_{\langle \alpha, \beta \rangle} z_{\alpha} z_{\beta} - \frac{J}{2} \sum_{\alpha=1}^{N(N-1)/2} z_{\alpha} - \frac{J}{8} N(N-1)(N-2).$$

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku skálafüggetlen modell

Gráfsokaságok Szabadenergia

Topologikus fázisátalakulások Egy Ising-modellel ekvivalens energiafüggvény:

 Minden élpár, melyek egyik végükkel egy közös csúcshoz kapcsolódnak, egy – *J* járulékot ad az energiához,

$$E=-J\sum_{i=1}^N d_i(d_i-1).$$

A rácsgázképben ez

$$E = -J \sum_{(\alpha,\beta)} b_{\alpha} b_{\beta}, \qquad b_{\alpha} = \begin{cases} 1 & \text{ha } \alpha \text{ betöltött,} \\ 0 & \text{egyébként,} \end{cases}$$

ahol az összegzés a szomszédos rácspontokra megy.

• Áttérünk egy $z_{\alpha} = \pm 1$ spin jellegű változóra:

$$E = -J \sum_{(\alpha,\beta)} b_{\alpha} b_{\beta} = -J \sum_{(\alpha,\beta)} \frac{1+z_{\alpha}}{2} \frac{1+z_{\beta}}{2} = -\frac{J}{4} \sum_{(\alpha,\beta)} z_{\alpha} z_{\beta} - \frac{J}{2} \sum_{\alpha=1}^{N(N-1)/2} z_{\alpha} - \frac{J}{8} N(N-1)(N-2).$$

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és renormálás

Barabási–Albertmodell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku: skálafüggetlen modell

Gráfsokaságok Szabadenergia

Topologikus fázisátalakulások Egy Ising-modellel ekvivalens energiafüggvény:

 Minden élpár, melyek egyik végükkel egy közös csúcshoz kapcsolódnak, egy – *J* járulékot ad az energiához,

$$E=-J\sum_{i=1}^N d_i(d_i-1).$$

• A rácsgázképben ez

$$E = -J \sum_{\{\alpha,\beta\}} b_{\alpha} b_{\beta}, \qquad b_{\alpha} = \begin{cases} 1 & \text{ha } \alpha \text{ betöltött,} \\ 0 & \text{egyébként,} \end{cases}$$

ahol az összegzés a szomszédos rácspontokra megy.

• Áttérünk egy $z_{\alpha} = \pm 1$ spin jellegű változóra:

$$E = -J \sum_{\langle \alpha, \beta \rangle} b_{\alpha} b_{\beta} = -J \sum_{\langle \alpha, \beta \rangle} \frac{1 + z_{\alpha}}{2} \frac{1 + z_{\beta}}{2} = -\frac{J}{4} \sum_{\langle \alpha, \beta \rangle} z_{\alpha} z_{\beta} - \frac{J}{2} \sum_{\alpha=1}^{N(N-1)/2} z_{\alpha} - \frac{J}{8} N(N-1)(N-2)$$

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok

Watts-Strogatz modell

Kis világ effektus Skálázás és renormálás

Barabási–Albertmodell Növekedés és Pref. kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztiku skálafüggetlen modell

Gráfsokaságok Szabadenergia

Topologikus fázisátalakulások Egy Ising-modellel ekvivalens energiafüggvény:

 Minden élpár, melyek egyik végükkel egy közös csúcshoz kapcsolódnak, egy – *J* járulékot ad az energiához,

$$E=-J\sum_{i=1}^N d_i(d_i-1).$$

• A rácsgázképben ez

$$E = -J \sum_{(\alpha,\beta)} b_{\alpha} b_{\beta}, \qquad b_{\alpha} = \begin{cases} 1 & \text{ha } \alpha \text{ betöltött,} \\ 0 & \text{egyébként,} \end{cases}$$

ahol az összegzés a szomszédos rácspontokra megy.

• Áttérünk egy $z_{\alpha} = \pm 1$ spin jellegű változóra:

$$E = -J \sum_{\langle \alpha, \beta \rangle} b_{\alpha} b_{\beta} = -J \sum_{\langle \alpha, \beta \rangle} \frac{1+z_{\alpha}}{2} \frac{1+z_{\beta}}{2} = -\frac{J}{4} \sum_{\langle \alpha, \beta \rangle} z_{\alpha} z_{\beta} - \frac{J}{2} \sum_{\alpha=1}^{N(N-1)/2} z_{\alpha} - \frac{J}{8} N(N-1)(N-2).$$

Hálózatok II.

Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós

- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás

Barabási–Albert modell Növekedés és Pref kapcs.

Klaszterezettség

Konfigurációs modell Randomizáció

Determinisztikus skálafüggetlen modell

Gráfsokaságok Szabadenergia

Topologikus fázisátalakulások

- Az alapállapot ilyenkor egy "csillag", melynél az egyik csúcs az összes élt begyűjti.
- → Az E-R gráf ↔ csillag átalakulás tanulmányozására a Φ = d_{max}/M rendparaméter a természetes választás.
- Bevezethetjük a F(Φ, T) feltételes szabadenergiát:

$$e^{-F(\Phi,T)/T} = Z(\Phi,T) = \sum_{\{\mathcal{G}_a\}_{\Phi}} e^{-E_{\Phi}/T},$$

ahol $\{\mathcal{G}_a\}_{\Phi}$ azon gráfok részhalmaza, melyeknél a rendparaméter értéke Φ .

• Itt nem részletezett számolások alapján

$$F(\Phi, T) \approx M \Big[-\Phi^2 M + \Phi T \ln N \Big]$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

- Az alapállapot ilyenkor egy "csillag", melynél az egyik csúcs az összes élt begyűjti.
- → Az E-R gráf \leftrightarrow csillag átalakulás tanulmányozására a $\Phi = d_{\text{max}}/M$ rendparaméter a természetes választás.
 - Bevezethetjük a F(Φ, T) feltételes szabadenergiát:

$$e^{-F(\Phi,T)/T} = Z(\Phi,T) = \sum_{\{\mathcal{G}_a\}_{\Phi}} e^{-E_{\Phi}/T}$$

ahol $\{\mathcal{G}_a\}_{\Phi}$ azon gráfok részhalmaza, melyeknél a rendparaméter értéke Φ .

• Itt nem részletezett számolások alapján

$$F(\Phi, T) \approx M \Big[-\Phi^2 M + \Phi T \ln N \Big]$$

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

- Az alapállapot ilyenkor egy "csillag", melynél az egyik csúcs az összes élt begyűjti.
- → Az E-R gráf \leftrightarrow csillag átalakulás tanulmányozására a $\Phi = d_{max}/M$ rendparaméter a természetes választás.
- Bevezethetjük a $F(\Phi, T)$ feltételes szabadenergiát:

$$e^{-F(\Phi,T)/T} = Z(\Phi,T) = \sum_{\{\mathcal{G}_a\}_{\Phi}} e^{-E_{\Phi}/T},$$

ahol $\{\mathcal{G}_a\}_{\Phi}$ azon gráfok részhalmaza, melyeknél a rendparaméter értéke Φ .

• Itt nem részletezett számolások alapján

ŧ

$$F(\Phi, T) \approx M \Big[-\Phi^2 M + \Phi T \ln N \Big]$$
Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albert modell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

- Az alapállapot ilyenkor egy "csillag", melynél az egyik csúcs az összes élt begyűjti.
- → Az E-R gráf \leftrightarrow csillag átalakulás tanulmányozására a $\Phi = d_{\text{max}}/M$ rendparaméter a természetes választás.
- Bevezethetjük a $F(\Phi, T)$ feltételes szabadenergiát:

$$e^{-F(\Phi,T)/T} = Z(\Phi,T) = \sum_{\{\mathcal{G}_a\}_{\Phi}} e^{-E_{\Phi}/T},$$

ahol $\{\mathcal{G}_a\}_{\Phi}$ azon gráfok részhalmaza, melyeknél a rendparaméter értéke Φ .

• Itt nem részletezett számolások alapján

ŧ

$$F(\Phi, T) \approx M \left[-\Phi^2 M + \Phi T \ln N \right]$$

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

- Kis rendszerek esetén egzaktul is le lehet számolni a lehetséges topológiákat, az eredmények jó egyezést mutatnak az elmélettel.
- Alacsony hőmérsékleten F(Φ, T) minimuma Φ = 1-nél van, ami a csillagszerű állapotnak felel meg.
- Magas hőmérsékleten F(Φ, T) minimuma Φ = 0-hoz közel van, ami az E-R-gráf szerű állapotnak felel meg.
- Mivel egy hőmérséklet-tartományon két minimuma is van *F*-nek, (egyik stabil, a másik metastabil), a fázisátalakulás elsőrendű.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

- Kis rendszerek esetén egzaktul is le lehet számolni a lehetséges topológiákat, az eredmények jó egyezést mutatnak az elmélettel.
- Alacsony hőmérsékleten F(Φ, T) minimuma Φ = 1-nél van, ami a csillagszerű állapotnak felel meg.
- Magas hőmérsékleten F(Φ, T) minimuma Φ = 0-hoz közel van, ami az E-R-gráf szerű állapotnak felel meg.
- Mivel egy hőmérséklet-tartományon két minimuma is van *F*-nek, (egyik stabil, a másik metastabil), a fázisátalakulás elsőrendű.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

- Kis rendszerek esetén egzaktul is le lehet számolni a lehetséges topológiákat, az eredmények jó egyezést mutatnak az elmélettel.
- Alacsony hőmérsékleten F(Φ, T) minimuma Φ = 1-nél van, ami a csillagszerű állapotnak felel meg.
- Magas hőmérsékleten F(Φ, T) minimuma Φ = 0-hoz közel van, ami az E-R-gráf szerű állapotnak felel meg.
- Mivel egy hőmérséklet-tartományon két minimuma is van *F*-nek, (egyik stabil, a másik metastabil), a fázisátalakulás elsőrendű.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs. Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztikus skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

- Kis rendszerek esetén egzaktul is le lehet számolni a lehetséges topológiákat, az eredmények jó egyezést mutatnak az elmélettel.
- Alacsony hőmérsékleten F(Φ, T) minimuma Φ = 1-nél van, ami a csillagszerű állapotnak felel meg.
- Magas hőmérsékleten F(Φ, T) minimuma Φ = 0-hoz közel van, ami az E-R-gráf szerű állapotnak felel meg.
- Mivel egy hőmérséklet-tartományon két minimuma is van *F*-nek, (egyik stabil, a másik metastabil), a fázisátalakulás elsőrendű.

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatzmodell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref. kapcs.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

A numerikus szimulációk eredményei nagyobb rendszerméretekre hiszterézist mutatnak az átalakulásnál, ami szintén arra utal, hogy az átalakulás elsőrendű:

Hálózatok II.

- Erdős–Rényimodell Tulajdonságok Perkoláció E-R gráf és valós hálózatok
- Watts-Strogatz modell
- Kis világ effektus Skálázás és renormálás
- Barabási–Albertmodell Növekedés és Pref.
- Klaszterezettség
- Konfigurációs modell Randomizáció
- Determinisztiku: skálafüggetlen modell
- Gráfsokaságok Szabadenergia
- Topologikus fázisátalakulások

• Ha áttérünk az

 $E = -J\sum_i d_i \ln d_i$

energiára, akkor

- folytonos átalakulás,
- a kritikus pontban skálafüggetlen gráfok!

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Ierjedes Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresé: Példák Hierarchikus klaszterezés
- A Girvan-Newmanalgoritmus Modularitás

HÁLÓZATOK III: ALKALMAZÁSOK

Hálózatok robusztussága, terjedés hálózatokon, SIS modell, hálózati csoportkeresés, hierarchikus klaszterezés, Girvan–Newman-algoritmus, modularitás, k-klikk perkoláció.

Hálózatok III.

Robusztusság

- Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modell SIS modell SIS inhomogén hálózaton
- SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus
- Modularitás
- k-klikk perkoláció

HÁLÓZATOK ROBUSZTUSSÁGA

Hálózatok robusztussága

Hálózatok III.

Robusztusság

- Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar algoritmus
- Modularitás k-klikk perkolácie

- A valódi rendszereket reprezentáló hálózatok robusztusak:
 - Élő sejtek: gén mutációk...
 - Internet: router leállások...
 - stb.

Annak ellenére, hogy a csúcsok (élek) egy része nem funkcionál, az egész rendszer jobbára zavartalanul működik.

Hálózatok robusztussága

Hálózatok III.

Robusztusság

- Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedės Terjedėsi modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newman
- Modularitás
- k-klikk perkoláció

Azonban ha túl sok élt vagy csúcsot távolítunk el, azzal előidézhetünk rendszerszintű leállást:

Hálózatok robusztussága

Hálózatok III.

Robusztusság

- Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresé: Példák Hierarchikus klaszterezés
- A Girvan–Newman algoritmus Modularitás
- k-klikk perkoláció

- Hogyan jellemezzük kvantitatíven a hálózat szétesését egy véletlen él- vagy csúcseltávolítási folyamat során?
- Miként befolyásolja a hálózatstruktúra az ilyen folyamatokkal szembeni robusztusságot?

"Inverz" perkoláció

Hálózatok III.

Az élek vagy csúcsok véletlenszerű eltávolítása egy inverz perkolációs folyamatnak felel meg:

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan-Newmar algoritmus Modularitás

"Inverz" perkoláció

Hálózatok III.

Példák Hierarchikus klaszterezés

A Girvan–Newmar algoritmus Modularitás

k-klikk perkoláció

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

- Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

Az óriás komponensben az átlagos fokszám: (d)_G ≥ 2

•

- Legyen P(d_i | i ↔ j) annak feltételes valószínűsége, hogy i fokszáma d_i, feltéve, hogy hozzákapcsolódik egy j csúcshoz.
- Tegyük fel, hogy a gráf élei véletlenszerűek, adott fokszámeloszlás mellett, és a gráf tartalmaz egy óriás komponenst.
- Az egyszerűség kedvéért azt is tegyük fel, hogy amely csúcs legalább egy másikhoz hozzákötődik, az már benne is van az óriás komponensben.

 $\langle d \rangle_{\rm G} \simeq \langle d_i \mid i \leftrightarrow j \rangle = \sum_i d_i \mathcal{P}(d_i \mid i \leftrightarrow j) \ge 2.$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

- Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvari-Newman algoritmus Modularitás

 Az óriás komponensben az átlagos fokszám: ⟨d⟩_G ≥ 2

 \leftrightarrow

- Legyen P(d_i | i ↔ j) annak feltételes valószínűsége, hogy i fokszáma d_i, feltéve, hogy hozzákapcsolódik egy j csúcshoz.
- Tegyük fel, hogy a gráf élei véletlenszerűek, adott fokszámeloszlás mellett, és a gráf tartalmaz egy óriás komponenst.
- Az egyszerűség kedvéért azt is tegyük fel, hogy amely csúcs legalább egy másikhoz hozzákötődik, az már benne is van az óriás komponensben.

$$\langle d \rangle_{\mathrm{G}} \simeq \langle d_i \mid i \leftrightarrow j \rangle = \sum_i d_i \mathcal{P}(d_i \mid i \leftrightarrow j) \geq 2.$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresé Példák Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás k-klikk perkoláció

 Az óriás komponensben az átlagos fokszám: ⟨d⟩_G ≥ 2

 \leftrightarrow

- Legyen P(d_i | i ↔ j) annak feltételes valószínűsége, hogy i fokszáma d_i, feltéve, hogy hozzákapcsolódik egy j csúcshoz.
- Tegyük fel, hogy a gráf élei véletlenszerűek, adott fokszámeloszlás mellett, és a gráf tartalmaz egy óriás komponenst.
- Az egyszerűség kedvéért azt is tegyük fel, hogy amely csúcs legalább egy másikhoz hozzákötődik, az már benne is van az óriás komponensben.

$$\langle d \rangle_{\mathrm{G}} \simeq \langle d_i \mid i \leftrightarrow j \rangle = \sum_i d_i \mathcal{P}(d_i \mid i \leftrightarrow j) \ge 2.$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman algorimus

Modularitás

k-klikk perkoláció

• A feltételes valószínűség definíciója alapján $\mathcal{P}(d_i \mid i \leftrightarrow j) = \frac{\mathcal{P}(d_i, i \leftrightarrow j)}{\mathcal{P}(i \leftrightarrow j)}$

Egy véletlenszerűen összehuzalozott hálózatban

$$\mathcal{P}(i \leftrightarrow j \mid d_i) = \frac{d_i}{N}, \qquad \mathcal{P}(i \leftrightarrow j) = \frac{2M}{N(N-1)} = \frac{\langle d \rangle}{N}$$

$$\sum_{i} d_{i} \mathcal{P}(d_{i} \mid i \leftrightarrow j) = \sum_{i} d_{i} \frac{\mathcal{P}(i \leftrightarrow j \mid d_{i})p(d_{i})}{\mathcal{P}(i \leftrightarrow j)} =$$
$$\sum_{i} d_{i} \frac{d_{i}p(d_{i})}{\langle d \rangle} = \frac{\sum_{i} d_{i}^{2}p(d_{i})}{\langle d \rangle} = \frac{\langle d^{2} \rangle}{\langle d \rangle} \geq 2.$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság

Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman algoritmus

Modularitás

k-klikk perkoláció

• A feltételes valószínűség definíciója alapján $\mathcal{P}(d_i \mid i \leftrightarrow j) = \frac{\mathcal{P}(d_i, i \leftrightarrow j)}{\mathcal{P}(i \leftrightarrow j)}$

$$\rightarrow \mathcal{P}(d_i \mid i \leftrightarrow j) \mathcal{P}(i \leftrightarrow j) = \mathcal{P}(d_i, i \leftrightarrow j)$$

Egy véletlenszerűen összehuzalozott hálózatban

$$\mathcal{P}(i \leftrightarrow j \mid d_i) = \frac{d_i}{N}, \qquad \mathcal{P}(i \leftrightarrow j) = \frac{2M}{N(N-1)} = \frac{\langle d \rangle}{N}$$

$$\sum_{i} d_{i} \mathcal{P}(d_{i} \mid i \leftrightarrow j) = \sum_{i} d_{i} \frac{\mathcal{P}(i \leftrightarrow j \mid d_{i})p(d_{i})}{\mathcal{P}(i \leftrightarrow j)} =$$
$$\sum_{i} d_{i} \frac{d_{i}p(d_{i})}{\langle d \rangle} = \frac{\sum_{i} d_{i}^{2}p(d_{i})}{\langle d \rangle} = \frac{\langle d^{2} \rangle}{\langle d \rangle} \geq 2.$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság

Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman

Modularitás

k-klikk perkoláció

A feltételes valószínűség definíciója alapján

P(*d_i* | *i* ↔ *j*) = *P*(*d_i*, *i* ↔ *j*)
P(*i* ↔ *j*)
P(*i* ↔ *j*) = *P*(*i* ↔ *j* | *d_i*)*p*(*d_i*)
p(*d_i* | *i* ↔ *j*)*P*(*i* ↔ *j*) = *P*(*i* ↔ *j* | *d_i*)*p*(*d_i*)
p(*d_i* | *i* ↔ *j*)

Egy véletlenszerűen összehuzalozott hálózatban

$$\mathcal{P}(i \leftrightarrow j \mid d_i) = \frac{d_i}{N}, \qquad \mathcal{P}(i \leftrightarrow j) = \frac{2M}{N(N-1)} = \frac{\langle d \rangle}{N}$$

$$\sum_{i} d_{i} \mathcal{P}(d_{i} \mid i \leftrightarrow j) = \sum_{i} d_{i} \frac{\mathcal{P}(i \leftrightarrow j \mid d_{i})p(d_{i})}{\mathcal{P}(i \leftrightarrow j)} =$$
$$\sum_{i} d_{i} \frac{d_{i}p(d_{i})}{\langle d \rangle} = \frac{\sum_{i} d_{i}^{2}p(d_{i})}{\langle d \rangle} = \frac{\langle d^{2} \rangle}{\langle d \rangle} \ge 2.$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Terjedés Terjedési modelle
- SIS modell SIS inhomogén hálózaton
- SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar
- algoritmus Modularitás
- k-klikk perkoláció

