
STATISTICAL PHYSICS OF BIOLOGICAL SYSTEMS

(BIOLÓGIAI RENDSZEREK STATISZTIKUS FIZIKÁJA:

- Skálázás és fluktuációk az élővilágban

- Kollektiv viselkedés)

We shall consider systems with:

- many similar biological ”units”

- in the presence of ”noise”

We shall look for collective behaviour (with scaling and fluctuations):

- tansitions in global parameters

- Types: pattern formation, group motion, motion due to fluctuations, network forma-
tion, synchronization

Theoretical biology as such

Models, simulations, understanding

(versus equations with their analytical solutions)
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Are fluctuations an important, inherent ingredient of life? What is their origin and
impact?

Example. Animal: i) similar/different outlook, reactions, etc, ii) regular heartbeat with
randomness, iii) random series of electric signals, iv) similar/different behaviour on the
cells level, etc.

The distribution of fluctuations, sizes, distances, etc frequently follow a power law
(scale).

In short, if a system is made of many interacting units, specific statistical features
involving fluctuations and scaling emerge.

I)

Microscopic objects are subject to the so called thermal fluctuations. It is a fundamen-
tal feature of all systems that if they have a well defined temperature T , than each
microscopic particle (atom or molecule) in them has in average an amount of kinetic
energy 1

2kT .

II)

When many similar, but not necessarily microscopic objects (biological or non-living)
are present in a system there are further reasons to consider the random aspect of the
behaviour (many deterministically interacting particles − > can be looked as random).

III)

Non-linearities are known to lead to a very complex behaviour which – especially in the
presence of thermal fluctuations – can be considered as random.

Fluctuations

Noise versus fluctuations

Typically, noise is not correlated.

c(r, t) = 〈F (r, t)F (r′, t′)〉 − 〈F (r, t)〉〈F (r, t)〉 = Cδ(r− r′, t− t′)

where the δ function is equal to zero for any non-zero values of its arguments and
C is some constant. The averaging (denoted by 〈...〉 is made over all values of the
arguments.

Fluctuations can be more complex than just white noise.

Noise and fluctuations play a central role in ordering and microscopic transport phe-
nomena.

Scaling
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F (x) scales F ′ = F (Ax) = g(A)F (x). For more arguments, analogously. This is trivially
so for power law, but is not, as a rule, true for other functions. For example, F = x2

scales because F ′ = F (Ax) = A2x2 = A2F (x), while F = log(x + B) does not scale
since F ′ = F (Ax + B) = log(Ax + B) cannot be reduced.

In particular, during second order phase transitions the so called ”critical state” (or
critical phenomena) can be observed with a (power law) dependence of the relevant
quantities on their parameters. A power law dependence of the quantity n(s) (e.g.,
the number of schools containing s fish) is of the following form n(s) ∼ s−τ , where ∼
expresses proportionality, and τ is some exponent. The power law dependence is very
special.

Why are such states called critical? (sensitivity)

The important point is that scaling typically involves universality

Why does scaling occur during continuous transitions?

Gradual change from one state into another one without imposed symmetry breaking
(left to right, checkerboard, scaling).
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Role of models

particles

clusters or aggregates, lattice.

FRACTAL GEOMETRY

For such an object it can be shown that the number of particles in a circle of radius R

scales as

N(R) ∼ RD, (1)

where D < d is a non-integer number called the fractal dimension. Clusters having a
non-trivial D are typically self-similar.

Obviously, the volume of a fractal (or any object), V (l), can be measured by covering
it with d dimensional balls of radius l. Then the expression

V (l) = N(l)ld (2)

gives an estimate of the volume, where N(l) is the number of balls needed to cover the
object completely and l is much smaller than the linear size L of the whole structure.

Box counting versus sandbox

Definition for a biological fractal is the requirement that a power law scaling of N(l)
has to hold over at least two orders of magnitude.

Definitions

The fact that an object is a mathematical fractal then means that N(l) diverges as
l → 0 or L →∞, respectively, according to a non-integer exponent.

Correspondingly, for fractals having a finite size and infinitely small ramifications we
have

N(l) ∼ l−D (3)

with

D = lim
l→0

ln N(l)

ln(1/l)
, (4)

while

N(L) ∼ LD (5)

and

D = lim
L→∞

ln N(L)

ln(L)
. (6)
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for the growing case, where l = 1.