- A feltételes valószínűség definíciója alapján $\mathcal{P}(d_i \mid i \leftrightarrow j) = \frac{\mathcal{P}(d_i, i \leftrightarrow j)}{\mathcal{P}(i \leftrightarrow j)}$ $\rightarrow \quad \mathcal{P}(d_i \mid i \leftrightarrow j) \mathcal{P}(i \leftrightarrow j) = \mathcal{P}(d_i, i \leftrightarrow j) = \mathcal{P}(i \leftrightarrow j \mid d_i) p(d_i)$ $\rightarrow \quad \mathcal{P}(d_i \mid i \leftrightarrow j) = \frac{\mathcal{P}(i \leftrightarrow j \mid d_i) p(d_i)}{\mathcal{P}(i \leftrightarrow j)}$
- Egy véletlenszerűen összehuzalozott hálózatban

$$\mathcal{P}(i \leftrightarrow j \mid d_i) = \frac{d_i}{N}, \qquad \mathcal{P}(i \leftrightarrow j) = \frac{2M}{N(N-1)} = \frac{\langle d \rangle}{N}$$

$$\sum_{i} d_{i} \mathcal{P}(d_{i} \mid i \leftrightarrow j) = \sum_{i} d_{i} \frac{\mathcal{P}(i \leftrightarrow j \mid d_{i})p(d_{i})}{\mathcal{P}(i \leftrightarrow j)} =$$
$$\sum_{i} d_{i} \frac{d_{i}p(d_{i})}{\langle d \rangle} = \frac{\sum_{i} d_{i}^{2}p(d_{i})}{\langle d \rangle} = \frac{\langle d^{2} \rangle}{\langle d \rangle} \geq 2.$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Terjedés
- Terjedési mode SIS modell
- SIS inhomog
- SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmar
- algoritmus Modularitás
- k-klikk perkoláció

- A feltételes valószínűség definíciója alapján $\mathcal{P}(d_i \mid i \leftrightarrow j) = \frac{\mathcal{P}(d_i, i \leftrightarrow j)}{\mathcal{P}(i \leftrightarrow j)}$ $\rightarrow \quad \mathcal{P}(d_i \mid i \leftrightarrow j) \mathcal{P}(i \leftrightarrow j) = \mathcal{P}(d_i, i \leftrightarrow j) = \mathcal{P}(i \leftrightarrow j \mid d_i) p(d_i)$ $\rightarrow \quad \mathcal{P}(d_i \mid i \leftrightarrow j) = \frac{\mathcal{P}(i \leftrightarrow j \mid d_i) p(d_i)}{\mathcal{P}(i \leftrightarrow j)}$
- Egy véletlenszerűen összehuzalozott hálózatban

$$\mathcal{P}(i \leftrightarrow j \mid d_i) = \frac{d_i}{N}, \qquad \qquad \mathcal{P}(i \leftrightarrow j) = \frac{2M}{N(N-1)} = \frac{\langle d \rangle}{N}$$

$$\sum_{i} d_{i} \mathcal{P}(d_{i} \mid i \leftrightarrow j) = \sum_{i} d_{i} \frac{\mathcal{P}(i \leftrightarrow j \mid d_{i})p(d_{i})}{\mathcal{P}(i \leftrightarrow j)} = \sum_{i} d_{i} \frac{d_{i}p(d_{i})}{\langle d \rangle} = \frac{\sum_{i} d_{i}^{2}p(d_{i})}{\langle d \rangle} = \frac{\langle d^{2} \rangle}{\langle d \rangle} \ge 2.$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Terjedés Terjedési modelle
- SIS modell
- 515 innomog hálózaton
- SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- A feltételes valószínűség definíciója alapján $\mathcal{P}(d_i \mid i \leftrightarrow j) = \frac{\mathcal{P}(d_i, i \leftrightarrow j)}{\mathcal{P}(i \leftrightarrow j)}$ $\rightarrow \quad \mathcal{P}(d_i \mid i \leftrightarrow j) \mathcal{P}(i \leftrightarrow j) = \mathcal{P}(d_i, i \leftrightarrow j) = \mathcal{P}(i \leftrightarrow j \mid d_i) p(d_i)$ $\rightarrow \quad \mathcal{P}(d_i \mid i \leftrightarrow j) = \frac{\mathcal{P}(i \leftrightarrow j \mid d_i) p(d_i)}{\mathcal{P}(i \leftrightarrow j)}$
- Egy véletlenszerűen összehuzalozott hálózatban

$$\mathcal{P}(i \leftrightarrow j \mid d_i) = \frac{d_i}{N}, \qquad \mathcal{P}(i \leftrightarrow j) = \frac{2M}{N(N-1)} = \frac{\langle d \rangle}{N}$$

$$\sum_{i} d_{i} \mathcal{P}(d_{i} \mid i \leftrightarrow j) = \sum_{i} d_{i} \frac{\mathcal{P}(i \leftrightarrow j \mid d_{i}) \mathcal{P}(d_{i})}{\mathcal{P}(i \leftrightarrow j)} =$$
$$\sum_{i} d_{i} \frac{d_{i} \mathcal{P}(d_{i})}{\langle d \rangle} = \frac{\sum_{i} d_{i}^{2} \mathcal{P}(d_{i})}{\langle d \rangle} = \frac{\langle d^{2} \rangle}{\langle d \rangle} \ge 2.$$

Hálózatok III.

Robusztusság Inverz perkoláció

- Kritikus 7 Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmar
- algoritmus Modularitás
- k-klikk perkoláció

• Mit ad ez az E-R-gráfra?

$$p(d) \simeq \frac{\langle d \rangle^d e^{-\langle d \rangle}}{d!}, \rightarrow \langle d^2 \rangle = \langle d \rangle (1 + \langle d \rangle),$$
$$\rightarrow \frac{\langle d^2 \rangle}{\langle d \rangle} = 1 + \langle d \rangle \ge 2$$
$$\rightarrow \langle d \rangle \ge 1,$$

ami teljesen konzisztens a korábbi eredményeinkkel.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá

Ceizott tamadas Terjedés

Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar

algoritmus Modularitás

k-klikk perkoláció

Mi a helyzet a skálafüggetlen gráfokkal?

Hálózatok III.

Inverz perkoláció

Mi a helyzet a skálafüggetlen gráfokkal?

$$p(d) = Cd^{-\gamma}, \quad \int_{d_{\min}}^{\infty} p(z)dz = 1, \quad \Rightarrow \quad \frac{Cd_{\min}^{1-\gamma}}{\gamma - 1} = 1, \quad C = \frac{\gamma - 1}{d_{\min}^{1-\gamma}}$$

Hálózatok III.

Robusztusság Inverz perkoláció

Kritikus / Extrém robusztusság Célzott támadás

- Terjedés
- Terjedési mod SIS modell SIS inhomogé
- hálózaton
- Csoportkeresé Példák Hierarchikus klaszterezés

A Girvan–Newman algoritmus Modularitás

k-klikk perkoláció

Mi a helyzet a skálafüggetlen gráfokkal?

$$p(d) = Cd^{-\gamma}, \quad \int_{d_{\min}}^{\infty} p(z)dz = 1, \quad \Rightarrow \quad \frac{Cd_{\min}^{1-\gamma}}{\gamma-1} = 1, \quad C = \frac{\gamma-1}{d_{\min}^{1-\gamma}}$$
$$\left\langle d^{2} \right\rangle = \int_{d_{\min}}^{\infty} Cz^{2-\gamma}dz = \frac{\gamma-1}{d_{\min}^{1-\gamma}} \int_{d_{\min}}^{\infty} z^{2-\gamma}dz = \frac{(\gamma-1)\left[d^{3-\gamma}\right]_{d_{\min}}^{\infty}}{(3-\gamma)d_{\min}^{1-\gamma}}.$$

 \rightarrow

Hálózatok III.

Robusztusság Inverz perkoláció

- Kritikus / Extrém robusztusság Célzott támadás
- Terjedés
- Terjedési mod SIS modell SIS inhomogé
- hálózaton
- SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman
- algoritmus
- Modularitás
- k-klikk perkoláció

Mi a helyzet a skálafüggetlen gráfokkal?

$$p(d) = Cd^{-\gamma}, \quad \int_{d_{\min}}^{\infty} p(z)dz = 1, \quad \Rightarrow \quad \frac{Cd_{\min}^{1-\gamma}}{\gamma-1} = 1, \quad C = \frac{\gamma-1}{d_{\min}^{1-\gamma}}$$
$$\left(d^{2}\right) = \int_{d_{\min}}^{\infty} Cz^{2-\gamma}dz = \frac{\gamma-1}{d_{\min}^{1-\gamma}} \int_{d_{\min}}^{\infty} z^{2-\gamma}dz = \frac{(\gamma-1)\left[d^{3-\gamma}\right]_{d_{\min}}^{\infty}}{(3-\gamma)d_{\min}^{1-\gamma}}.$$
$$\left(d^{2}\right) = \left\{\begin{array}{cc} \infty & \text{ha } \gamma < 3\\ \frac{(\gamma-1)d_{\min}^{2}}{\gamma-3} & \text{ha } \gamma > 3\end{array}\right.$$

 \rightarrow

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá

- Célzott támadás
- Terjedés Terjedési modell SIS modell SIS inhomogén
- SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar algoritmus
- Modularitás
- k-klikk perkoláció

Mi a helyzet a skálafüggetlen gráfokkal?

• Ha $p(d) \sim d^{-\gamma}$, akkor $\langle d^2 \rangle$ így viselkedik:

$$p(d) = Cd^{-\gamma}, \quad \int_{d_{\min}}^{\infty} p(z)dz = 1, \quad \Rightarrow \quad \frac{Cd_{\min}^{1-\gamma}}{\gamma - 1} = 1, \quad C = \frac{\gamma - 1}{d_{\min}^{1-\gamma}}$$
$$\left\langle d^{2} \right\rangle = \int_{d_{\min}}^{\infty} Cz^{2-\gamma}dz = \frac{\gamma - 1}{d_{\min}^{1-\gamma}} \int_{d_{\min}}^{\infty} z^{2-\gamma}dz = \frac{(\gamma - 1)\left[d^{3-\gamma}\right]_{d_{\min}}^{\infty}}{(3 - \gamma)d_{\min}^{1-\gamma}}.$$
$$\left\langle d^{2} \right\rangle = \begin{cases} \infty & \text{ha } \gamma < 3 \\ \frac{(\gamma - 1)d_{\min}^{2}}{\gamma - 3} & \text{ha } \gamma > 3 \end{cases}$$

Mivel a valós hálózatok esetén 2 ≤ γ ≤ 3, így ezeknél a (d²/(d)) ≥ 2 feltétel "automatikusan" teljesül, a jóslat szerint mindig van bennük egy óriás komponens!

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

A csúcsok véletlenszerű meghibásodásának folyamatát így vizsgálhatjuk:

- Tegyük fel, hogy ismert a kezdeti (ép) hálózat fokszámeloszlása, p(d).
- A csúcsok f hányadának véletlenszerű eltávolítása esetén először meghatározzuk az ez által módosult p'(d') fokszámeloszlást,
- majd p'(d') alapján kiszámoljuk (d') és ((d')²) értékét, és behelyettesítünk:

$$\frac{\left\langle (d')^2 \right\rangle}{\left\langle d' \right\rangle} \stackrel{?}{\geq} 2.$$

 Kritikus f: Mekkora az a minimális f_c, ahol már nem teljesül az egyenlőtlenség?

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

A csúcsok véletlenszerű meghibásodásának folyamatát így vizsgálhatjuk:

- Tegyük fel, hogy ismert a kezdeti (ép) hálózat fokszámeloszlása, p(d).
- A csúcsok f hányadának véletlenszerű eltávolítása esetén először meghatározzuk az ez által módosult p'(d') fokszámeloszlást,
- majd p'(d') alapján kiszámoljuk (d') és ((d')²) értékét, és behelyettesítünk:

$$\frac{\left\langle (d')^2 \right\rangle}{\left\langle d' \right\rangle} \stackrel{?}{\geq} 2.$$

• Kritikus *f*: Mekkora az a minimális *f*_c, ahol már nem teljesül az egyenlőtlenség?

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

A csúcsok véletlenszerű meghibásodásának folyamatát így vizsgálhatjuk:

- Tegyük fel, hogy ismert a kezdeti (ép) hálózat fokszámeloszlása, p(d).
- A csúcsok f hányadának véletlenszerű eltávolítása esetén először meghatározzuk az ez által módosult p'(d') fokszámeloszlást,
- majd p'(d') alapján kiszámoljuk (d') és ((d')²) értékét, és behelyettesítünk:

 $\frac{\left\langle (d')^2 \right\rangle}{\left\langle d' \right\rangle} \stackrel{?}{\geq} 2.$

• Kritikus *f*: Mekkora az a minimális *f*_c, ahol már nem teljesül az egyenlőtlenség?

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan–Newmar algoritmus Modularitás A csúcsok véletlenszerű meghibásodásának folyamatát így vizsgálhatjuk:

- Tegyük fel, hogy ismert a kezdeti (ép) hálózat fokszámeloszlása, p(d).
- A csúcsok f hányadának véletlenszerű eltávolítása esetén először meghatározzuk az ez által módosult p'(d') fokszámeloszlást,
- majd p'(d') alapján kiszámoljuk (d') és ((d')²) értékét, és behelyettesítünk:

$$\frac{\left\langle (d')^2 \right\rangle}{\left\langle d' \right\rangle} \stackrel{?}{\geq} 2.$$

 Kritikus f: Mekkora az a minimális f_c, ahol már nem teljesül az egyenlőtlenség?

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newman algoritmus Modularitás
- k-klikk perkoláció

A csúcsok véletlenszerű meghibásodásának folyamatát így vizsgálhatjuk:

- Tegyük fel, hogy ismert a kezdeti (ép) hálózat fokszámeloszlása, p(d).
- A csúcsok f hányadának véletlenszerű eltávolítása esetén először meghatározzuk az ez által módosult p'(d') fokszámeloszlást,
- majd p'(d') alapján kiszámoljuk (d') és ((d')²) értékét, és behelyettesítünk:

$$\frac{\left\langle (d')^2 \right\rangle}{\left\langle d' \right\rangle} \stackrel{?}{\geq} 2.$$

Kritikus f: Mekkora az a minimális f_c, ahol már nem teljesül az egyenlőtlenség?

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedes Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman
- algoritmus Modularitás
- k-klikk perkoláció

• Mi lenne (d') egyszerű becslése f « 1 esetén?

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- Mi lenne $\langle d' \rangle$ egyszerű becslése $f \ll 1$ esetén?
- a csúcsok f hányadának eltávolítása átlagosan az élek szintén f hányadát viszi magával.
- → ennél fogva 1 *f* hányada marad meg az éleknek, $\langle d' \rangle = (1 f) \langle d \rangle$.
Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmar algoritmus
- Modularitás
- k-klikk perkoláció

A módosult fokszámeloszlás meghatározása:

 Annak valószínűsége, hogy egy eredetileg d fokszámú csúcs q szomszédját veszíti el:

$$\mathcal{P}_d(q \text{ fit vesz(t)} = \binom{d}{q} f^q (1-f)^{d-q}$$

● A módosult fokszám d' = d – q, azaz

$$\begin{split} P(d \rightarrow d') &= \binom{d}{q} f^q (1-f)^{d-q} = \binom{d}{d-d'} f^{d-d'} (1-f)^{d'} = \\ & \binom{d}{d'} f^{d-d'} (1-f)^{d'}. \end{split}$$

$$p'(d') = \sum_{d=d'}^{\infty} p(d) {d \choose d'} f^{d-d'} (1-f)^{d'}.$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar

Modularitás

k-klikk perkoláció

A módosult fokszámeloszlás meghatározása:

 Annak valószínűsége, hogy egy eredetileg d fokszámú csúcs q szomszédját veszíti el:

$$\mathcal{P}_d(q \text{ élt veszít}) = \binom{d}{q} f^q (1-f)^{d-q}$$

• A módosult fokszám d' = d - q, azaz

$$P(d \rightarrow d') = \binom{d}{q} f^q (1-f)^{d-q} = \binom{d}{d-d'} f^{d-d'} (1-f)^{d'} = \binom{d}{d'} f^{d-d'} (1-f)^{d'}.$$

$$p'(d') = \sum_{d=d'}^{\infty} p(d) {d \choose d'} f^{d-d'} (1-f)^{d'}.$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar algoritmus
- algoritmus Modularitás
- k-klikk perkoláció

A módosult fokszámeloszlás meghatározása:

 Annak valószínűsége, hogy egy eredetileg d fokszámú csúcs q szomszédját veszíti el:

$$\mathcal{P}_d(q \text{ élt veszít}) = \binom{d}{q} f^q (1-f)^{d-q}$$

A módosult fokszám d′ = d − q, azaz

$$P(d \to d') = \binom{d}{q} f^{q} (1-f)^{d-q} = \binom{d}{d-d'} f^{d-d'} (1-f)^{d'} = \binom{d}{d'} f^{d-d'} (1-f)^{d'}.$$

$$p'(d') = \sum_{d=d'}^{\infty} p(d) {d \choose d'} f^{d-d'} (1-f)^{d'}.$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar
- Modularitás
- k-klikk perkoláció

A módosult fokszámeloszlás meghatározása:

 Annak valószínűsége, hogy egy eredetileg d fokszámú csúcs q szomszédját veszíti el:

$$\mathcal{P}_d(q \text{ élt veszít}) = \binom{d}{q} f^q (1-f)^{d-q}$$

A módosult fokszám d′ = d − q, azaz

$$P(d \to d') = \binom{d}{q} f^{q} (1-f)^{d-q} = \binom{d}{d-d'} f^{d-d'} (1-f)^{d'} = \binom{d}{d'} f^{d-d'} (1-f)^{d'}.$$

$$p'(d') = \sum_{d=d'}^{\infty} p(d) {d \choose d'} f^{d-d'} (1-f)^{d'}.$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresé Példák Hierarchikus klaszterezés A Girvan-Newma
- algoritmus Modularitás
- k-klikk perkoláció

• A módosult $\langle d' \rangle$ átlagos fokszám:

$$\begin{cases} d' \end{pmatrix} = \sum_{d'=0}^{\infty} d' p'(d') = \sum_{d'=0}^{\infty} d' \sum_{d=d'}^{\infty} p(d) \binom{d}{d'} f^{d-d'} (1-f)^{d'} = \\ \sum_{d'=0}^{\infty} \sum_{d=d'}^{\infty} p(d) \frac{d(d-1)!}{(d'-1)!(d-d')!} f^{d-d'} (1-f)^{d'-1} (1-f) \end{cases}$$

Az összegzés a "háromszögre" történik, ezért ha felcseréljük a sorrendet: $\sum_{d'=0}^{\infty} \sum_{d=d'}^{\infty} = \sum_{d=0}^{\infty} \sum_{d'=0}^{d}$

$$d' \rangle = \sum_{d=0}^{\infty} \sum_{d'=0}^{d} p(d) \frac{d(d-1)!}{(d'-1)!(d-d')!} f^{d-d'} (1-f)^{d'-1} (1-f) = (1-f) \sum_{d=0}^{\infty} dp(d) \underbrace{\sum_{d'=0}^{d} \binom{d'-1}{d'-1} f^{d-d'} (1-f)^{d'-1}}_{1} = (1-f) \langle d \rangle$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmar
- algoritmus Modularitás
- k-klikk perkoláció

A módosult (d') átlagos fokszám:

$$\begin{cases} d' \end{pmatrix} = \sum_{d'=0}^{\infty} d' p'(d') = \sum_{d'=0}^{\infty} d' \sum_{d=d'}^{\infty} p(d) {d \choose d'} f^{d-d'} (1-f)^{d'} = \\ \sum_{d'=0}^{\infty} \sum_{d=d'}^{\infty} p(d) \frac{d(d-1)!}{(d'-1)!(d-d')!} f^{d-d'} (1-f)^{d'-1} (1-f) \end{cases}$$

Az összegzés a "háromszögre" történik, ezért ha felcseréljük a sorrendet: $\sum_{d'=0}^{\infty} \sum_{d=d'}^{\infty} = \sum_{d=0}^{\infty} \sum_{d'=0}^{d}$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmar
- algoritmus Modularitás
- k-klikk perkoláció

A módosult (d') átlagos fokszám:

$$\begin{cases} d' \end{pmatrix} = \sum_{d'=0}^{\infty} d' p'(d') = \sum_{d'=0}^{\infty} d' \sum_{d=d'}^{\infty} p(d) {d \choose d'} f^{d-d'} (1-f)^{d'} = \\ \sum_{d'=0}^{\infty} \sum_{d=d'}^{\infty} p(d) \frac{d(d-1)!}{(d'-1)!(d-d')!} f^{d-d'} (1-f)^{d'-1} (1-f) \end{cases}$$