Now we are in the position to calculate the dimension of the objects.

N(L) = 5k with L = 3k, (7)

where k is the number of iterations completed. D = ln 5/ ln 3 = 1.465...

Useful rules

a) projection of a fractal. Dp = D. For D ≥ ds the projection fills the surface,
Dp = ds.

b) The union of two fractal sets A and B with DA > DB has the dimension D = DA.

c) The fractal dimension of the intersection of two fractals with DA and DB is given
by

DA∩B = DA + DB − d

. The density of A and B particles is respectively proportional to LDA/Ld and
LDB/Ld. The number of overlapping sites N ∼ LDA∩B is proportional to these
densities and to the volume of the box which leads to the above given relation.

Deterministic versus stochastic self-similarity.

For stochastic factals it is more effective to calculate the so called density-density or
pair correlation function

c(~r) =
1

V

∑

~r′
ρ(~r +~r′) ρ(~r′) (8)

ρ is the local density, i.e., ρ(~r) = 1 if the point ~r belongs to the object, otherwise it is
equal to zero. Ordinary fractals are typically isotropic so that c(~r) = c(r).

An object is non-trivially scale invariant if

c(br) ∼ b−αc(r) (9)

with α a non-integer number larger than zero and less than d. the only function which
satisfies is

c(r) ∼ r−α (10)

The number of particles N(L) within a sphere of radius L from their density distribution

N(L) ∼
∫ L

0
c(r)ddr ∼ Ld−α, (11)
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D = d− α (12)

Self-similar and self-affine fractals

Random walks. Trace of a walker is isotropic, self-similar. Mean squared distance
R2 = 〈R2(t)〉. R2 ∼ t independently of d. This expression is equivalent to

N(R) ∼ R2 (13)

for random walks D = 2 < d if d > 2.

Fractals invariant under anisotropic rescaling are called self-affine

Single-valued, nowhere-differentiable functions. If such a function F (x) has the property

F (x) ' b−HF (bx) (14)

it is self-affine, where 1 > H > 0 is some exponent.

A definition of self-affinity equivalent to this is given by the expression for the height
correlation function c(∆x)

c(∆x) = 〈[F (x + ∆x)− F (x)]2〉 ∼ ∆x2H (15)

A deterministic self-affine model.

A random function is, for example, the plot of the distances X(t) measured from the
origin as a function of time t, of a Brownian particle diffusing in one dimension.

〈X2
H(t)〉 ∼ t2H , with H = 1/2

.

Methods for determining fractal dimensions

Evaluation of numerical data

In general, such discrete sets of numbers are obtained by two main methods: i) by digi-
tizing pictures ii) by numerical procedures used for the simulation of various biological
structures.

Determine the number of particles N(R) = RD within a region of linear size R and
obtain D from the slopes of the plots ln N(R) versus ln R.

The roughness exponent H corresponding to self-affine fractals is usually determined
from the definition. An alternative method is to investigate the scaling of the standard
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deviation σ(l) = [〈F 2(x)〉x − 〈F (x)〉2x]1/2 of the self-affine function F

〈σ(l)〉 ∼ lH , (16)

where the left hand side is the average of the standard deviation of the function F

calculated for regions of linear size l.

Even better: Detrended fluctuations analysis

SCALING IN CONTINUOUS PHASE TRANSITIONS

Example: a magnetic material at temperature T and magnetic field H. If this system
shows a paramagnetic–ferromagnetic second order transition at Tc (for H = 0) then it
is convenient to use the reduced temperature

t =
T − Tc

Tc
(17)

as control parameter instead of T .

The order parameter in this case is the zero-field (H = 0) magnetisation M0 since it is
zero if T > Tc, and non-zero below Tc. In the vicinity of Tc it behaves as

M0(t) ∼ |t|β, (18)

where β is the critical exponent. Similarly, for the specific heat (which gives the change
of energy for a small change of temperature)

CH=0(t) ∼ |t|−α, (19)

and the susceptibility (which is the sensitivity of the magnetisation with respect to the
external field H) scales as

χ(T ) ∼ |t|−γ. (20)

Describe a response of the system to some external perturbation. Close to Tc they
diverge showing that there the system is extremely sensitive: it is in a critical state.

The typical size of fluid ”droplets” or the so called correlation length, also scales

ξ ∼ t−ν, (21)

at the critical point there will be no typical length scale.