Az összegzés a "háromszögre" történik, ezért ha felcseréljük a sorrendet: $\sum_{d'=0}^{\infty} \sum_{d=d'}^{\infty} = \sum_{d=0}^{\infty} \sum_{d'=0}^{d}$

$$\begin{aligned} d' \end{pmatrix} = \sum_{d=0}^{\infty} \sum_{d'=0}^{d} p(d) \frac{d(d-1)!}{(d'-1)!(d-d')!} f^{d-d'} (1-f)^{d'-1} (1-f) = \\ (1-f) \sum_{d=0}^{\infty} dp(d) \underbrace{\int_{d'=0}^{d} \binom{d-1}{d'-1} f^{d-d'} (1-f)^{d'-1}}_{1-f} = (1-f) \langle d \rangle \end{aligned}$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztuss: Célzott támadás

Terjedesi modell SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman

algoritmus

k klikk porkológ

• A módosult $\langle (d')^2 \rangle$: $\langle (d')^2 \rangle = \langle d'(d'-1) - d' \rangle = \langle d'(d'-1) \rangle - \langle d' \rangle.$

$$\begin{aligned} \left(d'(d'-1) \right) &= \\ \sum_{d'=0}^{\infty} \sum_{d=d'}^{\infty} p(d) \frac{d(d-1)(d-2)!}{(d'-2)!(d-d')!} f^{d-d'} (1-f)^{d'-2} (1-f)^2 &= \\ (1-f)^2 \sum_{d=0}^{\infty} \sum_{d'=0}^{d} d(d-1) p(d) \frac{(d-2)!}{(d'-2)!(d-d')!} f^{d-d'} (1-f)^{d'-2} &= \\ (1-f)^2 \sum_{d=0}^{\infty} d(d-1) p(d) \underbrace{\sum_{d'=0}^{d} \binom{d-2}{d'-2} f^{d-d'} (1-f)^{d'-2}}_{1} &= \\ &= (1-f)^2 \left\langle d(d-1) \right\rangle. \end{aligned}$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztussa Célzott támadás

Terjedesi modelli SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman

algoritmus

In Infiliate an embra 14

• A módosult $\langle (d')^2 \rangle$: $\langle (d')^2 \rangle = \langle d'(d'-1) - d' \rangle = \langle d'(d'-1) \rangle - \langle d' \rangle.$

$$\begin{pmatrix} d'(d'-1) \end{pmatrix} = \\ \sum_{d'=0}^{\infty} \sum_{d=d'}^{\infty} p(d) \frac{d(d-1)(d-2)!}{(d'-2)!(d-d')!} f^{d-d'} (1-f)^{d'-2} (1-f)^2 = \\ (1-f)^2 \sum_{d=0}^{\infty} \sum_{d'=0}^{d} d(d-1) p(d) \frac{(d-2)!}{(d'-2)!(d-d')!} f^{d-d'} (1-f)^{d'-2} = \\ (1-f)^2 \sum_{d=0}^{\infty} d(d-1) p(d) \underbrace{\sum_{d'=0}^{d} \binom{d-2}{d'-2}}_{1} f^{d-d'} (1-f)^{d'-2} = \\ = (1-f)^2 \langle d(d-1) \rangle .$$

<u>.</u>

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás

Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman algorítmus

Modularitás

k-klikk perkoláció

• A módosult
$$\langle (d')^2 \rangle$$
:
 $\langle (d')^2 \rangle = (1-f)^2 \langle d(d-1) \rangle - \langle d' \rangle = (1-f)^2 (\langle d^2 \rangle - \langle d \rangle) - (1-f) \langle d \rangle = (1-f)^2 \langle d^2 \rangle + f(1-f) \langle d \rangle.$

• Az óriás komponens létezésének feltétele:

$$\frac{\langle (d')^2 \rangle}{\langle d' \rangle} = \frac{(1-f)^2 \langle d^2 \rangle + f(1-f) \langle d \rangle}{(1-f) \langle d \rangle} = (1-f) \frac{\langle d^2 \rangle}{\langle d \rangle} + f,$$

$$\rightarrow \frac{\langle d^2 \rangle}{\langle d \rangle} + f\left(1 - \frac{\langle d^2 \rangle}{\langle d \rangle}\right) \ge 2$$

• A kritikus *f*:

$$f_{c} = \frac{2 - \frac{\langle d^{2} \rangle}{\langle d \rangle}}{1 - \frac{\langle d^{2} \rangle}{\langle d \rangle}} = \frac{\frac{\langle d^{2} \rangle}{\langle d \rangle} - 2}{\frac{\langle d^{2} \rangle}{\langle d \rangle} - 1} = 1 - \frac{1}{\frac{\langle d^{2} \rangle}{\langle d \rangle} - 1}$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás

Terjedes Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newman alooritmus

Modularitás

k-klikk perkoláció

• A módosult $\langle (d')^2 \rangle$:

$$\begin{pmatrix} (d')^2 \end{pmatrix} = (1-f)^2 \langle d(d-1) \rangle - \langle d' \rangle = (1-f)^2 \left(\langle d^2 \rangle - \langle d \rangle \right) - (1-f) \langle d \rangle = (1-f)^2 \left(d^2 \right) + f(1-f) \langle d \rangle.$$

Az óriás komponens létezésének feltétele:

$$\frac{\langle (d')^2 \rangle}{\langle d' \rangle} = \frac{(1-f)^2 \langle d^2 \rangle + f(1-f) \langle d \rangle}{(1-f) \langle d \rangle} = (1-f) \frac{\langle d^2 \rangle}{\langle d \rangle} + f,$$

$$\rightarrow \frac{\langle d^2 \rangle}{\langle d \rangle} + f\left(1 - \frac{\langle d^2 \rangle}{\langle d \rangle}\right) \ge 2$$

• A kritikus *f*:

$$f_{c} = \frac{2 - \frac{\langle d^{2} \rangle}{\langle d \rangle}}{1 - \frac{\langle d^{2} \rangle}{\langle d \rangle}} = \frac{\frac{\langle d^{2} \rangle}{\langle d \rangle} - 2}{\frac{\langle d^{2} \rangle}{\langle d \rangle} - 1} = 1 - \frac{1}{\frac{\langle d^{2} \rangle}{\langle d \rangle} - 1}$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás

Terjedes Terjedési modelle SIS modell SIS inhomogén hálózaton SIB modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar

Modularitás

k-klikk perkoláció

• A módosult $\langle (d')^2 \rangle$:

$$\begin{pmatrix} (d')^2 \end{pmatrix} = (1-f)^2 \langle d(d-1) \rangle - \langle d' \rangle = (1-f)^2 \left(\langle d^2 \rangle - \langle d \rangle \right) - (1-f) \langle d \rangle = (1-f)^2 \left\langle d^2 \right\rangle + f(1-f) \langle d \rangle.$$

Az óriás komponens létezésének feltétele:

$$\frac{\langle (d')^2 \rangle}{\langle d' \rangle} = \frac{(1-f)^2 \langle d^2 \rangle + f(1-f) \langle d \rangle}{(1-f) \langle d \rangle} = (1-f) \frac{\langle d^2 \rangle}{\langle d \rangle} + f,$$

$$\rightarrow \frac{\langle d^2 \rangle}{\langle d \rangle} + f \left(1 - \frac{\langle d^2 \rangle}{\langle d \rangle} \right) \ge 2$$

• A kritikus f:

$$f_{c} = \frac{2 - \frac{\left(d^{2}\right)}{\left(d\right)}}{1 - \frac{\left(d^{2}\right)}{\left(d\right)}} = \frac{\frac{\left(d^{2}\right)}{\left(d\right)} - 2}{\frac{\left(d^{2}\right)}{\left(d\right)} - 1} = 1 - \frac{1}{\frac{\left(d^{2}\right)}{\left(d\right)} - 1}$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedes Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman

Modularitás

k-klikk perkoláció

A kritikus f:
$$f_c = 1 - \frac{1}{\frac{\langle d^2 \rangle}{\langle d \rangle} - 1}$$

Egy E–R-gráf esetén:

$$\begin{array}{ll} \left\langle d^{2}\right\rangle &=& \left\langle d\right\rangle \left(1+\left\langle d\right\rangle\right), \\ \\ \rightarrow f_{c} &=& 1-\frac{1}{\left\langle d\right\rangle}, \\ \\ \rightarrow \left\langle d'\right\rangle_{f_{c}} &=& (1-f_{c})\left\langle d\right\rangle =1. \end{array}$$

Azaz egy E–R-gráfnál addig vesszük el a csúcsokat (éleket), míg a megmaradó rész átlagos fokszáma lecsökken $\langle d' \rangle$ = 1-re.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedes Terjedési modelle SIS modell SIS inhomogén hálózaton

Csoportkeresés Példák Hierarchikus klaszterezés

algoritmus Modularitás

k-klikk perkoláció

A kritikus f:
$$f_c = 1 - \frac{1}{\frac{\langle d^2 \rangle}{\langle d \rangle} - \frac{1}{\langle d \rangle}}$$

• Egy E-R-gráf esetén:

$$\begin{array}{ll} \left\langle d^{2}\right\rangle &=& \left\langle d\right\rangle \left(1+\left\langle d\right\rangle\right), \\ \\ \rightarrow f_{c} &=& 1-\frac{1}{\left\langle d\right\rangle}, \\ \\ \rightarrow \left\langle d'\right\rangle_{f_{c}} &=& \left(1-f_{c}\right)\left\langle d\right\rangle =1. \end{array}$$

Azaz egy E–R-gráfnál addig vesszük el a csúcsokat (éleket), míg a megmaradó rész átlagos fokszáma lecsökken $\langle d' \rangle$ = 1-re.

A kritikus

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedes Terjedési modelle SIS modell SIS inhomogén hálózaton

Csoportkeresés Példák Hierarchikus klaszterezés

algoritmus Modularitás

k-klikk perkoláció

$$f: f_C = 1 - \frac{1}{\frac{\langle d^2 \rangle}{\langle d \rangle} - \frac{1}{\langle d \rangle}}$$

• Egy E-R-gráf esetén:

$$\begin{array}{ll} \left\langle d^{2} \right\rangle &=& \left\langle d \right\rangle (1 + \left\langle d \right\rangle), \\ \\ \rightarrow f_{c} &=& 1 - \frac{1}{\left\langle d \right\rangle}, \\ \\ \rightarrow \left\langle d' \right\rangle_{f_{c}} &=& (1 - f_{c}) \left\langle d \right\rangle = 1. \end{array}$$

Azaz egy E–R-gráfnál addig vesszük el a csúcsokat (éleket), míg a megmaradó rész átlagos fokszáma lecsökken $\langle d' \rangle = 1$ -re.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési r

SIS modell SIS inhomogén hálózaton

SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

algoritmus Modularitás

k-klikk perkoláció

A kritikus f: $f_c = 1 - \frac{1}{\frac{\langle d^2 \rangle}{\langle d \rangle} - 1}$

• Egy skálafüggetlen hálózatnál:

$$\begin{pmatrix} d^2 \end{pmatrix} \rightarrow \infty \text{ (ha } 2 \leq \gamma \leq 3)$$

 $\rightarrow f_c \rightarrow 1$

Azaz a skálafüggetlen hálózatok extrém módon robusztusak a véletlenszerű csúcs- (vagy él-) eltávolítással szemben!

A kritikus f:

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedes Terjedési model SIS modell SIS inhomogén

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan–Newman algoritmus Modularitás

k-klikk perkoláció

$$f_{C} = 1 - \frac{1}{\frac{\langle \sigma^{2} \rangle}{\langle \sigma \rangle} - 1}$$

• Egy skálafüggetlen hálózatnál:

$$\begin{pmatrix} d^2 \end{pmatrix} \rightarrow \infty \text{ (ha } 2 \leq \gamma \leq 3)$$

 $\rightarrow f_c \rightarrow 1$

Azaz a skálafüggetlen hálózatok extrém módon robusztusak a véletlenszerű csúcs- (vagy él-) eltávolítással szemben!

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés

Terjedési mode SIS modell

SIS inhomog hálózaton

SIR modell

Csoportkeresé Példák Hierarchikus

A Girvan–Newma algoritmus

k klikk porkoló

A kritikus f:
$$f_c = 1 - \frac{1}{\frac{\langle d^2 \rangle}{\langle d \rangle} -}$$

• Egy skálafüggetlen hálózatnál:

$$\begin{pmatrix} d^2 \end{pmatrix} \rightarrow \infty \text{ (ha } 2 \leq \gamma \leq 3)$$

 $\rightarrow f_c \rightarrow 1$

Azaz a skálafüggetlen hálózatok extrém módon robusztusak a véletlenszerű csúcs- (vagy él-) eltávolítással szemben!

Extrém robusztusság

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Terjedés
- Terjedési model SIS modell
- SIS inhomogé hálózaton
- SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman-
- algoritmus Modularitáe
- k-klikk perkolác

- Példák:
 - Internet, router szint: $N = 228, 263, \gamma = 2.1 \pm 0.1$ $\rightarrow f_c = 0.962$
 - Internet, AS szint: $N = 11, 164, \gamma = 2.1 \pm 0.1$ $\rightarrow f_c = 0.996$

Extrém robusztusság

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan--Newmanalgoritmus Modularitás
- k-klikk perkoláció

Miért találkozunk skálafüggetlen hálózatokkal mindenhol?

→ Egy plauzibilis válasz erre az, hogy a véletlenszerű meghibásodással szembeni extrém robusztusságuk miatt!

A robusztusság ára

Ā

A robusztusság ára

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá
- Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newman algoritmus Modularitás
- k-klikk perkoláció

Ennek az extrém robusztusságnak ára van...

A skálafüggetlen hálózatok nagyon sebezhetők a célzott támadásokkal szemben!

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman
- algoritmus Modularitás
- k-klikk perkoláció

Hogyan kéne "megtámadni" egy skálafüggetlen hálózatot?

→ A csúcsokat a fokszám szerinti sorrendben kell eltávolítani.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus
- Modularitás
- k-klikk perkoláció

Hogyan kéne "megtámadni" egy skálafüggetlen hálózatot?

→ A csúcsokat a fokszám szerinti sorrendben kell eltávolítani.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztuss Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton
- SIR modell
- Példák Hierarchikus klaszterezés
- A Girvan–Newma algoritmus Modularitás
- k-klikk perkoláció

R. Albert, H. Jeong and A.-L. Barabási, Nature 406, 378 (2000)

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztuss Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newman
- algoritmus Modularitás
- k-klikk perkoláció

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztuss Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton
- SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newman
- algoritmus
- Modularitás
- k-klikk perkoláció

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás

Terjedés

Terjedési modell SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresé Példák Hierarchikus klaszterezés A Girvan–Newma

algoritmus Modularitás

k-klikk perkoláció

TERJEDÉSI FOLYAMATOK HÁLÓZATOKON

A terjedési folyamatok fontosak

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés

- Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresé Példák Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás k-klikk perkoláció

Windows

An exception 06 has occured at 0028:C1183A0C in VAD DiskTSD(03) + 00001660. This was called from 0028:C11840CB in VAD voltrack(04) + 00000000. It may be possible to continue normally.

Press any key to attempt to continue,
 Press CINU-HLTHRESET to restart your computer. You will lose any unsaved information in all applications,

Press any key to continue

Hires járványkitörések

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés

Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman

algoritmus Modularitás

k-klikk perkoláció

SARS

1918 Spanish flu

H1N1 flu

Járványterjedés sebessége?

Hálózatok III.

Robusztusság Inverz perkoláció Krítikus f Extrém robusztusság Célzott támadás

Terjedés

- Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmar
- algoritmus Modularitás
- k-klikk perkoláció

Járványterjedés sebessége?

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztuss Célzott támadás

Terjedés

- Terjedési modell SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresé Példák Hierarchikus klaszterezés
- A Girvan-Newmanalgoritmus Modularitás k-klikk perkoláció

Járványterjedés sebessége?

Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás

Terjedés

- Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newman
- algoritmus Modularitás
- k-klikk perkoláció

Miért gyorsult fel ennyire?

Járványterjedés sebessége

Hálózatok III.

http://www.youtube.com/watch?v=eJ5mKFNcfHg

Terjedési modellek ^{Állapotok}

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedes Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

A járványterjedési modellekben a csúcsok lehetséges állapotai:

SI modell

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedes Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

algoritmus Modularitás

k-klikk perkoláció

Az SI modell:

Az SIS modell

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Ierjedes Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

Az SIS modell: (pl. megfázás)

Az SIR modell

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedes Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

Az SIR modell: (pl. influenza, SARS, himlő, stb.)

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés
- Terjedési modelle
- SIS modell
- SIS inhomogéi hálózaton SIR modell
- Csoportkeresé: Példák Hierarchikus klaszterezés
- A Girvan–Newman algoritmus Modularitás
- k-klikk perkoláció

Feltevéseink:

- A hálózat homogén, (pl. E-R-gráf), minden csúcsnak nagyjából (d) a fokszáma.
- Minden csúcsnál azonos annak valószínűsége, hogy fertőzött szomszédja van.
- Egy egészséges csúcs λ valószínűséggel kapja el a fertőzést egy fertőzött szomszédtól. (λ a terjedési ráta).
- Egy fertőzött csúcs μ valószínűséggel gyógyul meg egy időegység alatt.
- A t = 0 esetén a kezdő állapotban egy infinitezimálisan kicsi ρ(t = 0) = ρ₀ << 1 hányada fertőzött a csúcsoknak.

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \lambda \underbrace{\langle \boldsymbol{d} \rangle \rho}_{I \text{ szomszédja}} \underbrace{(1-\rho)}_{S \to I} - \mu\rho$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés

Terjedési modelle

SIS modell

SIS innomogei hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan–Newman algoritmus Modularitás

Feltevéseink:

- A hálózat homogén, (pl. E-R-gráf), minden csúcsnak nagyjából (d) a fokszáma.
- Minden csúcsnál azonos annak valószínűsége, hogy fertőzött szomszédja van.
- Egy egészséges csúcs λ valószínűséggel kapja el a fertőzést egy fertőzött szomszédtól. (λ a terjedési ráta).
- Egy fertőzött csúcs μ valószínűséggel gyógyul meg egy időegység alatt.
- A t = 0 esetén a kezdő állapotban egy infinitezimálisan kicsi ρ(t = 0) = ρ₀ << 1 hányada fertőzött a csúcsoknak.

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \lambda \underbrace{\langle \mathbf{d} \rangle \rho}_{I \text{ szomszédja}} \underbrace{(1-\rho)}_{S \to I} - \mu\rho$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás

Terjedés

Terjedési modelle

SIS modell

SIS inhomogér hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan–Newman algoritmus Modularitás

k-klikk perkoláció

Feltevéseink:

- A hálózat homogén, (pl. E-R-gráf), minden csúcsnak nagyjából (d) a fokszáma.
- Minden csúcsnál azonos annak valószínűsége, hogy fertőzött szomszédja van.
- Egy egészséges csúcs λ valószínűséggel kapja el a fertőzést egy fertőzött szomszédtól. (λ a terjedési ráta).
- Egy fertőzött csúcs μ valószínűséggel gyógyul meg egy időegység alatt.
- A t = 0 esetén a kezdő állapotban egy infinitezimálisan kicsi $\rho(t = 0) = \rho_0 \ll 1$ hányada fertőzött a csúcsoknak.

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \lambda \underbrace{\langle \mathbf{d} \rangle \rho}_{I \text{ szomszédja}} \underbrace{(1-\rho)}_{S \to I} - \mu\rho$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás

Terjedés

Terjedési modelle

SIS modell

SIS inhomogé hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan–Newman algoritmus Modularitás

k-klikk perkoláció

Feltevéseink:

- A hálózat homogén, (pl. E-R-gráf), minden csúcsnak nagyjából (d) a fokszáma.
- Minden csúcsnál azonos annak valószínűsége, hogy fertőzött szomszédja van.
- Egy egészséges csúcs λ valószínűséggel kapja el a fertőzést egy fertőzött szomszédtól. (λ a terjedési ráta).
- Egy fertőzött csúcs μ valószínűséggel gyógyul meg egy időegység alatt.
- A t = 0 esetén a kezdő állapotban egy infinitezimálisan kicsi ρ(t = 0) = ρ₀ ≪ 1 hányada fertőzött a csúcsoknak.