Can be derived from mean-field approximation.
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PERCOLATION

Prototype of inhomogeneous media or random clusters in space

- Random occupation in space (lattice or off lattice). ri is a number randomly selected
between 0 and 1 for site i. If r < p fill the site.

- control parameter: p (fraction of sites occupied)

- percolation transition at pc. Transition is sharp, continuous. Scaling of the order
parameter, P (p) which is the relative weight of the ”infinite” or percolating cluster

P (p) ∼ (p− pc)
β

pc, typically > 0 is called percolation threshold. Correlation length of the infinite cluster
(or the average radius of clusters) close to pc

ξ ∼ |p− pc|−νp

with the pair correlation function c(r) ∼ r−α (see eq. (10)) up to ξ.

At pc the percolating cluster is a fractal
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Self-organisation

Systems slowly driven to a stationary state. No tuning. Avalanche-like series of changes
close to a (critical, balanced) state. Self-organised criticality (SOC)

SOC model

Sandpile as an example. Critical slope, avalanches.

Model. Discrete variable h(r) on a d dimensional lattice. Here d = 2, square lattice
case. The rules (for the ”slope”)

Step 1 Choose a site (x, y) at random;

Step 2 Add one “grain” to that site: h(x, y) ← h(x, y) + 1;

Step 3 If h(x, y) ≤ 4 then continue on Step 1.

Step 4 The pile is too “steep” locally so sand is redistributed among the nearest
neighbours:

h(x, y) ← h(x, y)− 4

and

h(x′, y′) ← h(x′, y′) + 1,

where (x′, y′) denotes the nearest neighbours of site (x, y).

Step 5 The previous step is repeated until no site with h > 4 is found and then Step
1 is performed again.

The size of an avalanche is the number of times Step 4 was executed after adding a
single grain.

P (≥ s) ∼ s−τ , (22)

where P (≥ s) is number of avalanches larger that s and τ is around 0.25.

Applications in biology

Extinction events during evolution. Extinction rate shows peaks corresponding to major
extinction events (avalanches).

SOC model of evolution
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Fitness of a genotype or phenotype is its reproductive contribution to subsequent gen-
erations relative to the other (geno or pheno) types. (Another def: Fitness of a species
represents its ability to survive environmental changes as a function of its genetic code).

Mutation and selection. Simple models lead to smoothly growing fitness.

Ecosystem of N species, fitness of the ith species (i = 1, 2, . . . , N) is a real number

0 ≤ Bi ≤ 1. (23)

Species with low fitness has larger selection pressure

1. We choose the species with the smallest fitness

Bj = min
i=1,...,N

Bi. (24)

2. mutation

Bj = RND, (25)

where RND is equally distributed in [0,1].

3. Finally,

Bj+1 = RND, and Bj−1 = RND. (26)

Leads to a non-trivial stable distribution with a threshold Bc ∼ 0.67.

Activity of a the system, of a site, correlations (power law)

The model exhibits punctuated equilibrium: avalanche size (avalanches with B less than
the critical B) (P (≥ s) ∼ s−τ , where τ ' 1.07

Mean-field version (with K randomly chosen sites for update) can be solved, gives scaling
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SOC in lung inflation

The bronchial airways have a fractal tree–like structure, 35 generations, airways closure
for the last 10-14 generations

Emptied dog lung inflated by a constant flow and the terminal airway resistance (Rt)
measured. Rt decreases in power law distributed discrete jumps.

The airways open in bursts.

Model

t = 0, airways are closed. Slowly growing external PE. Opening threshold pressure Pij,
uniformly distributed on [0, 1] (i - generation, j - column number).

Opening until no Pij < PE

Size distribution of first avalanches n(s), s is the number of airways opening

We fix P00 = p and open all airways with thresholds less than p. Average over realiza-
tions. This is percolation on a Caley tree. Can be solved exactly, leading to

n(s) ∼ s−τf(sσ|p− pc|)
where τ=3/2, σ=1/2, pc=1/2

f(u)=const for small u and f(u À 1) → 0.

Average over randomly chosen P00 = p: Integrate over p.

with z = sσ|p− pc| and dp = s−σ dz we get

n(s) ∼ s−τ−σ

.
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BACTERIAL COLONIES

Collective behaviour of bacteria (colony, motion)

Microscopic versus macroscopic levels, self-organization

Bacteria in colonies

Experimental conditions

(agar, humidity, temperature, chemotaxis)

Microbiological background

Proliferation.

Motility.

Procaryotes move in aquatic environments by rotating their flagella, which are rather
rigid membrane-bound helical protein polymers.

Run and tumble, chemotaxis

gliding

Morphology diagram

Variations in temperature, humidity, chemical composition of the substrate, etc. can
give rise to different morphologies.

Morphology diagram of the strain Bacillus subtilis OG-01 as a function of peptone and
agar concentration. The dashed line in indicates the boundary of the active movement
of bacterial cells inside the colonies. The morphologies are classified as follows: fractal
(A), compact with rough boundary (B), branching with periodic growth phases (C),
compact with diffuse boundary (D) and dense branching (E).

Statistical measures of morphology

Compact morphology

Spreading of bacteria: The Fisher-Kolmogorov equation

Simplest bacterial spreading, nutrients are abundant and the substrate is wet, cells
proliferate and migrate freely (randomly diffuse). Bacterial density, %

Fisher-Kolmogorov equation

∂t% = D%∇2% + f(%). (27)

diffusion coefficient D%, mean squared displacement d2(t)

d2(t) = 2D%t, (28)
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bacterial multiplication is in f . f(%) = r(c)% for small %, where r depends on the local
nutrient concentration c. r ∼ c holds for small values of c. Max. cell density %∗,
because of accumulation of toxic metabolites. Units such that %∗ = 1. Growth rate
must decrease as % → 1, f(1) = 0. Logistic function f(%) = r%(1− %) is used.

Numerical integration results in a growing domain, with v ≈ v∗ where

v∗ = 2
√

rD% (29)

to calculate v, the expanding domain of %(x, t) ∼ 1 is written in a moving frame of
reference as %̃(u, t) = %(x, t) where u = x − vt and without loss of generality v > 0,
%(−∞) = 1 and %(∞) = 0 is assumed one obtains

∂t%̃ = D%%̃
′′ + v%̃′ + f(%̃), (30)

Eq. (30) has a stationary solution for any value of v ≥ v∗, i.e. v can not be derived by
the stationarity condition imposed on %̃. “Velocity selection problem”.

Experiments lead to agreement

Self-affine interface roughening

Eden model: assembly of “cells” is grown on a lattice. Rules: In each step of the process
one of the lattice sites next to the “populated” areas is chosen randomly and occupied.

Leads to self-affine surface.

The Kardar-Parisi-Zhang (KPZ) equation.

∂th = ν∂2
xh +

λ

2
(∂xh)2 + v + η, (31)

h(x, t) is the position of the surface. The surface tension term, ν∂2
xh, tends to smoothen

the interface

The nonlinear λ(∂xh)2 + v terms reflects the isotropy of the growth. If the displacement
is perpendicular to the interface,

∆h ≈ v∆t
√

1 + tg2φ ≈ v∆t +
v∆t

2
(∂xh)2 (32)

holds for small slopes.

Finally, η(x, t) represents some sort of noise.

Cη(x, t) wite noise.

The H = 1/2 result (Eden, KPZ) is not compatible with the experimental findings.
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Quenched noise.

Assumption of an uncorrelated noise is not realistic. In fact, η is a function of the
position of the interface

η(x, t) = 2Dη̃(x, h(x, t)) (33)

with

Cη̃(x, y) = ∆(x)∆(y), (34)

where ∆(u) ∼ 1 holds for some finite interval of u around zero.

The parameters λ, ν and v can be transformed out, i.e., it is sufficient to investigate
the λ = ν = v = 1 case

∂th = ∂2
xh +

√
1 + (∂xh)2 + η, (35)

D in (33), determines the average magnitude of the noise as
√

Cη̃(0, 0) =
√

2D.

If D > D∗ ∼ 1 then the interface encounters points where it becomes pinned. If the
density of such pinning sites is high enough then eventually the propagation of the
whole surface can be blocked. Due to the single-valuedness of h, the cluster is directed.