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \lambda \underbrace{\langle \mathbf{d} \rangle \rho}_{I \text{ szomszédja}} \underbrace{(1-\rho)}_{S \to I} - \mu\rho$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás

Terjedés

Terjedési modellel

SIS modell

SIS inhomogéi hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan–Newmanalgoritmus Modularitás

Feltevéseink:

- A hálózat homogén, (pl. E-R-gráf), minden csúcsnak nagyjából (d) a fokszáma.
- Minden csúcsnál azonos annak valószínűsége, hogy fertőzött szomszédja van.
- Egy egészséges csúcs λ valószínűséggel kapja el a fertőzést egy fertőzött szomszédtól. (λ a terjedési ráta).
- Egy fertőzött csúcs μ valószínűséggel gyógyul meg egy időegység alatt.
- A t = 0 esetén a kezdő állapotban egy infinitezimálisan kicsi ρ(t = 0) = ρ₀ << 1 hányada fertőzött a csúcsoknak.

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \lambda \underbrace{\langle \mathbf{d} \rangle \rho}_{I \text{ szomszédja}} \underbrace{(1-\rho)}_{S \to I} - \mu\rho$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás

Terjedés

Terjedési modelle

SIS modell

SIS innomoge hálózaton SIR modell

Csoportkeresés Példák Hierarchikus

klaszterezés A Girvan–Newm algoritmus

Modularitás

k-klikk perkoláció

Feltevéseink:

- A hálózat homogén, (pl. E-R-gráf), minden csúcsnak nagyjából (d) a fokszáma.
- Minden csúcsnál azonos annak valószínűsége, hogy fertőzött szomszédja van.
- Egy egészséges csúcs λ valószínűséggel kapja el a fertőzést egy fertőzött szomszédtól. (λ a terjedési ráta).
- Egy fertőzött csúcs μ valószínűséggel gyógyul meg egy időegység alatt.
- A t = 0 esetén a kezdő állapotban egy infinitezimálisan kicsi ρ(t = 0) = ρ₀ ≪ 1 hányada fertőzött a csúcsoknak.

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \lambda \underbrace{\langle \mathbf{d} \rangle \rho}_{I \text{ szomszédja}} \underbrace{(1-\rho)}_{S \to I} - \mu\rho$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás

Terjedés

Terjedési modelle

SIS modell

SIS inhomogér hálózaton SIR modell

Csoportkeresé Példák Hierarchikus

A Girvan-Newma algoritmus

k klikk porkológi

Feltevéseink:

- A hálózat homogén, (pl. E-R-gráf), minden csúcsnak nagyjából (d) a fokszáma.
- Minden csúcsnál azonos annak valószínűsége, hogy fertőzött szomszédja van.
- Egy egészséges csúcs λ valószínűséggel kapja el a fertőzést egy fertőzött szomszédtól. (λ a terjedési ráta).
- Egy fertőzött csúcs μ valószínűséggel gyógyul meg egy időegység alatt.
- A t = 0 esetén a kezdő állapotban egy infinitezimálisan kicsi ρ(t = 0) = ρ₀ ≪ 1 hányada fertőzött a csúcsoknak.

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \lambda \underbrace{\langle d \rangle \rho}_{I \text{ szomszédja}} \underbrace{(1-\rho)}_{S \rightarrow I} - \mu\rho$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztuss Célzott támadás

Terjedés

Terjedési modelle

SIS modell

SIS inhomogér hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

algoritmus Modularitás

k-klikk perkoláció

A diffe. a logisztikus egyenletnek felel meg, ennek megoldása:

$$\begin{aligned} \frac{d\rho}{dt} &= \lambda \langle d \rangle \rho (1-\rho) - \mu \rho, \qquad \rho(t=0) = \rho_0, \\ \rightarrow \rho(t) &= \left(1 - \frac{\mu}{\lambda \langle d \rangle}\right) \frac{c e^{(\lambda \langle d \rangle - \mu)t}}{1 + c e^{(\lambda \langle d \rangle - \mu)t}} \qquad c = \frac{\rho_0}{1 - \frac{\mu}{\lambda \langle d \rangle} - \rho_0} \end{aligned}$$

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás

Terjedés

SIS modell

SIS inhomogé hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman

algoritmus Modularitás

k-klikk perkoláció

A diffe. a logisztikus egyenletnek felel meg, ennek megoldása:

$$\frac{d\rho}{dt} = \lambda \langle d \rangle \rho(1-\rho) - \mu\rho, \qquad \rho(t=0) = \rho_0,$$

$$\rightarrow \rho(t) = \left(1 - \frac{\mu}{\lambda \langle d \rangle}\right) \frac{c e^{(\lambda \langle d \rangle - \mu)t}}{1 + c e^{(\lambda \langle d \rangle - \mu)t}} \qquad c = \frac{\rho_0}{1 - \frac{\mu}{\lambda \langle d \rangle} - \rho_0}$$

Ha $\lambda \langle d \rangle > \mu$:

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás

Terjedés

SIS modell

SIS inhomogé hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman alooritmus

Modularitás

k-klikk perkoláció

A diffe. a logisztikus egyenletnek felel meg, ennek megoldása:

$$\frac{d\rho}{dt} = \lambda \langle d \rangle \rho(1-\rho) - \mu\rho, \qquad \rho(t=0) = \rho_0,$$

$$\rightarrow \rho(t) = \left(1 - \frac{\mu}{\lambda \langle d \rangle}\right) \frac{c e^{(\lambda(d)-\mu)t}}{1 + c e^{(\lambda(d)-\mu)t}} \qquad c = \frac{\rho_0}{1 - \frac{\mu}{\lambda \langle d \rangle} - \rho_0}$$

Ha $\lambda \langle d \rangle < \mu$:

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton

Csoportkeresés Példák Hierarchikus klaszterezés

algoritmus Modularitás

k-klikk perkoláció

TERJEDÉSI KÜSZÖB (epidemic threshold):

$$\lambda_c \langle d \rangle = \mu \quad \rightarrow \quad \lambda_c = \frac{\mu}{\langle d \rangle} \quad \leftrightarrow \quad \left\{ \begin{array}{l} \lambda > \lambda_c : & \text{exp. járványkitörés} \\ \lambda < \lambda_c : & \text{exp. lecsengés} \end{array} \right.$$

Az egyszerűség kedvéért tegyük fel, hogy μ = 1:

$$\lambda_c \langle d \rangle = 1 \quad \rightarrow \quad \lambda_c = \frac{1}{\langle d \rangle}$$

Ez nagyon intuitív egy diszkrét időfejlődési dinamikában:

• egy fertőzött csúcs 1 lépés alatt meggyógyul,

- (d) szomszédja van, ezért átlagosan λ (d) másik csúcsot tud megfertőzni egy lépés alatt,
 - ha $\lambda \langle d \rangle < 1$ a járvány gyorsan lecseng,
 - ha $\lambda \langle d \rangle > 1$ a járvány exponenciálisan gyorsan elterjed.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan–Newma algoritmus Modularitás k-klikk perkoláció

TERJEDÉSI KÜSZÖB (epidemic threshold):

$$\lambda_c \langle d \rangle = \mu \quad \rightarrow \quad \lambda_c = \frac{\mu}{\langle d \rangle} \quad \leftrightarrow \quad \left\{ \begin{array}{l} \lambda > \lambda_c : & \text{exp. járványkitörés} \\ \lambda < \lambda_c : & \text{exp. lecsengés} \end{array} \right.$$

Az egyszerűség kedvéért tegyük fel, hogy μ = 1:

$$\lambda_c \langle d \rangle = 1 \quad \rightarrow \quad \lambda_c = \frac{1}{\langle d \rangle}$$

Ez nagyon intuitív egy diszkrét időfejlődési dinamikában:

• egy fertőzött csúcs 1 lépés alatt meggyógyul,

- (d) szomszédja van, ezért átlagosan λ (d) másik csúcsot tud megfertőzni egy lépés alatt,
 - ha $\lambda \langle d \rangle < 1$ a járvány gyorsan lecseng,
 - ha $\lambda \langle d \rangle > 1$ a járvány exponenciálisan gyorsan elterjed.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan–Newmar algoritmus Modularitás k-klikk perkoláció

TERJEDÉSI KÜSZÖB (epidemic threshold):

$$\lambda_c \langle d \rangle = \mu \quad \rightarrow \quad \lambda_c = \frac{\mu}{\langle d \rangle} \quad \leftrightarrow \quad \left\{ \begin{array}{ll} \lambda > \lambda_c : & \text{exp. járványkitörés} \\ \lambda < \lambda_c : & \text{exp. lecsengés} \end{array} \right.$$

Az egyszerűség kedvéért tegyük fel, hogy μ = 1:

$$\lambda_c \langle d \rangle = 1 \quad \rightarrow \quad \lambda_c = \frac{1}{\langle d \rangle}$$

Ez nagyon intuitív egy diszkrét időfejlődési dinamikában:

- egy fertőzött csúcs 1 lépés alatt meggyógyul,
- (d) szomszédja van, ezért átlagosan λ (d) másik csúcsot tud megfertőzni egy lépés alatt,
 - ha $\lambda \langle d \rangle < 1$ a járvány gyorsan lecseng,
 - ha $\lambda \langle d \rangle > 1$ a járvány exponenciálisan gyorsan elterjed.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Terjedés Terjedési modell SIS modell

SIS inhomogén hálózaton SIR modell

- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newma
- algoritmus Modularitás
- k-klikk perkoláció

- Tegyük fel, hogy a hálózat inhomogén, (skálafüggetlen).
- → A HUB-okat és a kis fokszámú csúcsokat külön kell kezelnünk:
 - Legyen ρ_d a d fokszámú csúcsok közt a fertőzöttek hányada.

$$\rightarrow \rho = \frac{1}{N} \sum_{d} \rho_{d} N_{d} = \sum_{d} \rho_{d} p(d).$$

 Annak valószínűsége, hogy egy v.v. él egyik végén fertőzött csúcs van: Γ.

Tegyük fel, hogy Γ csak ρ -tól függ, (és független pl. a másik végpont fokszámától).

$$\frac{\mathrm{d}\rho_d}{\mathrm{d}t} = \lambda d\Gamma \left[1 - \rho_d\right] - \mu \rho_d$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newma
- algoritmus Modularitás
- k-klikk perkoláció

- Tegyük fel, hogy a hálózat inhomogén, (skálafüggetlen).
- → A HUB-okat és a kis fokszámú csúcsokat külön kell kezelnünk:
 - Legyen ρ_d a d fokszámú csúcsok közt a fertőzöttek hányada.

$$\rightarrow \rho = \frac{1}{N} \sum_{d} \rho_{d} N_{d} = \sum_{d} \rho_{d} p(d).$$

 Annak valószínűsége, hogy egy v.v. él egyik végén fertőzött csúcs van: Γ.

Tegyük fel, hogy Γ csak ρ -tól függ, (és független pl. a másik végpont fokszámától).

$$\frac{\mathrm{d}\rho_d}{\mathrm{d}t} = \lambda d\Gamma \left[1 - \rho_d\right] - \mu \rho_d$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newma

algoritmus Modularitás

k-klikk perkoláció

- Tegyük fel, hogy a hálózat inhomogén, (skálafüggetlen).
- → A HUB-okat és a kis fokszámú csúcsokat külön kell kezelnünk:
 - Legyen ρ_d a *d* fokszámú csúcsok közt a fertőzöttek hányada.

$$\rightarrow \rho = \frac{1}{N} \sum_{d} \rho_{d} N_{d} = \sum_{d} \rho_{d} p(d).$$

 Annak valószínűsége, hogy egy v.v. él egyik végén fertőzött csúcs van: Γ.

Tegyük fel, hogy Γ csak ρ -tól függ, (és független pl. a másik végpont fokszámától).

$$\frac{\mathrm{d}\rho_d}{\mathrm{d}t} = \lambda d\Gamma \left[1 - \rho_d\right] - \mu \rho_d$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

Csoportkeresé: Példák Hierarchikus klaszterezés

algoritmus Modularitás

k-klikk perkoláció

- Tegyük fel, hogy a hálózat inhomogén, (skálafüggetlen).
- → A HUB-okat és a kis fokszámú csúcsokat külön kell kezelnünk:
 - Legyen ρ_d a d fokszámú csúcsok közt a fertőzöttek hányada.

$$\rightarrow \rho = \frac{1}{N} \sum_{d} \rho_{d} N_{d} = \sum_{d} \rho_{d} p(d).$$

 Annak valószínűsége, hogy egy v.v. él egyik végén fertőzött csúcs van: Γ.

Tegyük fel, hogy Γ csak ρ -tól függ, (és független pl. a másik végpont fokszámától).

$$\frac{\mathrm{d}\rho_d}{\mathrm{d}t} = \lambda d\Gamma \left[1 - \rho_d\right] - \mu \rho_d$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

Csoportkeresé Példák Hierarchikus klaszterezés

algoritmus Modularitás

k-klikk perkoláció

- Tegyük fel, hogy a hálózat inhomogén, (skálafüggetlen).
- → A HUB-okat és a kis fokszámú csúcsokat külön kell kezelnünk:
 - Legyen ρ_d a d fokszámú csúcsok közt a fertőzöttek hányada.

$$\rightarrow \rho = \frac{1}{N} \sum_{d} \rho_{d} N_{d} = \sum_{d} \rho_{d} p(d).$$

 Annak valószínűsége, hogy egy v.v. él egyik végén fertőzött csúcs van: Γ.

Tegyük fel, hogy Γ csak ρ -tól függ, (és független pl. a másik végpont fokszámától).

$$\frac{\mathrm{d}\rho_d}{\mathrm{d}t} = \lambda d\Gamma \left[1 - \rho_d\right] - \mu \rho_d$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

- Csoportkeresé Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- Tegyük fel, hogy a hálózat inhomogén, (skálafüggetlen).
- → A HUB-okat és a kis fokszámú csúcsokat külön kell kezelnünk:
 - Legyen ρ_d a d fokszámú csúcsok közt a fertőzöttek hányada.

$$\rightarrow \rho = \frac{1}{N} \sum_{d} \rho_{d} N_{d} = \sum_{d} \rho_{d} p(d).$$

 Annak valószínűsége, hogy egy v.v. él egyik végén fertőzött csúcs van: Γ.

Tegyük fel, hogy Γ csak ρ -tól függ, (és független pl. a másik végpont fokszámától).

$$\frac{\mathrm{d}\rho_d}{\mathrm{d}t} = \lambda d\Gamma \left[1 - \rho_d\right] - \mu \rho_d$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussa Célzott támartás
- Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newman algoritmus

Modularitás

k-klikk perkoláció

• Tegyük fel, hogy elértünk egy stacionárius állapotba: $\frac{d\rho_d}{dt} = 0$

$$\rightarrow \mu \rho_d = \lambda d\Gamma [1 - \rho_d] \rightarrow \rho_d = \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

• Számoljuk ki Γ -t. Ha \mathcal{P}_d annak valószínűsége, hogy egy v.v. él egy *d* fokszámú csúcsba mutat, akkor $\Gamma = \sum_d \rho_d \mathcal{P}_d$.

• A \mathcal{P}_d -t így lehet megadni:

$$\mathcal{P}_d = \frac{dp(d)}{\langle d \rangle}.$$

• Azonban azon az élen nem lehet visszaküldeni a fertőzést amelyiken megérkezett a csúcsba, ezért

$$\Gamma = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d)\rho_d = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussa Célzott támartás
- Terjedés Terjedési modelle SIS modell
- SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar algoritmus
- Modularitás
- k-klikk perkoláció

• Tegyük fel, hogy elértünk egy stacionárius állapotba: $\frac{d\rho_d}{dt} = 0$

$$\rightarrow \mu \rho_d = \lambda d\Gamma \left[1 - \rho_d \right] \rightarrow \rho_d = \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

• Számoljuk ki Γ -t. Ha \mathcal{P}_d annak valószínűsége, hogy egy v.v. él egy *d* fokszámú csúcsba mutat, akkor $\Gamma = \sum_d \rho_d \mathcal{P}_d$.

• A \mathcal{P}_d -t így lehet megadni:

$$\mathcal{P}_d = \frac{dp(d)}{\langle d \rangle}.$$

 Azonban azon az élen nem lehet visszaküldeni a fertőzést amelyiken megérkezett a csúcsba, ezért

$$\Gamma = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d)\rho_d = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussa Célzott támadás
- Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newman algoritmus

- Modularitás
- k-klikk perkoláció

• Tegyük fel, hogy elértünk egy stacionárius állapotba: $\frac{d\rho_d}{dt} = 0$

$$\rightarrow \mu \rho_d = \lambda d\Gamma [1 - \rho_d] \rightarrow \rho_d = \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

 Számoljuk ki Γ-t. Ha P_d annak valószínűsége, hogy egy v.v. él egy d fokszámú csúcsba mutat, akkor Γ = Σ_d ρ_dP_d.

• A \mathcal{P}_d -t így lehet megadni:

$$\mathcal{P}_d = \frac{dp(d)}{\langle d \rangle}.$$

• Azonban azon az élen nem lehet visszaküldeni a fertőzést amelyiken megérkezett a csúcsba, ezért

$$\Gamma = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d)\rho_d = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell
- SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newman algoritmus
- Modularitás
- k-klikk perkoláció

• Tegyük fel, hogy elértünk egy stacionárius állapotba: $\frac{d\rho_d}{dt} = 0$

$$\rightarrow \mu \rho_d = \lambda d\Gamma [1 - \rho_d] \rightarrow \rho_d = \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

- Számoljuk ki Γ-t. Ha P_d annak valószínűsége, hogy egy v.v. él egy d fokszámú csúcsba mutat, akkor Γ = Σ_d ρ_dP_d.
- A \mathcal{P}_d -t így lehet megadni:

$$\mathcal{P}_d = \frac{dp(d)}{\langle d \rangle}.$$

• Azonban azon az élen nem lehet visszaküldeni a fertőzést amelyiken megérkezett a csúcsba, ezért

$$\Gamma = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d)\rho_d = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell
- SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newman alooritmus
- Modularitás
- k-klikk perkoláció

• Tegyük fel, hogy elértünk egy stacionárius állapotba: $\frac{d\rho_d}{dt} = 0$

$$\rightarrow \mu \rho_d = \lambda d\Gamma [1 - \rho_d] \rightarrow \rho_d = \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

- Számoljuk ki Γ-t. Ha P_d annak valószínűsége, hogy egy v.v. él egy d fokszámú csúcsba mutat, akkor Γ = Σ_d ρ_dP_d.
- A \mathcal{P}_d -t így lehet megadni:

$$\mathcal{P}_d = \frac{dp(d)}{\langle d \rangle}.$$

 Azonban azon az élen nem lehet visszaküldeni a fertőzést amelyiken megérkezett a csúcsba, ezért

$$\Gamma = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d)\rho_{d} = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar algoritmus

Modularitás

k-klikk perkoláció

$$\Gamma = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

Hogy lehetne megoldani?

→ Grafikusan, hiszen csak a kvalitatív viselkedésre vagyunk kíváncsiak.

Γ = 0 mindig egy triviális megoldás ahol nincs fertőzés.
A nemtriviális megoldás létezésének feltétele:

$$\frac{\mathrm{d}}{\mathrm{d}\Gamma} \left[\frac{1}{\langle d \rangle} \sum_{d} (d-1) p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma} \right]_{\Gamma=0} \geq 1$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell
- SIS inhomogén hálózaton SIR modell
- Csoportkeresé: Példák Hierarchikus klaszterezés A Girvan-Newma
- algoritmus Modularitás
- k-klikk perkoláció

$$\Gamma = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

Hogy lehetne megoldani?

→ Grafikusan, hiszen csak a kvalitatív viselkedésre vagyunk kíváncsiak.

Γ = 0 mindig egy triviális megoldás ahol nincs fertőzés.
A nemtriviális megoldás létezésének feltétele:

$$\frac{\mathrm{d}}{\mathrm{d}\Gamma} \left[\frac{1}{\langle d \rangle} \sum_{d} (d-1) p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma} \right]_{\Gamma=0} \geq 1$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell
- SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newma
- algoritmus Modularitás
- k-klikk perkoláció

$$\Gamma = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

Hogy lehetne megoldani?

→ Grafikusan, hiszen csak a kvalitatív viselkedésre vagyunk kíváncsiak.