Such a directed percolation cluster is characterised by two correlation lengths, being
parallel (ξ‖) and perpendicular (ξ⊥) to the interface. At threshold density of the
pinning sites pc as

ξ‖ ∼ |p− pc|−ν‖, ξ⊥ ∼ |p− pc|−ν⊥ (36)

with

ν‖ = 1.733 and ν⊥ = 1.097. (37)

Complete blocking appears when ξ‖ becomes equal to the system size L. The width w

of such a blocked surface is in the order of ξ⊥, hence

LH ∼ w ≈ ξ⊥ ∼ |p− pc|−ν⊥ ∼ ξ
ν⊥/ν‖
‖ ≈ Lν⊥/ν‖, (38)

Thus,

H =
ν⊥
ν‖

= 0.633 (39)

in accord with the numerical simulation of Eq. (35) with D À D∗.

In the D ¿ D∗ ∼ 1 case (standard) KPZ equation can be applied resulting in interfaces
with H = 1/2.

In the moving, but noise dominated regime the interface consists of both blocked and
freely moving segments resulting in a higher roughness exponent.
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Branching morphology

Mullins-Sekerka instability in diffusion-limited systems

Growth determined by the field u (e.g., the concentration) as

vn = ~n∇u, (40)

where vn and ~n is the dimensionless velocity and the normal vector of the surface.

∂tu = D∇2u (41)

with boundary conditions u(x →∞) = u∞ = const and u(x) = uΓ(x) at the interface.

uΓ = d0κ, (42)

where d0 is proportional to the capillary tension and κ is the curvature of the interface.

If the growth is slow (Laplace equation)

0 = ∇2u. (43)

To show that the interface is unstable we consider a growing circle of radius R a boundary
condition (42) and u(R∞) = 1, where R∞ À R. The field u(r, φ) = u0(r) satisfies the
Laplace equation for slow growth which reads in polar coordinates as

u′′0 +
u′0
r

= 0 (44)

yielding

u0 = 1 + B ln
r

R∞
, with B =

d0/R− 1

ln R/R∞
> 0, (45)

and the velocity of the interface is

dR

dt
≡ V (R) = u′0(R). (46)

If the surface is perturbed as R(t) = R0(t) + R1(t, φ), then u changes. We solve the
problem approximately by, first, solving the Laplace equation and then insert this
solution into (42) to obtain R1.

We write the perturbation in the form of

R1(φ, t) = R̂1(t) cos mφ, (47)

u(r, φ, t) = u0(r, t) + ûm(t)um(r, φ) (48)

with R̂1 ¿ R0, ûm ¿ 1 and um = r−m cos mφ. Both u0 and um is a solution of (43)
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and with this particular form the boundary condition (42) can be also satisfied. The
curvature κ in polar coordinates

κ =
R2 + 2R′2 −RR′′

(R2 + R′2)3/2 ≈ 1

R0
− R′′

1

R2
0
, (49)

where prime denotes derivation in respect to φ. Thus in a linear approximation (42)
reads as

d0

(
1

R0
+

R̂1m
2 cos mφ

R2
0

)
= u(R(φ), φ), (50)

where

u(R(φ), φ) ≈ u(R0, φ) + (∂ru)(R0, φ)R̂1 cos mφ (51)

resulting in the (
m2d0

R2
0
− V (R0)

)
R̂1 =

ûm

Rm
0

(52)

relation between R̂1 and ûm. Substituting (52) back into (40) and keeping the linear
terms of R̂1 one finds

dR̂1

dt
= Λm(R0)R̂1 (53)

with

Λm(R0) =
m

R0
V (R0) + V ′(R0)− m3d0

R3
0

. (54)

Λm is the amplification rate of the perturbation. For Λ > 0 the perturbation grows
exponentially in time, while it dies out quickly if Λ < 0. The upper cutoff is due to
the surface tension d0. If d0 = 0 the problem is ill-posed.

Diffusion-limited aggregation

Particles released from distant points diffuse and aggreagte. DLA clusters are scale
invariant and are characterised by the fractal dimension

DDLA = 1.715. (55)

Models resolving individual bacteria

We model the individual bacteria by some idealised units, defining their behaviour
and interactions, and obtain the behaviour computer simulations. Testing against
experiments.