Γ = 0 mindig egy triviális megoldás ahol nincs fertőzés.
 A nemtriviális megoldás létezésének feltétele:

$$\frac{\mathrm{d}}{\mathrm{d}\Gamma} \left[\frac{1}{\langle d \rangle} \sum_{d} (d-1) \rho(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma} \right] \Big|_{\Gamma=0} \geq 1$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell
- SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newma
- algoritmus Madularitáa
- k-klikk perkoláció

$$\Gamma = \frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma}$$

• Hogy lehetne megoldani?

→ Grafikusan, hiszen csak a kvalitatív viselkedésre vagyunk kíváncsiak.

- Γ = 0 mindig egy triviális megoldás ahol nincs fertőzés.
- A nemtriviális megoldás létezésének feltétele:

$$\frac{\mathrm{d}}{\mathrm{d}\Gamma} \left[\frac{1}{\langle d \rangle} \sum_{d} (d-1) p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma} \right] \Big|_{\Gamma=0} \geq 1$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newma algoritmus

Modularitás

k-klikk perkoláció.

• A nemtriviális megoldás létezésének feltétele:

$$\frac{\mathrm{d}}{\mathrm{d}\Gamma} \left[\frac{1}{\langle d \rangle} \sum_{d} (d-1) p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma} \right] \Big|_{\Gamma=0} \ge 1$$

$$\rightarrow \frac{1}{\langle d \rangle} \sum_{d} d(d-1) p(d) \frac{\lambda}{\mu} \ge 1$$

$$\frac{\langle d^2 \rangle - \langle d \rangle}{\langle d \rangle} \frac{\lambda}{\mu} \ge 1.$$

→ TERJEDÉSI KÜSZÖB (epidemic threshold):

$$rac{\lambda}{\mu} \geq rac{\langle d
angle}{\langle d^2
angle - \langle d
angle}$$

Ha μ = 1 az egyszerűség kedvéért, akkor $\lambda \ge \frac{\langle d \rangle}{\langle d^2 \rangle - \langle d \rangle}$.

Azon hálózatok esetén ahol (d²) → ∞, ott λ_c = 0!
 → A γ < 3 skálafüggetlen hálózatokon a terjedési küszöt nullához tart!

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztuss: Célzott támadás
- Terjedés Terjedési modelle SIS modell
- SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newma
- Modularitás
- k-klikk perkoláció

• A nemtriviális megoldás létezésének feltétele:

$$\frac{\mathrm{d}}{\mathrm{d}\Gamma} \left[\frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma} \right] \Big|_{\Gamma=0} \ge 1$$

$$\rightarrow \frac{1}{\langle d \rangle} \sum_{d} d(d-1)p(d) \frac{\lambda}{\mu} \ge 1$$

$$\frac{\langle d^2 \rangle - \langle d \rangle}{\langle d \rangle} \frac{\lambda}{\mu} \ge 1.$$

→ TERJEDÉSI KÜSZÖB (epidemic threshold):

$$\frac{\lambda}{\mu} \geq \frac{\langle \boldsymbol{d} \rangle}{\langle \boldsymbol{d}^2 \rangle - \langle \boldsymbol{d} \rangle}$$

Ha μ = 1 az egyszerűség kedvéért, akkor $\lambda \ge \frac{\langle d \rangle}{\langle d^2 \rangle - \langle d \rangle}$.

Azon hálózatok esetén ahol (d²) → ∞, ott λ_c = 0!
 → A γ < 3 skálafüggetlen hálózatokon a terjedési küszöl nullához tart!

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar alooritmus

Modularitás

k-klikk perkoláció

• A nemtriviális megoldás létezésének feltétele:

$$\frac{\mathrm{d}}{\mathrm{d}\Gamma} \left[\frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma} \right] \Big|_{\Gamma=0} \ge 1$$

$$\rightarrow \frac{1}{\langle d \rangle} \sum_{d} d(d-1)p(d) \frac{\lambda}{\mu} \ge 1$$

$$\frac{\langle d^2 \rangle - \langle d \rangle}{\langle d \rangle} \frac{\lambda}{\mu} \ge 1.$$

→ TERJEDÉSI KÜSZÖB (epidemic threshold):

$$\frac{\lambda}{\mu} \geq \frac{\langle \boldsymbol{d} \rangle}{\langle \boldsymbol{d}^2 \rangle - \langle \boldsymbol{d} \rangle}$$

Ha μ = 1 az egyszerűség kedvéért, akkor $\lambda \ge \frac{\langle d \rangle}{\langle d^2 \rangle - \langle d \rangle}$.

Azon hálózatok esetén ahol (d²) → ∞, ott λ_c = 0!
 → A γ < 3 skálafüggetlen hálózatokon a terjedési küszöt nullához tart!

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar algoritmus

Modularitás

k-klikk perkoláció

• A nemtriviális megoldás létezésének feltétele:

$$\frac{\mathrm{d}}{\mathrm{d}\Gamma} \left[\frac{1}{\langle d \rangle} \sum_{d} (d-1) p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma} \right] \Big|_{\Gamma=0} \ge 1$$

$$\rightarrow \frac{1}{\langle d \rangle} \sum_{d} d(d-1) p(d) \frac{\lambda}{\mu} \ge 1$$

$$\frac{\langle d^2 \rangle - \langle d \rangle}{\langle d \rangle} \frac{\lambda}{\mu} \ge 1.$$

→ TERJEDÉSI KÜSZÖB (epidemic threshold):

$$\frac{\lambda}{\mu} \geq \frac{\langle \boldsymbol{d} \rangle}{\langle \boldsymbol{d}^2 \rangle - \langle \boldsymbol{d} \rangle}$$

Ha μ = 1 az egyszerűség kedvéért, akkor $\lambda \ge \frac{\langle d \rangle}{\langle d^2 \rangle - \langle d \rangle}$.

- Azon hálózatok esetén ahol $\langle d^2 \rangle \rightarrow \infty$, ott $\lambda_c = 0!$
- → A γ < 3 skálafüggetlen hálózatokon a terjedési küszöb nullához tart!

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell

SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newmar algoritmus

Modularitás

k-klikk perkoláció

• A nemtriviális megoldás létezésének feltétele:

$$\frac{\mathrm{d}}{\mathrm{d}\Gamma} \left[\frac{1}{\langle d \rangle} \sum_{d} (d-1)p(d) \frac{\lambda d\Gamma}{\mu + \lambda d\Gamma} \right] \Big|_{\Gamma=0} \ge 1$$

$$\rightarrow \frac{1}{\langle d \rangle} \sum_{d} d(d-1)p(d) \frac{\lambda}{\mu} \ge 1$$

$$\frac{\langle d^{2} \rangle - \langle d \rangle}{\langle d \rangle} \frac{\lambda}{\mu} \ge 1.$$

→ TERJEDÉSI KÜSZÖB (epidemic threshold):

$$\frac{\lambda}{\mu} \geq \frac{\langle d \rangle}{\langle d^2 \rangle - \langle d \rangle}$$

Ha μ = 1 az egyszerűség kedvéért, akkor $\lambda \ge \frac{\langle d \rangle}{\langle d^2 \rangle - \langle d \rangle}$.

- Azon hálózatok esetén ahol $\langle d^2 \rangle \rightarrow \infty$, ott $\lambda_c = 0!$
- → A γ < 3 skálafüggetlen hálózatokon a terjedési küszöb nullához tart!

A $\lambda_c = 0$ következményei

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell
- SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmar
- algoritmus Modularitás
- k-klikk perkoláció

- Akármilyen gyenge a fertőzés, meg fog maradni,
- és egy véges hányada a csúcsoknak mindig fertőzött lesz.
SIR modell

Hálózatok III.

Homogén hálózatok:

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modell SIS modell SIS inhomogén hálózaton

SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmanalgoritmus

Modularitás

k-klikk perkoláció

1	=	$S + \rho + R$
$\frac{dS}{dt}$	=	$-\lambda \left< \boldsymbol{d} \right> ho \boldsymbol{S}$
$\frac{d ho}{dt}$	=	$\lambda \left< \boldsymbol{d} \right> \rho \boldsymbol{S} - \mu \rho$
$\frac{dR}{dt}$	=	μho

Inhomogén hálózatok:

$$1 = S_d + \rho_d + R_d$$
$$\frac{dS_d}{dt} = -\lambda d\Gamma S_d$$
$$\frac{d\rho_d}{dt} = \lambda d\Gamma S_d - \mu \rho_d$$
$$\frac{dR_d}{dt} = \mu \rho_d$$

SIR modell

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás

Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton

SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newman algoritmus Modulazités

Modularitás

Homogén hálózatok:

 $1 = S + \rho + R$ $\frac{dS}{dt} = -\lambda \langle d \rangle \rho S$ $\frac{d\rho}{dt} = \lambda \langle d \rangle \rho S - \mu \rho$ $\frac{dR}{dt} = \mu \rho$

Inhomogén hálózatok:

$$1 = S_d + \rho_d + R_d$$
$$\frac{dS_d}{dt} = -\lambda d\Gamma S_d$$
$$\frac{d\rho_d}{dt} = \lambda d\Gamma S_d - \mu \rho_d$$
$$\frac{dR_d}{dt} = \mu \rho_d$$

Time t

SIR modell

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton

SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés A Girvan–Newman algoritmus

Modularitás

k-klikk perkoláció

Korai fázis: kvalitatíven ugyanúgy viselkedik mint az SIS:

Homogén hálózatok:

$$\lambda_c = \frac{1}{\langle d \rangle}$$

Inhomogén hálózatok:

$$\lambda_{c} = \frac{\langle d \rangle}{\langle d^{2} \rangle - \langle d \rangle}$$

Járványterjedés előrejelzése

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén
- SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmar
- algoritmus Modularitás
- k-klikk perkoláció

- Allesandro Vespignani csoportja.
 - A H1N1 terjedésének jóslása 2009-ben:

Real

Projected

http://www.youtube.com/watch?v=ONEOc-MTm1Q

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussa Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés

- Példák Hierarchikus klaszterezés A Girvan-Newr
- algoritmus Modularitás
- k-klikk perkoláció

HÁLÓZATI CSOPORTKERESÉS

Csoportok: a hálózatok mezoszkopikus skálája

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés

- Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés

Példák Hierarchikus klaszterezés A Girvan-Newr

algoritmus Modularitás

k-klikk perkoláció

Csoportok, modulok, klaszterek, vagy csoportosulások: sűrű részgráfok, melyekhez a tagok erősebben kapcsolódnak mint a hálózat többi részéhez. (Nincs egy általánosan elfogadott definíció).

éldák

- Egy család, egy baráti kör vagy egy munkahelyi közösség az emberi kapcsolathálóban.
- Azonos funkcióval rendelkező fehérjék csoportja egy fehérjekölcsönhatási hálózatban.
- Azonos témájú, egymásra sűrűn linkelő weboldalak.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés

Példák Hierarchiku

A Girvan–Newman algoritmus Modularitás

k-klikk perkoláció

Csoportok, **modulok**, **klaszterek**, vagy **csoportosulások**: sűrű részgráfok, melyekhez a tagok erősebben kapcsolódnak mint a hálózat többi részéhez. (Nincs egy általánosan elfogadott definíció).

Példák:

- Egy család, egy baráti kör vagy egy munkahelyi közösség az emberi kapcsolathálóban.
- Azonos funkcióval rendelkező fehérjék csoportja egy fehérjekölcsönhatási hálózatban.
- Azonos témájú, egymásra sűrűn linkelő weboldalak.

•

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés

Példák Hierarchiku

A Girvan-Newmai algoritmus Modularitás

k-klikk perkoláció

Csoportok, **modulok**, **klaszterek**, vagy **csoportosulások**: sűrű részgráfok, melyekhez a tagok erősebben kapcsolódnak mint a hálózat többi részéhez. (Nincs egy általánosan elfogadott definíció).

Példák:

- Egy család, egy baráti kör vagy egy munkahelyi közösség az emberi kapcsolathálóban.
- Azonos funkcióval rendelkező fehérjék csoportja egy fehérjekölcsönhatási hálózatban.
- Azonos témájú, egymásra sűrűn linkelő weboldalak.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés

Példák Hierarchiku:

A Girvan–Newman algoritmus Modularitás

k-klikk perkoláció

Csoportok, **modulok**, **klaszterek**, vagy **csoportosulások**: sűrű részgráfok, melyekhez a tagok erősebben kapcsolódnak mint a hálózat többi részéhez. (Nincs egy általánosan elfogadott definíció).

Példák:

- Egy család, egy baráti kör vagy egy munkahelyi közösség az emberi kapcsolathálóban.
- Azonos funkcióval rendelkező fehérjék csoportja egy fehérjekölcsönhatási hálózatban.
- Azonos témájú, egymásra sűrűn linkelő weboldalak.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés

Példák Hierarchikus

A Girvan-Newmanalgoritmus Modularitás **Csoportok**, **modulok**, **klaszterek**, vagy **csoportosulások**: sűrű részgráfok, melyekhez a tagok erősebben kapcsolódnak mint a hálózat többi részéhez. (Nincs egy általánosan elfogadott definíció).

Példák:

• ...

- Egy család, egy baráti kör vagy egy munkahelyi közösség az emberi kapcsolathálóban.
- Azonos funkcióval rendelkező fehérjék csoportja egy fehérjekölcsönhatási hálózatban.
- Azonos témájú, egymásra sűrűn linkelő weboldalak.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztuss Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan-Newmanalgoritmus Modularitás *k*-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés A Girvan–Newr
- algoritmus Modularitás

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresé Példák

- Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedės Terjedėsi modelle SIS modell SIS inhomogén hálózaton SIB modell

Csoportkeresé Példák

- Hierarchikus klaszterezés
- A Girvan–Newman algoritmus Modularitás

Csoportkeresés fontossága

A Girvan–Newmanalgoritmus Modularitás *k-*klikk perkoláció

Miért fontosak a csoportok?

Csoportkeresés fontossága

Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás

Példák

Hálózatok III.

A hálózati csoportkeresés fontos...

- adat klaszterezés,
- ajánló rendszerek,
- egy nagyon érdekes köztes szerveződési szint a csúcsok és a teljes hálózat szintje között,
- csoportokon belül gyors a terjedés, közöttük lassabb,
- fehérjefunkció jóslás.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresé Példák

Hierarchikus klaszterezés

algoritmus Modularitás Legalább 40-50 különböző módszer van a piacon... Melyiket válasszuk?

- 🕨 globális módszerek 🛶 lokális csop. def.,
- paraméterek száma?
- rendszerméret ↔ a módszer erőforrás igénye,

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresé Példák

klaszterezés

algoritmus Modularitás Legalább 40-50 különböző módszer van a piacon... Melyiket válasszuk?

- globális módszerek ↔ lokális csop. def.,
- paraméterek száma?
- rendszerméret ↔ a módszer erőforrás igénye,
- átfedő csoportok ↔ izolált csoportok.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás

Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresé Példák

Hierarchikus klaszterezés

algoritmus Modularitás k-klikk perkoláció Legalább 40-50 különböző módszer van a piacon... Melyiket válasszuk?

- globális módszerek ↔ lokális csop. def.,
- paraméterek száma?
- rendszerméret ↔ a módszer erőforrás igénye,
- átfedő csoportok ↔ izolált csoportok.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás

Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresé Példák

Hierarchikus klaszterezés

algoritmus Modularitás Legalább 40-50 különböző módszer van a piacon... Melyiket válasszuk?

- globális módszerek ↔ lokális csop. def.,
- paraméterek száma?
- rendszerméret ↔ a módszer erőforrás igénye,
- átfedő csoportok ↔ izolált csoportok.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás

Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresé Példák

Hierarchikus klaszterezés A Girvan-New

algoritmus Modularitás

k-klikk perkoláció

Legalább 40-50 különböző módszer van a piacon... Melyiket válasszuk?

- globális módszerek ↔ lokális csop. def.,
- o paraméterek száma?
- rendszerméret ↔ a módszer erőforrás igénye,
- átfedő csoportok ↔ izolált csoportok.

Hierarchikus klaszterezés

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedės Terjedėsi modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

- Hasonlóság (vagy távolság) az adatpontok között,,
- agglomeratív eljárás, felépül egy dendrogram.

Szemléltetés:

••••

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

- Hasonlóság (vagy távolság) az adatpontok között,,
- agglomeratív eljárás, felépül egy dendrogram.

Szemléltetés:

••••••

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

- Hasonlóság (vagy távolság) az adatpontok között,,
- agglomeratív eljárás, felépül egy dendrogram.

Szemléltetés:

•••••

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

- Hasonlóság (vagy távolság) az adatpontok között,,
- agglomeratív eljárás, felépül egy dendrogram.

Szemléltetés:

•••••

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

- Hasonlóság (vagy távolság) az adatpontok között,,
- agglomeratív eljárás, felépül egy dendrogram.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

- Hasonlóság (vagy távolság) az adatpontok között,,
- agglomeratív eljárás, felépül egy dendrogram.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

- Hasonlóság (vagy távolság) az adatpontok között,,
- agglomeratív eljárás, felépül egy dendrogram.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

- Hasonlóság (vagy távolság) az adatpontok között,,
- agglomeratív eljárás, felépül egy dendrogram.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

- Hasonlóság (vagy távolság) az adatpontok között,,
- agglomeratív eljárás, felépül egy dendrogram.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

- Hasonlóság (vagy távolság) az adatpontok között,,
- agglomeratív eljárás, felépül egy dendrogram.

Hierarchikus klaszterezés Hálózatokon

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztuss Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák

Hierarchikus klaszterezés

A Girvan–Newmanalgoritmus Modularitás *k-*klikk perkoláció

● adatpontok → csúcsok,

Hierarchikus klaszterezés Hálózatokon

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k-*klikk perkoláció

- adatpontok csúcsok,
- hasonlóság (vagy távolság)?

Hierarchikus klaszterezés Hálózatokon

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedes Terjedési mode SIS modell
- SIS inhomogér hálózaton
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k-*klikk perkoláció

- adatpontok → csúcsok,
- hasonlóság (vagy távolság):
 - a független utak száma,
Hierarchikus klaszterezés Hálózatokon

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá
- Teriedés
- Terjedési model SIS modell
- SIS inhomog
- SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k-*klikk perkoláció

- adatpontok ----> csúcsok,
- hasonlóság (vagy távolság):
 - a független utak száma,
 - a sor (oszlop) hasonlósága a szomszédsági mátrixban:

$$s_{ij} = \sqrt{\sum_{k} (A_{ik} - A_{jk})^2}$$

Hierarchikus klaszterezés Hálózatokon

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá
- Toriodós
- Terjedési model SIS modell
- SIS inhomog
- SIB modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

- adatpontok → csúcsok,
- hasonlóság (vagy távolság):
 - a független utak száma,
 - a sor (oszlop) hasonlósága a szomszédsági mátrixban:

$$S_{ij} = \sqrt{\sum_{k} (A_{ik} - A_{jk})^2}$$

• Pearson-korreláció:

$$\begin{split} s_{ij} &= \frac{\sum_{k} (A_{ik} - \mu_i) (A_{jk} - \mu_j)}{N \sigma_i \sigma_j}, \\ \mu_i &= \frac{1}{N} \sum_{k} A_{ik}, \qquad \sigma_i = \sqrt{\sum_{k} (A_{ik} - \mu_i)^2} \end{split}$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIB modell

Csoportkeresés Példák

Hierarchikus klaszterezés

A Girvan–Newmanalgoritmus Modularitás *k-*klikk perkoláció

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák
- Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIB modell

Csoportkeresés Példák

Hierarchikus klaszterezés

A Girvan–Newmanalgoritmus Modularitás *k-*klikk perkoláció

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák

Hierarchikus klaszterezés

A Girvan–Newman algoritmus Modularitás *k-*klikk perkoláció

• Hol kell elvágni a dendrogramot?

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

Miként lehetne elkerülni a túl korai csoportmag összeolvadásokat?