Modelling non-motile bacteria.
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Each particle i is characterised by its position xi and cell cycle state Ei.

i) Changes in Ei control the sporulation and division. If Ei decays below a threshold
value (0) then the particle becomes inactive (sporulates). Above Ei = 1, the
model bacterium divides, and both of the daughter cells receive an initial value
of 0 < E∗ < 1. Changes in Ei are coupled to the nutrient consumption rate ωi as

dEi

dt
= κωi − ε (56)

where κ is a factor relating the maximal nutrient consumption rate with the
shortest cell cycle time, and ε is the generic “maintenance” term incorporating all
other free energy expenditures.

ii) The nutrient uptake is limited by both the local concentration c and enzymatic
rates. It is approximated by

%(xi)ωi = min [ωmax%(xi), ω0c(xi)] . (57)

where % is the local cell density, ωmax is the maximal uptake rate of the cells, and
ω0c is the maximal diffusive transport from the substrate to the cells.

iii) Changes in c are given by (diffusion, sinks)

dc

dt
= Dc∇2c−

∑
i

ωiδ(x− xi). (58)

κ = 1 and ωmax = 1 can be assumed.

Gives reasonable agreement with some experiments.

Modelling motile bacteria.

We keep the rules i – iii and include new ones describing the motion.

iv) The active particles move randomly within a boundary described by

dxi

dt
= v0~e, (59)

where ~e denotes a random unit vector.

v) collisions of the particles with the boundary are counted and when a threshold
value (Nc) is reached the new neighbouring cell can be occupied (slime, surfac-
tant).
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The resulting morphology diagram shows agreement with experiments. To explain
further features: repulsive chemotaxis.

Sporulated bacteria emit diffusive chemicals acting as chemorepellents, i.e., the random
swimming becomes biased: the cells move less toward the chemical gradient.

Chiral and rotating colonies

When bacterial motion is strongly influenced by cell-cell interactions, new phenomena
occur.

Chiral patterns

- for a distinct phenotype of the same strain (longer).

- their orientation/motion is parallel to each other

Orientation φi is calculated. φi is changed according to the intrinsic chirality of the
motion and the alignment to a local orientation field Φ

φi(t + ∆t) = P (φi(t), Φ(xi(t))) + ϕ + ξi(t), (60)

where ϕ represents the intrinsic chirality of the motion of the bacteria, ξ is noise and
the interaction with the local orientation field is described by the projector function
P as

P (α, β) = α + (β − α)modπ

. Φ represents the tracks in the agarose gel, its initial value was chosen to be the
orientation of the first walker entering that field.
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SYNCRONIZATION

The spontaneous phase ordering (”harmonization”) of many, periodically changing units

Empirical observations

Neural networks (pacemaker in the heart) singing and life cicle of cicada, fire flies,
walking, breathing, synchronized clapping, menstrual cycle, etc

Common: oscillators coupled through non-linear interaction

Two types of signals:

I) Delta function-like ”firing” II) continuous

two types of mechanisms

Kuramoto-model (mean field, continuous)

Interaction free oscillator (rotator):

dφ

dt
= ω, (61)

where φ is the phase, in the sense mod 2π, and ω is he so called natural frequency of
the oscillator. N interacting oscillators:

dφi

dt
= ωi +

N−1∑
j=0

Γij(φj − φi), i = 0, 1, . . . , N − 1. (62)

Here the Γij(φ) interaction is a 2π-periodic function. A In the simplest case

Γij(φ) =
K

N
sin(φ), i, j = 0, 1, . . . , N − 1. (63)

leads to minimizing the phase difference between two oscillators, if K > 0. Mean field.

dφi

dt
= ωi +

K

N

N−1∑
j=0

sin(φj − φi) i, j = 0, 1, . . . , N − 1. (64)

ωi are from a given g(ω) distribution. We assume, that g(ω) is such that

g(ω) =
1

N

N−1∑

i=0

δ(ωi − ω) (65)

where N(ω0, σ) Gaussian, with expectation value ω0, and width σ. If g(ω) = δ(ω−ω0),
than the Kuramoto model is equivalent to the ferromagnetic XY model.
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Order parameter

Let us use the transformation

ψi = φi − ω0t, ωi ← ωi − ω0 (66)

The Kuramoto-model is invariant under this transformation

dψi

dt
= ωi +

K

N

N−1∑
j=0

sin(ψj − ψi). (67)

The states of the above equations can be described by the order parameter

z(t) = Z(t)eiθ(t) =
1

N

N−1∑

j=0

eiψj(t) (68)

Here z(t) or Z(t) are the complex or real order parameter, while θ(t) is the average
phase.

Clearly, Z = |z|.
Z ' 1, if ψ are almost equal, and Z ' 0, if ψ are random.