→ Úgy, hogy átállunk egy felosztó (divizív) módszerre, melynél a csoportok között húzódó éleket távolítjuk el.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newmanalgoritmus Modularitás k-klikk perkoláció

• A csoportok között húzódó éleknek nagy a betweenness értéke:

Az algoritmus

- 1) betweenness számolás minden élre,
- a legnagyobb b-vel rendelkező él törlése, ha ez által a hálózat szétesik két izolált komponensre, akkor frissítjük a dendrogramot,
- → vissza az 1)-es lépéshez

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newmanalgoritmus Modularitás k-klikk perkoláció

• A csoportok között húzódó éleknek nagy a betweenness értéke:

Az algoritmus

- 1) betweenness számolás minden élre,
- a legnagyobb b-vel rendelkező él törlése, ha ez által a hálózat szétesik két izolált komponensre, akkor frissítjük a dendrogramot,
- → vissza az 1)-es lépéshez

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newmanalgoritmus Modularitás k-klikk perkoláció

• A csoportok között húzódó éleknek nagy a betweenness értéke:

Az algoritmus

- 1) betweenness számolás minden élre,
- a legnagyobb b-vel rendelkező él törlése, ha ez által a hálózat szétesik két izolált komponensre, akkor frissítjük a dendrogramot,
- → vissza az 1)-es lépéshez

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan–Newmanalgoritmus Modularitás *k*-klikk perkoláció

A betweenness újraszámolása minden vágás után nagyon fontos:

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresé: Példák Hierarchikus klaszterezés

A Girvan–Newmar algoritmus

Modularitás

k-klikk perkoláció

• Hol kell elvágni a dendrogramot?

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztuss: Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newman algoritmus
- Modularitás
- k-klikk perkoláció

• Hogyan lehet az egyes csoportok minőségét megmérni?

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newman algoritmus
- Modularitás
- k-klikk perkoláció

- Hogyan lehet az egyes csoportok minőségét megmérni?
- → Hasonlítsuk össze a csoport belső szerkezetét egy véletlenszerűen áthuzalozott hálózatban kapott belső szerkezettel ugyanazon csoporttagok között!

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newman algoritmus
- Modularitás
- k-klikk perkoláció

- Hogyan lehet az egyes csoportok minőségét megmérni?
- → Hasonlítsuk össze a csoport belső szerkezetét egy véletlenszerűen áthuzalozott hálózatban kapott belső szerkezettel ugyanazon csoporttagok között!
 - "Jó minőségű" csoportok: sokkal több belső él mint a véletlenszerű esetben.
 - "Rossz minőségű" csoportok: nagyjából annyi (vagy akár kevesebb) belső él mint a véletlenszerűen áthuzalozott esetben.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newmanalgoritmus
- Modularitás
- k-klikk perkoláció

- Hogyan lehet az egyes csoportok minőségét megmérni?
- → Hasonlítsuk össze a csoport belső szerkezetét egy véletlenszerűen áthuzalozott hálózatban kapott belső szerkezettel ugyanazon csoporttagok között!
 - "Jó minőségű" csoportok: sokkal több belső él mint a véletlenszerű esetben.
 - "Rossz minőségű" csoportok: nagyjából annyi (vagy akár kevesebb) belső él mint a véletlenszerűen áthuzalozott esetben.
- Mi legyen a referencia véletlengráf-modell?

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus
- Modularitás

- Hogyan lehet az egyes csoportok minőségét megmérni?
- → Hasonlítsuk össze a csoport belső szerkezetét egy véletlenszerűen áthuzalozott hálózatban kapott belső szerkezettel ugyanazon csoporttagok között!
 - "Jó minőségű" csoportok: sokkal több belső él mint a véletlenszerű esetben.
 - "Rossz minőségű" csoportok: nagyjából annyi (vagy akár kevesebb) belső él mint a véletlenszerűen áthuzalozott esetben.
- Mi legyen a referencia véletlengráf-modell?
- → A konfigurációs modell, mert az pontosan veszi figyelembe a fokszámeloszlást.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztussá Célzott támadás
- Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newman algoritmus
- Modularitás
- k-klikk perkoláció

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newman algoritmus
- Modularitás
- k-klikk perkoláció

• A konfigurációs modell:

Mennyi az i és j közti él valószínűsége?

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newmar algoritmus
- Modularitás
- k-klikk perkoláció

• A konfigurációs modell:

Mennyi az i és j közti él valószínűsége?

 P(i−j) = ^{d_id_j}/_{2M}

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresé Példák Hierarchikus
- A Girvan–Newman
- Modularitás
- k-klikk perkoláció

- Mennyi az i és j közti él valószínűsége?

 P(i−j) = ^{d_id_j}/_{2M}
- Mekkora az α csoporton belül várható élek száma?

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresé: Példák Hierarchikus
- A Girvan–Newmar
- Modularitás
- k-klikk perkoláció

- Mennyi az i és j közti él valószínűsége?
 \$\mathcal{P}(i-j) = \frac{d_i d_j}{2M}\$
- Mekkora az α csoporton belül várható élek száma?
 - az *i* és a többi csoporttag közti élek várható száma: $M_{i\alpha} = d_i \sum_{j \in \alpha} \frac{d_j}{2M}$.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresé Példák Hierarchikus
- A Girvan–Newma
- Modularitás
- k-klikk perkoláció

- Mennyi az i és j közti él valószínűsége?
 \$\mathcal{P}(i-j) = \frac{d_i d_j}{2M}\$
- Mekkora az α csoporton belül várható élek száma?
 - az *i* és a többi csoporttag közti élek várható száma: $M_{i\alpha} = d_i \sum_{i \in \alpha} \frac{d_j}{2M}$.
 - felösszegezvén a csoporttagokra az α belső éleinek kétszeresét kapjuk:

$$M_{\alpha} = \frac{1}{2} \sum_{i \in \alpha} d_i \sum_{j \in \alpha} \frac{d_j}{2M}.$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresé Példák Hierarchikus
- A Girvan–Newmar algoritmus
- Modularitás
- k-klikk perkoláció

• A konfigurációs modell:

- Mennyi az i és j közti él valószínűsége?
 \$\mathcal{P}(i-j) = \frac{d_i d_j}{2M}\$
- Mekkora az α csoporton belül várható élek száma?
 - az *i* és a többi csoporttag közti élek várható száma: $M_{i\alpha} = d_i \sum_{i \in \alpha} \frac{d_i}{2M}$.
 - felösszegezvén a csoporttagokra az α belső éleinek kétszeresét kapjuk:

$$M_{\alpha} = \frac{1}{2} \sum_{i \in \alpha} d_i \sum_{j \in \alpha} \frac{d_j}{2M}.$$

 \rightarrow Az α csoport belső éleinek relatív hányada:

$$\frac{M_{\alpha}}{M} = \frac{1}{2M} \sum_{i \in \alpha} d_i \sum_{j \in \alpha} \frac{d_j}{2M} = \sum_{i \in \alpha} \frac{d_i}{2M} \sum_{j \in \alpha} \frac{d_j}{2M} = \left[\sum_{i \in \alpha} \frac{d_i}{2M}\right]^2$$

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newmar algoritmus
- Modularitás
- k-klikk perkoláció

• Az α csoport modularitása:

$$Q_{\alpha} \equiv \underbrace{\frac{l_{\alpha}}{M}}_{\text{létező}} - \underbrace{\left(\frac{d_{\alpha}}{2M}\right)^{2}}_{\text{konf. modellben várt}} \qquad I_{\alpha} : \alpha \text{ belső élei }, \\ d_{\alpha} = \sum_{i \in \alpha} d_{i}$$

• A teljes csoportfelbontás modularitása:

$$Q = \sum_{\alpha} Q_{\alpha} = \sum_{\alpha} \left[\frac{I_{\alpha}}{M} - \left(\frac{d_{\alpha}}{2M} \right)^2 \right]$$

• Egy alternatív, ekvivalens formája Q-nak:

$$Q = \frac{1}{2M} \sum_{ij} \left(A_{ij} - \frac{d_i d_j}{2M} \right) \delta(\alpha_i, \alpha_j)$$

Modularitás Szemléltetés

Modularitás Szemléltetés

Modularitás Szemléltetés

A G-N-módszerrel talált, max. Q-nak megfeleló csoportok

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztuss Célzott támadás
- Terjedes Terjedési modelli SIS modell SIS inhomogén hálózaton
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newman algoritmus
- Modularitás
- k-klikk perkoláció

A G-N-módszerrel talált, max. Q-nak megfeleló csoportok

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newman algoritmus Modularitás
- k-klikk perkoláció

 Ha a modularitás alapján választjuk ki a legjobb csoportfelbontást, akkor miért ne próbálhatnánk meg direktben Q-t maximalizálni?

- A legnagyobb Q-nak megfelelő felbontás megkeresése egy NP-teljes probléma.
- → Ettől függetlenül hatékony algoritmusok adhatók meg Q optimalizálására.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás
- k-klikk perkoláció

 Ha a modularitás alapján választjuk ki a legjobb csoportfelbontást, akkor miért ne próbálhatnánk meg direktben Q-t maximalizálni?

- A legnagyobb *Q*-nak megfelelő felbontás megkeresése egy NP-teljes probléma.
- Ettől függetlenül hatékony algoritmusok adhatók meg Q optimalizálására.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newmanalgoritmus Modularitás
- k-klikk perkoláció

 Ha a modularitás alapján választjuk ki a legjobb csoportfelbontást, akkor miért ne próbálhatnánk meg direktben Q-t maximalizálni?

- A legnagyobb Q-nak megfelelő felbontás megkeresése egy NP-teljes probléma.
- → Ettől függetlenül hatékony algoritmusok adhatók meg Q optimalizálására.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus
- A Girvan–Newman algoritmus
- Modularitás

- Mohó algoritmus
 - A kezdeti állapotban minden csúcs egy külön csoportot alkot.
 - Minden lépésnél azt a két csoportot olvasztjuk össze, mely által a legnagyobb mértékben növeljük a modularitást.
 - Ha Q nem növelhető tovább ezen a módon, akkor megállunk.
Modularitás optimalizálás

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus
- A Girvan–Newmar algoritmus
- Modularitás
- k-klikk perkoláció

Mohó algoritmus

- A kezdeti állapotban minden csúcs egy külön csoportot alkot.
- Minden lépésnél azt a két csoportot olvasztjuk össze, mely által a legnagyobb mértékben növeljük a modularitást.

Ha Q nem növelhető tovább ezen a módon, akkor megállunk.

Modularitás optimalizálás

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus
- A Girvan–Newmar
- Modularitás
- k-klikk perkoláció

Mohó algoritmus

- A kezdeti állapotban minden csúcs egy külön csoportot alkot.
- Minden lépésnél azt a két csoportot olvasztjuk össze, mely által a legnagyobb mértékben növeljük a modularitást.
- Ha Q nem növelhető tovább ezen a módon, akkor megállunk.

Modularitás optimalizálás

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Ferjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newman algoritmus
- Modularitás

Szimulált hőkezelés

- Egy véletlenszerű csoportfelbontásból indulunk ki.
- Vagy csoportok közti tagcserékkel, vagy véletlenszerű csoport-összeolvasztással, illetve szétvágással próbálkozunk.
- Egy adott lépés elfogadási valószínűsége:

$$p = \begin{cases} 1 & \text{ha} & \Delta Q \ge 0 \\ \exp\left(\frac{\Delta Q}{T}\right) & \text{ha} & \Delta Q < 0 \end{cases}$$

 Lassan csökkentjük a T paramétert, és a rendszer belekonvergál egy lokális optimumba.

Modularitás optimalizálás További módszerek

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modellel SIS modell SIS inhomogén hálózaton
- SIR modell
- Csoportkeresés Példák Hierarchikus
- klaszterezés A Girvan–Newmar
- algoritmus
- Modularitás

• Spektrális módszerek,

M. E. J. Newman, Proc. Natl. Acad. Sci. USA 103, 8577 (2006)

Extremal optimization,

- J. Duch and A. Arenas, Phys. Rev. E 72, 027104 (2005)
- etc.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Ferjedés Terjedési modellel SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

algoritmus Modularitás

k-klikk perkoláció

Vizsgáljuk meg, hogy mikor nagyobb a modularitás az alábbi példában:

$$Q_{\rm E} = Q_0 + \frac{2m+1}{M} - \frac{(2m+4)^2}{4M^2}$$
$$Q_{\rm K} = Q_0 + \frac{2m}{M} - \frac{2(m+2)^2}{4M^2}$$

Akkor lesz kedvezőbb külön csoportként kezelni őket, ha

$$\label{eq:QK} \to \, Q_{\rm K} - Q_{\rm E} = \frac{2m^2 + 8m + 8}{4M^2} - \frac{1}{M} > 0.$$

Ez vezető rendben a következő feltételnek felel meg:

 $\ell > \sqrt{M/2}.$

Ez egyben azt jelenti, hogy ha egy csoportnak kevesebb belső éle van, mint $\sqrt{M/2}$, és nem izolált, akkor nincs esélyünk a modularitás maximalizálásával megtalálni.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés
- Terjedési model SIS modell SIS inhomogén
- SIR modell
- Csoportkeresé: Példák Hierarchikus
- A Girvan-Newma
- Modularitás
- k-klikk perkoláció

• Hogyan lehet megkerülni a felbontási határ problémáját?

 Bevezetünk plusz egy paramétert, amivel szabályozható a felbontási határ:

$$Q = \sum_{\alpha} \frac{l_{\alpha}}{M} - \gamma \frac{d_{\alpha}^2}{4M^2} = \frac{1}{2M} \sum_{i,j} \left(A_{ij} - \gamma \frac{d_i d_j}{2M} \right) \delta(\alpha_i, \alpha_j)$$

(Ha γ nagy, a feltárt csoportok kicsik, ha γ kicsi, a feltárt csoportok nagyok.)

 Teljes egészében elvetjük a modularitást és lokális módszerekre térünk át.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton
- SIR modell
- Csoportkeresé: Példák Hierarchikus
- A Girvan–Newma
- algoritmus
- Modularitás
- k-klikk perkoláció

- Hogyan lehet megkerülni a felbontási határ problémáját?
 - Bevezetünk plusz egy paramétert, amivel szabályozható a felbontási határ:

$$Q = \sum_{\alpha} \frac{l_{\alpha}}{M} - \gamma \frac{d_{\alpha}^2}{4M^2} = \frac{1}{2M} \sum_{i,j} \left(A_{ij} - \gamma \frac{d_i d_j}{2M} \right) \delta(\alpha_i, \alpha_j)$$

(Ha γ nagy, a feltárt csoportok kicsik, ha γ kicsi, a feltárt csoportok nagyok.)

 Teljes egészében elvetjük a modularitást és lokális módszerekre térünk át.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton
- SIR modell
- Csoportkeresé Példák Hierarchikus
- A Girvan–Newma
- Modularitás
- k-klikk perkoláció

- Hogyan lehet megkerülni a felbontási határ problémáját?
 - Bevezetünk plusz egy paramétert, amivel szabályozható a felbontási határ:

$$Q = \sum_{\alpha} \frac{l_{\alpha}}{M} - \gamma \frac{d_{\alpha}^2}{4M^2} = \frac{1}{2M} \sum_{i,j} \left(A_{ij} - \gamma \frac{d_i d_j}{2M} \right) \delta(\alpha_i, \alpha_j)$$

(Ha γ nagy, a feltárt csoportok kicsik, ha γ kicsi, a feltárt csoportok nagyok.)

 Teljes egészében elvetjük a modularitást és lokális módszerekre térünk át.

Átfedő csoportok

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás

- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus
- A Girvan-Newmanalgoritmus Modularitás
- k-klikk perkoláció

A csoportok átfedhetnek egymással:

- Mindenki egyszerre tagja a családjának és a baráti körének,
- Egyes fehérjéknek több funkciója is van, így több csoportban is szerepelhetnek

A csoportok egymásba is ágyazódhatnak:

Átfedő csoportok

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus
- klaszterezés A Girvan–Newmai algoritmus
- Modularitás
- k-klikk perkoláció

A csoportok átfedhetnek egymással:

- Mindenki egyszerre tagja a családjának és a baráti körének,
- Egyes fehérjéknek több funkciója is van, így több csoportban is szerepelhetnek

A csoportok egymásba is ágyazódhatnak:

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan–Newman algoritmus Modularitás

k-klikk perkoláció

Az átfedéseket természetes módon engedi meg a *k*-klikk perkoláción alapuló csoport definíció.

- *k*-klikk: egy teljesen összekötött, *k* csúcsból álló részgráf.
- k-klikk szomszédság: két k-klikk szomszédos ha k 1 csúcsuk, közös, (vagyis csak egy csúcsban térnek el).
- k-klikk csoport: olyan k-klikkek maximális uniója, melyben bármelyik k-klikkből eljuthatunk k-klikk szomszédságok sorozatán keresztül bármelyik másik k-klikkbe.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

algoritmus Modularitás

k-klikk perkoláció

Az átfedéseket természetes módon engedi meg a *k*-klikk perkoláción alapuló csoport definíció.

- k-klikk: egy teljesen összekötött, k csúcsból álló részgráf.
- k-klikk szomszédság: két k-klikk szomszédos ha k 1 csúcsuk, közös, (vagyis csak egy csúcsban térnek el).
- k-klikk csoport: olyan k-klikkek maximális uniója, melyben bármelyik k-klikkből eljuthatunk k-klikk szomszédságok sorozatán keresztül bármelyik másik k-klikkbe.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

algoritmus Modularitás

k-klikk perkoláció

Az átfedéseket természetes módon engedi meg a *k*-klikk perkoláción alapuló csoport definíció.

- k-klikk: egy teljesen összekötött, k csúcsból álló részgráf.
- k-klikk szomszédság: két k-klikk szomszédos ha k 1 csúcsuk, közös, (vagyis csak egy csúcsban térnek el).
- k-klikk csoport: olyan k-klikkek maximális uniója, melyben bármelyik k-klikkből eljuthatunk k-klikk szomszédságok sorozatán keresztül bármelyik másik k-klikkbe.

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan–Newman algoritmus Modularitás

k-klikk perkoláció

Az átfedéseket természetes módon engedi meg a *k*-klikk perkoláción alapuló csoport definíció.

- k-klikk: egy teljesen összekötött, k csúcsból álló részgráf.
- k-klikk szomszédság: két k-klikk szomszédos ha k 1 csúcsuk, közös, (vagyis csak egy csúcsban térnek el).
- k-klikk csoport: olyan k-klikkek maximális uniója, melyben bármelyik k-klikkből eljuthatunk k-klikk szomszédságok sorozatán keresztül bármelyik másik k-klikkbe.

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan–Newmai algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newman
- algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmar
- algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newman algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newman algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newma algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newmar algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newmai algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newman algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newman algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modelleł SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- algoritmus Modularitás
- k-klikk perkoláció

- Robusztusság Inverz perkoláció Kritikus *f* Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés
- A Girvan-Newman algoritmus Modularitás
- k-klikk perkoláció

Egy adott csúcs csoportjai

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztussá Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIB modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmanalgorítmus
- Modularitás
- k-klikk perkoláció

Egy adott csúcs csoportjai

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmanalgoritmus Modularitás K-klikk perkoláció

Mi a helyzet a teljes hálózat csoportszerkezetével?

- Magas k és w* élsúlyküszöb: kicsi, szeparált csoportok.
- Alacsony k és w* élsúlyküszöb: megjelenhet egy óriás csoport, magábaolvasztva a kis csoportok többségét.

Dptimális *k*-klikk méret és *w*

Ahol a csoportszerkezet a lehető legtöbb információt tartalmazza: éppen az óriás csoport megjelenésével járó kritikus pont felett.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmanalgoritmus Modularitás K-klikk perkoláció

Mi a helyzet a teljes hálózat csoportszerkezetével?

- Magas k és w* élsúlyküszöb: kicsi, szeparált csoportok.
- Alacsony k és w* élsúlyküszöb: megjelenhet egy óriás csoport, magábaolvasztva a kis csoportok többségét.

Optimális *k*-klikk méret és *w*

Ahol a csoportszerkezet a lehető legtöbb információt tartalmazza: éppen az óriás csoport megjelenésével járó kritikus pont felett.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmanalgoritmus Modularitás K-klikk perkoláció

Mi a helyzet a teljes hálózat csoportszerkezetével?

- Magas k és w* élsúlyküszöb: kicsi, szeparált csoportok.
- Alacsony k és w* élsúlyküszöb: megjelenhet egy óriás csoport, magábaolvasztva a kis csoportok többségét.

Optimális *k*-klikk méret és *w*

Ahol a csoportszerkezet a lehető legtöbb információt tartalmazza: éppen az óriás csoport megjelenésével járó kritikus pont felett.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmanalgoritmus Modularitás K-klikk perkoláció

Mi a helyzet a teljes hálózat csoportszerkezetével?

- Magas k és w* élsúlyküszöb: kicsi, szeparált csoportok.
- Alacsony k és w* élsúlyküszöb: megjelenhet egy óriás csoport, magábaolvasztva a kis csoportok többségét.

Optimális *k*-klikk méret és *w*

Ahol a csoportszerkezet a lehető legtöbb információt tartalmazza: éppen az óriás csoport megjelenésével járó kritikus pont felett.

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmanalgoritmus Modularitás
- k-klikk perkoláció

Mi a helyzet a teljes hálózat csoportszerkezetével?

- Magas k és w* élsúlyküszöb: kicsi, szeparált csoportok.
- Alacsony k és w* élsúlyküszöb: megjelenhet egy óriás csoport, magábaolvasztva a kis csoportok többségét.

Optimális k-klikk méret és w*

Ahol a csoportszerkezet a lehető legtöbb információt tartalmazza: éppen az óriás csoport megjelenésével járó kritikus pont felett.

A CPM további részletei

Hálózatok III.

Robusztusság Inverz perkoláció Kritikus f Extrém robusztusság Célzott támadás

Terjedés Terjedési modelle SIS modell SIS inhomogén hálózaton SIR modell

Csoportkeresés Példák Hierarchikus klaszterezés

A Girvan-Newman algoritmus Modularitás

k-klikk perkoláció

Irányított csoportkereső:

Az élek irányával szemben szabunk meg bizonyos kritériumokat a *k*-klikkeken belül.

G. Palla, I. J. Farkas, P. Pollner, I. Derényi and T. Vicsek, New Journal of Physics 9, 186 (2007)

Súlyozott csoportkereső:

Az egyes k-klikkeken belül az élsúlyok mértani közepének kell egy bizonyos küszöböt elérnie.

I. J. Farkas, D. Ábel, G. Palla and T. Vicsek, New Journal of Physics 9, 180 (2007)

CFinder

Hálózatok III.

- Robusztusság Inverz perkoláció Kritikus f Extrém robusztuss
- Célzott támadás
- Terjedés Terjedési modellek SIS modell SIS inhomogén hálózaton SIR modell
- Csoportkeresés Példák Hierarchikus klaszterezés A Girvan-Newmanalgoritmus Modularités
- k-klikk perkoláció

A CPM-en alapuló hálózati csoportkereső és vizualizációs programcsomag: http://www.cfinder.org

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozę hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása

Csoportos mozgás 1, 2 és 3 dimenzióban fázisátalakulás, skálatulajdonságok, emberek csoportos mozgása

Modellezés: Alapfogalmak

Kollektív mozgás

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamikai modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A csoportos mozgás az élővilágban és a technológiai rendszerekben egyaránt gyakori.

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamikai modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A csoportos mozgás az élővilágban és a technológiai rendszerekben egyaránt gyakori.

- Nagy számú hasonló egyed
- Sok rendszerben néhány hasonló típusú csoportos mozgás
- Általában helyi kölcsönhatásokból rendszerméretű rendeződés

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamikai modell
- Csoportos mozga hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A csoportos mozgás az élővilágban és a technológiai rendszerekben egyaránt gyakori.

- Nagy számú hasonló egyed
- Sok rendszerben néhány hasonló típusú csoportos mozgás
- Általában helyi kölcsönhatásokból rendszerméretű rendeződés

Példák videókkal:

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A csoportos mozgás az élővilágban és a technológiai rendszerekben egyaránt gyakori.

- Nagy számú hasonló egyed
- Sok rendszerben néhány hasonló típusú csoportos mozgás
- Általában helyi kölcsönhatásokból rendszerméretű rendeződés

Példák videókkal:

- Baktériumok (Rotating colonies)
- Halak, https://youtu.be/D6HdoIsLMFg (Tuna Tornado)
- Denevérek, https://goo.gl/qgC7QI (1 million bats, 4m15s)
- Madarak, https://youtu.be/V-mCuFYfJdl (Falcon and Starlings)
- Emberek, https://youtu.be/KGukAoiGhZU (Pilgrims, rotation)
- Robotok 2d, https://youtu.be/cHbgrnv_8Nk (Kilobots, phototaxis)
- Drónok 3d, https://goo.gl/cpKusZ (ERC Collmot, formations, 6m15s)

Kollektív mozgás

Megfigyelések

Mágneses modell

Ferromágneses állapot

Mermin-Wagner téte Scalar Noise Model

Hidrodinamikai modell

Csoportos mozg hidrodinamikai modellje

Navier-Stoke egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása

Minden résztvevőt ("részecskét") jellemez egy vektor: a saját mozgásának az iránya

- mágneses analógia alapján az *i*. részecske irányát jelölje \vec{J}_i
- az összes részecske \vec{J}_i vektorai együtt: $\{J\}$

Kollektív mozgás

Megfigyelések

Mágneses modell

Ferromágneses állapot

Mermin-Wagner téte Scalar Noise Model

Hidrodinamika modell

Csoportos mozgá hidrodinamikai modellje

Navier-Stoke egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása Minden résztvevőt ("részecskét") jellemez egy vektor: a saját mozgásának az iránya

- mágneses analógia alapján az *i*. részecske irányát jelölje \vec{J}_i
- az összes részecske \vec{J}_i vektorai együtt: $\{J\}$

Szintén a mágneses analógia alapján:

- a rendezett mozgás modellje a ferromágneses állapot
- a Hamilton függvény: $\mathcal{H} = \sum_{\langle i,k \rangle} J_i J_k$
- kanonikus sokaságban az állapot valószínűsége: $\mathcal{P}(\{J\}) = e^{-\beta \mathcal{H}}/Z$

Kollektív mozgás

Megfigyelések

Mágneses modell

Ferromágneses állapot

Mermin-Wagner tétel Scalar Noise Model

Hidrodinamika modell

Csoportos mozg hidrodinamikai modellje

Navier-Stoke egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása Minden résztvevőt ("részecskét") jellemez egy vektor: a saját mozgásának az iránya

- mágneses analógia alapján az *i*. részecske irányát jelölje \vec{J}_i
- az összes részecske \vec{J}_i vektorai együtt: $\{J\}$

Szintén a mágneses analógia alapján:

- a rendezett mozgás modellje a ferromágneses állapot
- a Hamilton függvény: $\mathcal{H} = \sum_{\langle i,k \rangle} J_i J_k$
- kanonikus sokaságban az állapot valószínűsége: $\mathcal{P}(\{J\}) = e^{-\beta \mathcal{H}}/Z$

A β mutatja, hogy egy részecske (a valóságban pl: madár vagy bölény) mozgásának irányát mennyire befolyásolja az, hogy a többiek éppen merre mozognak.

 $p(a) w(a \rightarrow b) = p(b) w(b \rightarrow a)$

Tetszőleges a és b állapot között teljesül

Kollektív mozgás

A részletes egyensúly:

Megfigyelések

Mágneses mode

Ferromágneses állapot

Mermin-Wagner téte Scalar Noise Model

Hidrodinamika modell

Csoportos mozg hidrodinamikai modellje

Navier-Stoke egyenlet

Csoportos mozgá: hidrodinamikai modellje

Emberek csoportos mozgása

$\begin{array}{c} w \ (a \rightarrow b) \\ \hline \\ w \ (b \rightarrow a) \end{array} \qquad b$

Kollektív mozgás

A részletes egyensúly:

Ferromágneses állapot

Tetszőleges a és b állapot között teljesül

 $p(a) w(a \rightarrow b) = p(b) w(b \rightarrow a)$

A modellekben az átmeneti valószínűségek könnyebben mérhetőek, ezért írjuk át a feltételt így:

$$\frac{w(a \to b)}{w(b \to a)} = \frac{e^{-\beta(\mathcal{H}_a - \mathcal{H}_b)}}{Z}$$

Kollektív mozgás

A részletes egyensúly:

Ferromágneses állapot

Tetszőleges a és b állapot között teljesül

 $p(a) w(a \rightarrow b) = p(b) w(b \rightarrow a)$

A modellekben az átmeneti valószínűségek könnyebben mérhetőek, ezért írjuk át a feltételt (av:

$$\frac{w(a \to b)}{w(b \to a)} = \frac{e^{-\beta(\mathcal{H}_a - \mathcal{H}_b)}}{Z}$$

Ha ez teljesül, akkor van egy olyan stacionárius $\mathcal{P}(\{J\})$ eloszlás, amelyre teljesül a $\mathcal{P}(\{J\}) = e^{-\beta \mathcal{H}}/Z$.

Kollektív mozgás

A részletes egyensúly:

Ferromágneses állapot

Tetszőleges a és b állapot között teljesül

 $p(a) w(a \rightarrow b) = p(b) w(b \rightarrow a)$

A modellekben az átmeneti valószínűségek könnyebben mérhetőek, ezért írjuk át a feltételt (av:

$$\frac{w(a \to b)}{w(b \to a)} = \frac{e^{-\beta(\mathcal{H}_a - \mathcal{H}_b)}}{Z}$$

Ha ez teljesül, akkor van egy olyan stacionárius $\mathcal{P}(\{J\})$ eloszlás, amelyre teljesül a $\mathcal{P}(\{J\}) = e^{-\beta \mathcal{H}}/Z$.

A $\mathcal{P}(\{J\})$ néha analitikusan számítható, gyakran csak numerikusan.

Kollektív mozgás

A részletes egyensúly:

Ferromágneses állapot

Tetszőleges a és b állapot között teljesül

 $p(a) w(a \rightarrow b) = p(b) w(b \rightarrow a)$

A modellekben az átmeneti valószínűségek könnyebben mérhetőek, ezért írjuk át a feltételt (av:

$$\frac{w(a \to b)}{w(b \to a)} = \frac{e^{-\beta(\mathcal{H}_a - \mathcal{H}_b)}}{Z}$$

Ha ez teljesül, akkor van egy olyan stacionárius $\mathcal{P}(\{J\})$ eloszlás, amelyre teljesül a $\mathcal{P}(\{J\}) = e^{-\beta \mathcal{H}}/Z$.

A $\mathcal{P}(\{J\})$ néha analitikusan számítható, gyakran csak numerikusan.

Megjegyzés: ha a spinek (részecskék) egy rács pontjaiban vannak, akkor ez a klasszikus XY ferromágnes modell, ami az n-vektor modell n = 2 dimenziós esete.

Kollektív mozgás

Megfigyelések

Mágneses modell Ferromágneses állapot

Mermin-Wagner tétel Scalar Noise Model

Hidrodinamikai modell

Csoportos mozg hidrodinamikai modellje

Navier-Stoke egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása Lokális kölcsönhatások és véges hőmérséklet (T > 0, azaz $\beta < \infty$) esetén 2 dimenzióban rögzített helyen lévő spinek nem tudnak hosszútávú (makroszkopikus) rendezett állapotot létrehozni.

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot
- Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamikai modell
- Csoportos mozo hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

Lokális kölcsönhatások és véges hőmérséklet (T > 0, azaz $\beta < \infty$) esetén 2 dimenzióban rögzített helyen lévő spinek nem tudnak hosszútávú (makroszkopikus) rendezett állapotot létrehozni.

(1) Alapállapot, T=0 esetén a szabadenergia F = E - T S = 0

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot
- Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamikai modell
- Csoportos mozo hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

Lokális kölcsönhatások és véges hőmérséklet (T > 0, azaz $\beta < \infty$) esetén 2 dimenzióban rögzített helyen lévő spinek nem tudnak hosszútávú (makroszkopikus) rendezett állapotot létrehozni.

(1) Alapállapot, T=0 \uparrow \uparrow

Véges hőmérséklet esetén egy jellemző állapot (2):

Kollektív mozgás

Megfigyelések

Mágneses modell Ferromágneses állapot

Mermin-Wagner tétel Scalar Noise Model

Hidrodinamikai modell

Csoportos mozę hidrodinamikai modellje

Navier-Stokes egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása Lokális kölcsönhatások és véges hőmérséklet (T > 0, azaz $\beta < \infty$) esetén 2 dimenzióban rögzített helyen lévő spinek nem tudnak hosszútávú (makroszkopikus) rendezett állapotot létrehozni.

(1) Alapállapot, T=0 \uparrow \uparrow

Véges hőmérséklet esetén egy jellemző állapot (2): Ha a rendszer az alapállapotban van, és a hőmérsékletet kicsivel nulla fölé visszük, akkor a szabadenergia csökkenhet az entrópia növekedésével.

Kollektív mozgás

Megfigyelések

Mágneses modell Ferromágneses állapot

Mermin-Wagner tétel Scalar Noise Model

Hidrodinamikai modell

Csoportos mozę hidrodinamikai modellje

Navier-Stokes egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása Lokális kölcsönhatások és véges hőmérséklet (T > 0, azaz $\beta < \infty$) esetén 2 dimenzióban rögzített helyen lévő spinek nem tudnak hosszútávú (makroszkopikus) rendezett állapotot létrehozni.

(1) Alapállapot, T=0 \uparrow \uparrow

Véges hőmérséklet esetén egy jellemző állapot (2): Ha a rendszer az alapállapotban van, és a hőmérsékletet kicsivel nulla fölé visszük, akkor a szabadenergia csökkenhet az entrópia növekedésével.

Tehát mélyebb szabadenergiájú lesz egy olyan állapot, amiben egy kicsit elfordul néhány spin.

Kollektív mozgás

Megfigyelések

Mágneses modell Ferromágneses állapot

Mermin-Wagner tétel Scalar Noise Model

Hidrodinamikai modell

Csoportos mozg hidrodinamikai modellje

Navier-Stokes egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása Lokális kölcsönhatások és véges hőmérséklet (T > 0, azaz $\beta < \infty$) esetén 2 dimenzióban rögzített helyen lévő spinek nem tudnak hosszútávú (makroszkopikus) rendezett állapotot létrehozni.

(1) Alapállapot, T=0 \uparrow \uparrow

Véges hőmérséklet esetén egy jellemző állapot (2): Ha a rendszer az alapállapotban van, és a hőmérsékletet kicsivel nulla fölé visszük, akkor a szabadenergia csökkenhet az entrópia növekedésével.

Tehát mélyebb szabadenergiájú lesz egy olyan állapot, amiben egy kicsit elfordul néhány spin.

A szomszédos láncban lévő spinek is elfordulnak.

Kollektív mozgás

Megfigyelések

Mágneses model Ferromágneses állapot

Mermin-Wagner tétel

Hidrodinamikai modell

Csoportos mozę hidrodinamikai modellje

Navier-Stoke egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása A jelenség megértéséhez számoljuk meg a mikroállapotokat, és adjunk becslést a szabadenergia értékére.

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel
- Scalar Noise Model
- Hidrodinamikai modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A jelenség megértéséhez számoljuk meg a mikroállapotokat, és adjunk becslést a szabadenergia értékére.

(1) Alapállapot

E = 0, S = 0: csak egy ilyen mikroállapot van, ekkor S = 0

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot
- Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos moz hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A jelenség megértéséhez számoljuk meg a mikroállapotokat, és adjunk becslést a szabadenergia értékére.

(1) Alapállapot

E = 0, S = 0: csak egy ilyen mikroállapot van, ekkor S = 0

(2) Véges hőmérsékleten jellemző állapotok

- spin elfordulása $\vartheta \sim \frac{1}{\ell}$ és a skalárszorzat ~ $\frac{1}{\ell^2}$
- kölcsönható spin párok száma ℓ^2

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot
- Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozo hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A jelenség megértéséhez számoljuk meg a mikroállapotokat, és adjunk becslést a szabadenergia értékére.

(1) Alapállapot

E = 0, S = 0: csak egy ilyen mikroállapot van, ekkor S = 0

(2) Véges hőmérsékleten jellemző állapotok

- spin elfordulása $\vartheta \sim \frac{1}{\ell}$ és a skalárszorzat ~ $\frac{1}{\ell^2}$
- kölcsönható spin párok száma ℓ^2

Tehát az energia $E \sim \frac{1}{\ell^2} \ell^2 = \text{const.} > 0$

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot
- Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos moz hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A jelenség megértéséhez számoljuk meg a mikroállapotokat, és adjunk becslést a szabadenergia értékére.

(1) Alapállapot

E = 0, S = 0: csak egy ilyen mikroállapot van, ekkor S = 0

(2) Véges hőmérsékleten jellemző állapotok

- spin elfordulása $\vartheta \sim \frac{1}{\ell}$ és a skalárszorzat $\sim \frac{1}{\ell^2}$
- kölcsönható spin párok száma ℓ^2

Tehát az energia $E \sim \frac{1}{\ell^2} \ell^2 = \text{const.} > 0$

• az ilyen mikroállapotok száma $W \ge \ell$, mert a hullám ℓ különböző helyről indítható és más ilyen energiájú állapot is lehet

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot
- Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos moz hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A jelenség megértéséhez számoljuk meg a mikroállapotokat, és adjunk becslést a szabadenergia értékére.

(1) Alapállapot

E = 0, S = 0: csak egy ilyen mikroállapot van, ekkor S = 0

(2) Véges hőmérsékleten jellemző állapotok

- spin elfordulása $\vartheta \sim \frac{1}{\ell}$ és a skalárszorzat $\sim \frac{1}{\ell^2}$
- kölcsönható spin párok száma ℓ^2

Tehát az energia $E \sim \frac{1}{\ell^2} \ell^2 = \text{const.} > 0$

- az ilyen mikroállapotok száma W ≥ ℓ, mert a hullám ℓ különböző helyről indítható és más ilyen energiájú állapot is lehet
- emiatt $S = k \ln W \ge k \ln \ell$

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot
- Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos moz hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A jelenség megértéséhez számoljuk meg a mikroállapotokat, és adjunk becslést a szabadenergia értékére.

(1) Alapállapot

E = 0, S = 0: csak egy ilyen mikroállapot van, ekkor S = 0

(2) Véges hőmérsékleten jellemző állapotok

- spin elfordulása $\vartheta \sim \frac{1}{\ell}$ és a skalárszorzat $\sim \frac{1}{\ell^2}$
- kölcsönható spin párok száma ℓ^2

Tehát az energia $E \sim \frac{1}{\ell^2} \ell^2 = \text{const.} > 0$

- az ilyen mikroállapotok száma W ≥ ℓ, mert a hullám ℓ különböző helyről indítható és más ilyen energiájú állapot is lehet
- emiatt $S = k \ln W \ge k \ln \ell$

Tehát a szabadenergia: $F = \text{const.} - k \ln \ell$ nagy ℓ esetén negatív.
Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel
- Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozo hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A ferromágneses modell nem veszi figyelembe, hogy a részecskék (a résztvevő élőlények) mozognak.

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamikai modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A ferromágneses modell nem veszi figyelembe, hogy a részecskék (a résztvevő élőlények) mozognak.

Ha egy kis csoport rendeződik, akkor a rendezettségének az irányát el tudja vinni a mozgásának irányában található sávban jóval messzebbre, mint a kölcsönhatási távolság.

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A ferromágneses modell nem veszi figyelembe, hogy a részecskék (a résztvevő élőlények) mozognak.

Ha egy kis csoport rendeződik, akkor a rendezettségének az irányát el tudja vinni a mozgásának irányában található sávban jóval messzebbre, mint a kölcsönhatási távolság.

A ferromágneses modell módosítása (Vicsek et al, Phys Rev Lett, 1995)

- Tegyük azonossá a részecske kölcsönhatási tulajdonságát mutató "spint" (pszeudovektor) és a sebességét (valódi vektor).
- Legyen a mozgás térben folytonos és időben diszkrét (t = 1, 2, 3, ...)
- A frissítés során a részecske új iránya legyen a közelében lévők irányának vektori átlagát.
- A kapott új irányhoz adjunk hozzá irány szerinti zajt.

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozo hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A ferromágneses modell nem veszi figyelembe, hogy a részecskék (a résztvevő élőlények) mozognak.

Ha egy kis csoport rendeződik, akkor a rendezettségének az irányát el tudja vinni a mozgásának irányában található sávban jóval messzebbre, mint a kölcsönhatási távolság.

A ferromágneses modell módosítása (Vicsek et al, Phys Rev Lett, 1995)

- Tegyük azonossá a részecske kölcsönhatási tulajdonságát mutató "spint" (pszeudovektor) és a sebességét (valódi vektor).
- Legyen a mozgás térben folytonos és időben diszkrét (t = 1, 2, 3, ...)
- A frissítés során a részecske új iránya legyen a közelében lévők irányának vektori átlagát.
- A kapott új irányhoz adjunk hozzá irány szerinti zajt.

Vizsgáljuk meg, hogy van-e hosszú távú (rendszerméretű) rendeződés a részecske sűrűség és a zaj amplitúdó változtatása esetén.

Scalar Noise Model Jelölések és a Modell definíciója

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel
- Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

Az irány típusú zaj miatt a Vicsek et al (PRL, 1995) modell gyakori neve "Scalar Noise Model" (SNM).

Scalar Noise Model Jelölések és a Modell definíciója

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamikai
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

Az irány típusú zaj miatt a Vicsek et al (PRL, 1995) modell gyakori neve "Scalar Noise Model" (SNM).

Jelölések:

- $\vartheta_i(t)$: az *i*. részecske iránya a *t* időpontban
- $\vec{x}_i(t)$, $\vec{v}_i(t)$: hely és sebesség, $|\vec{v}_i(t)| = \text{const.} = v_0$
- ξ_i(t): szöghöz hozzáadott zaj, átlaga 0
- az *i*. részecskéhez *R* távolságnál közelebb lévő más részecskék irányainak vektori átlaga: $\langle \vartheta(t) \rangle_i = \arctan \frac{\sum_{j \neq i, d(i,j) < R} \sin(\vartheta_j)}{\sum_{j \neq i, d(i,j) < R} \cos(\vartheta_j)}$ (a többi részecske vektoraiból kapott összeg iránya)

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamikai modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása Az irány típusú zaj miatt a Vicsek et al (PRL, 1995) modell gyakori neve "Scalar Noise Model" (SNM).

Jelölések:

- $\vartheta_i(t)$: az *i*. részecske iránya a *t* időpontban
- $\vec{x}_i(t)$, $\vec{v}_i(t)$: hely és sebesség, $|\vec{v}_i(t)| = \text{const.} = v_0$
- ξ_i(t): szöghöz hozzáadott zaj, átlaga 0
- az *i*. részecskéhez *R* távolságnál közelebb lévő más részecskék irányainak vektori átlaga: $\langle \vartheta(t) \rangle_i = \arctan \frac{\sum_{j \neq i, d(i,j) < R} \sin(\vartheta_j)}{\sum_{j \neq i, d(i,j) < R} \cos(\vartheta_j)}$ (a többi részecske vektoraiból kapott összeg iránya)

Időlépés (frissítés) a modellben:

 $\vartheta_i(t+1) = \langle \vartheta(t) \rangle_i + \xi_i(t)$ $\vec{x}_i(t+1) = \vec{x}_i(t) + v_0 (\cos \vartheta_i(t), \sin \vartheta_i(t))$

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamikai modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

Az irány típusú zaj miatt a Vicsek et al (PRL, 1995) modell gyakori neve "Scalar Noise Model" (SNM).

Jelölések:

- $\vartheta_i(t)$: az *i*. részecske iránya a *t* időpontban
- $\vec{x}_i(t)$, $\vec{v}_i(t)$: hely és sebesség, $|\vec{v}_i(t)| = \text{const.} = v_0$
- ξ_i(t): szöghöz hozzáadott zaj, átlaga 0
- az *i*. részecskéhez *R* távolságnál közelebb lévő más részecskék irányainak vektori átlaga: $\langle \vartheta(t) \rangle_i = \arctan \frac{\sum_{j \neq i, d(i,j) < R} \sin(\vartheta_j)}{\sum_{j \neq i, d(i,j) < R} \cos(\vartheta_j)}$ (a többi részecske vektoraiból kapott összeg iránya)

Időlépés (frissítés) a modellben:

 $\vartheta_i(t+1) = \langle \vartheta(t) \rangle_i + \xi_i(t)$ $\vec{x}_i(t+1) = \vec{x}_i(t) + v_0 \left(\cos \vartheta_i(t), \sin \vartheta_i(t)\right)$

Az explicit követési szabály felel meg annak, hogy a mágneses rendszerben a részecskék minimalizálni kívánják a kölcsönhatási

Scalar Noise Model

Kollektív mozgás

Jelölések és módszerek:

- a kölcsönhatási sugár legyen R = 1
- a szimulációt L × L területen végezzük (L egész szám)
- határfeltétel:
 - visszaverő fal esetén a fal-részecske kölcsönhatás erősen befolyásolja a jelenséget
 - szerencsésebb (kevesbé befolyásol) a periodikus határfeltétel
- r_x = r_y = 1 méretű mezőket (rácsot) használva csak a szomszédos mezők között lehet kölcsönhatás, !! határoknál külön számolás
- időlépés nagysága: Δt = 1
- a rögzített v_0 sebességre: $v_0 \Delta t \ll L$, például $v_0 \approx 0.3$
 - ha v₀ kicsi, akkor több lépésen át fenmaradnak a szomszédsági viszonyok
 - de ha v₀ nagyon kicsi, akkor nagyon kicsi az eltérés a mágneses modelltől
- $\bullet\,$ a zaj szórása (jellemző nagysága): σ

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel
- Scalar Noise Model

Hidrodinamika modell

- Csoportos moze hidrodinamikai modellje
- Navier-Stokes egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása

Scalar Noise Model

Kollektív mozgás

Scalar Noise Model

Jelölések és módszerek:

- a kölcsönhatási sugár legyen R = 1
- a szimulációt L × L területen végezzük (L egész szám)
- határfeltétel:
 - visszaverő fal esetén a fal-részecske kölcsönhatás erősen befolyásolja a jelenséget
 - szerencsésebb (kevesbé befolyásol) a periodikus határfeltétel
- r_x = r_y = 1 méretű mezőket (rácsot) használva csak a szomszédos mezők között lehet kölcsönhatás, !! határoknál külön számolás
- időlépés nagysága: Δt = 1
- a rögzített v_0 sebességre: $v_0 \Delta t \ll L$, például $v_0 \approx 0.3$
 - ha v₀ kicsi, akkor több lépésen át fenmaradnak a szomszédsági viszonyok
 - de ha v₀ nagyon kicsi, akkor nagyon kicsi az eltérés a mágneses modelltől
- $\bullet\,$ a zaj szórása (jellemző nagysága): σ
- \rightarrow Két fő paraméter: σ és $\rho = N/L^2$

Scalar Noise Model Szimulációk - Kölcsönhatások nyilvántartása

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel
- Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozo hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

Scalar Noise Model

Rendparaméter

A sebességvektorok vektori összegének hossza a maximálisan lehetséges érték mekkora része:

$$0 \le \Phi = \frac{\left|\sum \vec{v}_i\right|}{Nv_0} \le 1$$

Eredmények 2 dimenzióban:

Rendparaméter

A sebességvektorok vektori összegének hossza a maximálisan lehetséges érték mekkora része:

$$0 \le \Phi = \frac{\left|\sum \vec{v}_i\right|}{Nv_0} \le 1$$

Hidrodinamika modell

Csoportos moz hidrodinamikai modellje

egyenlet

Csoportos mozga hidrodinamikai modellje

Emberek csoportos mozgása

Rendparaméter

A sebességvektorok vektori összegének hossza a maximálisan lehetséges érték mekkora része:

$$0 \le \Phi = \frac{\left|\sum \vec{v}_i\right|}{Nv_0} \le 1$$

Hidrodinamika modell

Csoportos moz hidrodinamikai modellje

Navier-Stoke egyenlet

Csoportos mozgá: hidrodinamikai modellje

Emberek csoportos mozgása

Eredmények 2 dimenzióban:

Scalar Noise Model Szimulációk - Eredmények 3 dimenzióban

Scalar Noise Model Szimulációk - Eredmények 3 dimenzióban

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel
- Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stoke egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

3d-ben a sebesség iránya (ϑ) helyett a sebességvektort frissítjük:

$$\vec{v}_i(t+1) = v_0 \mathcal{N}\left(\mathcal{N}\left\langle \vec{v}(t) \right\rangle_i + \vec{\xi}_i(t)\right),$$

ahol \mathcal{N} a normálási operátor: $\mathcal{N}\vec{x} = \frac{\vec{x}}{|\vec{x}|}$.

Scalar Noise Model Szimulációk - Eredmények 3 dimenzióban

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel
- Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása

3d-ben a sebesség iránya (ϑ) helyett a sebességvektort frissítjük:

$$\vec{v}_i(t+1) = v_0 \mathcal{N}\left(\mathcal{N}\left\langle \vec{v}(t) \right\rangle_i + \vec{\xi}_i(t)\right),$$

ahol \mathcal{N} a normálási operátor: $\mathcal{N}\vec{x} = \frac{x}{|\vec{x}|}$.

Szimulációs eredmények (más néven: numerikus eredmények)

- 3d-ben és 1d-ben is van rendeződés.
- A Scalar Noise Model-ben az átalakulás 1d-ben, 2d-ben és 3d-ben is folytonos. (A 2d esettel kapcsolatos hosszú vita (2004-2008) után a legutolsó eredmények szerint a nem folytonos átalakulást mutató eredmény alapja számítási hiba.)

Csoportos mozgás hidrodinamikai modellje

Kollektív mozgás

Megfigyelések

Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model

Hidrodinamika modell

Csoportos mozgás hidrodinamikai modellje

Navier-Stoke egyenlet

Csoportos mozgá: hidrodinamikai modellje

Emberek csoportos mozgása

A Scalar Noise Model korlátja, hogy a modellben

- ρ nagyon nagy lehet
- az idő diszkrét

Csoportos mozgás hidrodinamikai modellje

Kollektív mozgás

A Scalar Noise Model korlátja, hogy a modellben

- ρ nagyon nagy lehet
- az idő diszkrét

A csoportos mozgás hidrodinamikai modelljének felírása előtt tekintsük át a Navier-Stokes egyenletet.

modell Csoportos mozgás

Csoportos mozg hidrodinamikai modellje

Navier-Stoke egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozgi hidrodinamikai modellje

Navier-Stokes egyenlet

- Csoportos mozgá hidrodinamikai modellje
- Emberek csoportos mozgása

Folyadék mozgása, van belső súrlódás és külső tér.

Kollektív mozgás

Folyadék mozgása, van belső súrlódás és külső tér.

Jelölések:

- *ρ*(*r*, *t*): sűrűség
- $\vec{v}(\vec{r},t)$: sebességvektor
- I: egységmátrix
- izotrop anyagban a $\sigma_{i,j}(\vec{r}, t)$ feszültségtenzor:

$$\sigma_{i,j} = \begin{pmatrix} -p & \tau_{x,y} & \tau_{x,z} \\ \tau_{y,x} & -p & \tau_{y,z} \\ \tau_{z,x} & \tau_{z,y} & -p \end{pmatrix} = -p\mathbf{I} + \mathbf{T}$$

• $p(\vec{r}, t)$: nyomás

Megfigyeléseł

Magneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model

Hidrodinamika modell

Csoportos mozg hidrodinamikai modellje

Navier-Stokes egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása

Kollektív mozgás

Folyadék mozgása, van belső súrlódás és külső tér.

Jelölések:

- *ρ*(*r*, *t*): sűrűség
- $\vec{v}(\vec{r},t)$: sebességvektor
- I: egységmátrix
- izotrop anyagban a $\sigma_{i,j}(\vec{r}, t)$ feszültségtenzor:

$$\sigma_{i,j} = \begin{pmatrix} -p & \tau_{x,y} & \tau_{x,z} \\ \tau_{y,x} & -p & \tau_{y,z} \\ \tau_{z,x} & \tau_{z,y} & -p \end{pmatrix} = -p\mathbf{I} + \mathbf{T}$$

• $p(\vec{r}, t)$: nyomás

Anyagmegmaradási egyenlet:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} (\rho \vec{v}) = 0$$

Megfigyelése

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozg hidrodinamikai modellje

Navier-Stokes egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása

Kollektív mozgás

Navier-Stokes equenlet

Folyadék mozgása, van belső súrlódás és külső tér.

Jelölések:

- *ρ*(*r*, *t*): sűrűség
- $\vec{v}(\vec{r},t)$: sebességvektor
- I: egységmátrix
- izotrop anyagban a $\sigma_{i,j}(\vec{r}, t)$ feszültségtenzor:

$$\sigma_{i,j} = \begin{pmatrix} -p & \tau_{x,y} & \tau_{x,z} \\ \tau_{y,x} & -p & \tau_{y,z} \\ \tau_{z,x} & \tau_{z,y} & -p \end{pmatrix} = -p\mathbf{I} + \mathbf{T}$$

• $p(\vec{r}, t)$: nyomás

Anyagmegmaradási egyenlet:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} (\rho \vec{v}) = 0$$

Navier-Stokes egyenlet:

ara

$$\frac{\partial(\rho \vec{v})}{\partial t} + \vec{v} \otimes \vec{\nabla}(\rho \vec{v}) = \underbrace{\vec{\nabla}(-\rho \mathbf{I})}_{\text{nyomas jaruleka}} + \underbrace{\vec{\nabla} \mathbf{T}}_{\text{nyiro eroke}} + \underbrace{\rho \vec{g}}_{\text{gravitacioe}}$$

Ā

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgá hidrodinamikai modellje
- Emberek csoportos mozgása

Összenyomhatatlan ($\rho = \text{const.}$) és súlytalan (g = 0) folyadék esetén:

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamikai modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgá hidrodinamikai modellje
- Emberek csoportos mozgása

Összenyomhatatlan ($\rho = \text{const.}$) és súlytalan (g = 0) folyadék esetén:

az anyagmegmaradási egyenlet: $\vec{\nabla} \vec{\nu} = 0$

Kollektív mozgás

Megfigyelések

Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model

Hidrodinamika modell

Csoportos mozg hidrodinamikai modellje

Navier-Stokes egyenlet

Csoportos mozgá: hidrodinamikai modellje

Emberek csoportos mozgása

Összenyomhatatlan ($\rho = \text{const.}$) és súlytalan (g = 0) folyadék esetén:

ρ

az anyagmegmaradási egyenlet: $\vec{\nabla} \vec{\nu} = 0$

a Navier-Stokes egyenlet:

$$\left(\frac{\partial}{\partial t} + \vec{v} \otimes \vec{\nabla}\right) \vec{v} = -$$

$$-p) + \underbrace{\nu \Delta \vec{v}}$$

nvomas jaruleka

egyutt mozgo derivalas

Kollektív mozgás

Megfigyelések

Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model

Hidrodinamika modell

Csoportos mozg hidrodinamikai modellje

Navier-Stokes egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása (1) A kontinuitási egyenlet marad. (2) Legyen a sűrűség változása kicsi: a mozgásegyenletben a sűrűség deriváltjai elhanyagolhatóak.

Kollektív mozgás

Megfigyelések

Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model

Hidrodinamika modell

Csoportos mozg hidrodinamikai modellje

Navier-Stokes egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása (1) A kontinuitási egyenlet marad. (2) Legyen a sűrűség változása kicsi: a mozgásegyenletben a sűrűség deriváltjai elhanyagolhatóak.

Írjuk be a Navier-Stokes egyenletbe azt, hogy a folyadék egy pontja

- a sebességének a nagyságát egy rögzített v₀ értékhez kívánja igazítani
- a sebességének az irányát explicit módon a körülötte lévő kis ε sugarú környezet (vektori) átlag sebességéhez igazítja τ karakterisztikus idővel

Kollektív mozgás

Megfigyelések

Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model

Hidrodinamika modell

Csoportos mozg hidrodinamikai modellje

Navier-Stoke egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása (1) A kontinuitási egyenlet marad. (2) Legyen a sűrűség változása kicsi: a mozgásegyenletben a sűrűség deriváltjai elhanyagolhatóak.

Írjuk be a Navier-Stokes egyenletbe azt, hogy a folyadék egy pontja

- a sebességének a nagyságát egy rögzített v₀ értékhez kívánja igazítani
- a sebességének az irányát explicit módon a körülötte lévő kis ε sugarú környezet (vektori) átlag sebességéhez igazítja τ karakterisztikus idővel

$$\dot{\rho} = \vec{\nabla}(\rho\vec{v})$$

$$\dot{\nu} + (\vec{v} \otimes \vec{\nabla})\vec{v} = \underbrace{\vec{F}(\vec{v}, v_0)}_{\text{hajtoero}} - \frac{1}{\tau} \left(\underbrace{\langle\vec{v}\rangle_{\varepsilon}}_{\text{helyi atlag}} - \vec{v}\right) - \frac{1}{\rho} \vec{\nabla}\rho + \nu \vec{\nabla}^2 \vec{v}$$

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell

Csoportos mozg hidrodinamikai modellje

Navier-Stoke egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása (1) A kontinuitási egyenlet marad. (2) Legyen a sűrűség változása kicsi: a mozgásegyenletben a sűrűség deriváltjai elhanyagolhatóak.

Írjuk be a Navier-Stokes egyenletbe azt, hogy a folyadék egy pontja

- a sebességének a nagyságát egy rögzített v₀ értékhez kívánja igazítani
- a sebességének az irányát explicit módon a körülötte lévő kis ε sugarú környezet (vektori) átlag sebességéhez igazítja τ karakterisztikus idővel

$$\dot{\rho} = \vec{\nabla}(\rho\vec{v})$$

$$\dot{\vec{v}} + (\vec{v} \otimes \vec{\nabla})\vec{v} = \underbrace{\vec{F}(\vec{v}, v_0)}_{\text{hajtoero}} - \frac{1}{\tau} \left(\underbrace{\langle \vec{v} \rangle_{\varepsilon}}_{\text{helyi atlag}} - \vec{v} \right) - \frac{1}{\rho} \vec{\nabla} \rho + \nu \vec{\nabla}^2 \vec{v}$$

A rendező tagban lévő helyi átlag kifejezhető deriváltakkal.

A hajtóerő legyen $\vec{F}(\vec{v}, v_0) = \frac{1}{\tau^*} \left(\frac{\vec{v}}{|\vec{v}|} v_0 - \vec{v} \right).$

Csoportos mozgás hidrodinamikai modellje

Kollektív mozgás

Megfigyelések

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje
- Emberek csoportos mozgása

A mozgásegyenletből átalakításokkal:

Csoportos mozgás hidrodinamikai modellje Eredmények

Kollektív mozgás

A mozgásegyenletből átalakításokkal:

$$\left\langle \vec{v} \right\rangle - \vec{v} = \mathbf{C} \left[\vec{\nabla}^2 \vec{v} + 2 \frac{(\vec{\nabla} \vec{v})(\vec{\nabla} \rho)}{\rho} \right]$$

wegingyelesek

- Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model
- Hidrodinamika modell
- Csoportos mozg hidrodinamikai modellje
- Navier-Stokes egyenlet
- Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása

Csoportos mozgás hidrodinamikai modellje

Kollektív mozgás

Meafiavelések

Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model

Hidrodinamika modell

Csoportos mozg hidrodinamikai modellje

Navier-Stoke egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása

A mozgásegyenletből átalakításokkal:

$$\langle \vec{v} \rangle - \vec{v} = \mathbf{C} \left[\vec{\nabla}^2 \vec{v} + 2 \frac{(\vec{\nabla} \vec{v})(\vec{\nabla} \rho)}{\rho} \right]$$

Numerikus integrálással kapott irodalmi eredmények:

- Kis zárt tartományon belül 1 örvény van. A zárt határfeltétel miatt nem lehet stacionárius megoldás az, hogy mindenhol azonos irányban mozog a folyadék
- Nagy tartományon: sok nagy méretű örvény, de lokálisan rendezett. Pl baktériumtelepeknél lehet látni ilyen mozgást.

Emberek csoportos mozgása

Kollektív mozgás

Megfigyelések

Mágneses modell Ferromágneses állapot Mermin-Wagner tétel Scalar Noise Model

Hidrodinamika modell

Csoportos moz hidrodinamikai modellje

Navier-Stokes egyenlet

Csoportos mozgás hidrodinamikai modellje

Emberek csoportos mozgása

Honlap: http://angel.elte.hu/panic

Mozgásegyenlet: a Helbing et al (2000) cikk (1)-es egyenlete.

Kölcsönhatások: (2)-es és (3)-as egyenlet.

Főbb eredmények:

- Menekülési "erősség" növelésével csökkenő hatékonyság.
- Terület csökkentésével hatékonyság nő.
- Széles körben használt, térben és időben folytonos módszer.

Számítógépes szimulációkat mutató videók a "Simulations" linkre kattintva.