After rearranging it can be seen that

dψi

dt
= ωi + KZ sin(θ − ψi). (69)

Formally looks like a non-interacting system

From rotational symmetry z behaves as a non-changing rotation:

z(t) = Zei(Ωt+θ0), (70)

where Z, Ω and θ0 are constants. Like a single big rotator.

Kuramoto has shown the existence of a bifurcation:

for K < Kc the order parameter Z = 0. However, for small ε = (K − Kc)/Kc the
solution is not zero:

z =
√

ε/βeiθ, (71)

where θ is some constant. Kc,G is the critical coupling strength:

Kc,G =

√
8

π
σ. (72)
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Noisy oscillators

Identical oscillators plus independent white noise for each. Phases may become inde-
pendent. Coupled Langevin equations with noisy forces ξi(t). With ψi = φi − ω0t we
obtain (each of the natural frequencies is equal to ω0)

dψi

dt
=

K

N

N−1∑
j=0

sin(ψj − ψi) + ξi(t)

< ξi(t) >t= 0 < ξi(t)ξj(t
′) >t= 2σ2δ(t− t′)δij

Synchronization transition for an intermediate K/σ2. As before we use the order pa-
rameter (or mean field):

Z = X + iY =
1

N

∑
i

eiψi

from here (after some algebra)

dψi

dt
= K(−X sin ψi + Y cos ψi) + ξi(t)

Goal is to write a self-consistent equation for the distribution of phases. Z is slow
compared to noise (and then the above is like a Langevin eq. for an individual oscillator.
The corresponding Fokker-Planck equation for the probability density of the phases

∂P (ψ, t)

dt
= K

∂

∂ψ
[(X sin ψ − Y cos ψ)P ] + σ2∂

2P

∂ψ2

For N →∞
Z =

∫ 2π

0
dψP (ψ, t)eiψ.

To analize this non-linear system, we expand the density into Fourier series

P (ψ, t) =
1

2π

∑

l

Pl(t)e
ilψ

Note that Z = X = iY = P ∗
1 = P−1 is equal to the first mode, and because of

normalization P0 = 1. Substituting the expansion into the F-P equation and separating
the Fourier harmonics leads to a system of ordinary diff. equations
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dPl

dt
= −σ2l2Pl + lK(Pl−1P1 − Pl+1P

∗
1 )/2

The first three equations

Ṗ1 =
K

2
(P1 − P2P

∗
1 )− σ2P1,

Ṗ2 = K(P 2
1 − P3P

∗
1 )− 4σ2P2,

Ṗ3 =
3K

2
(P2P1 − P4P

∗
1 )− 9σ2P3,

P0 = 1 and all other Pi equal to zero (homogeneous distribution) is a solution. Lin-
earizing around this the only unstable mode is the first one. It is stable if K < 2σ2

and unstable if K > 2σ2. This is the critical coupling. Since around the transition
K ' 2σ2 we estimate |P2| ∼ |P1|2 and |P3| ∼ |P1|3 and Ṗ2 ' 0, P3 ' 0 (see the above
equations). If we express P2 through P1 we get

Ż = (K/2− σ2)Z − K2

8σ2 |Z|2Z

Equation for Hopf bifurcation. Stationary solution:

|Z|2 = (K − 2σ2)4σ2/K2

The order parameter grows as a square root of the distance from the critical point
(|Z| ∼ √

∆K).
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More realistic:

Interaction is distance dependent, there is no ”normalization”

Simulations on a lattice

φ̇i = ωi +
K

η

∑

j 6=i

1

rα
ij

sin(φj − φi), (73)

where rij is the distance between the i-th and j-th oscillator and η is a normalization
coefficient. Mean-field case when α = 0. When α →∞, nearest neighbour interaction
case.

K versus α. Critical α? ”Physical” is usually α = d− 1.

If α ≥ d the coupling term is bounded, for every N :
∣∣∣∣∣∣

N∑

j 6=i

1

rα
ij

sin(φj − φi)

∣∣∣∣∣∣
≤

∞∑

j 6=i

1

rα
ij

< ∞. (74)

However, for α ≤ d, in the limit of large N the coupling term may diverge depending
on ωi.

For α ≤ d synchronization is enhanced as N → ∞ for every (positive) value of the
coupling constant K.

In 1d for α / 1 the system is fully locked. Three regimes.

Similar in 2d for α / 2

Analogous to continuous phase transitions (but control parameter is now an exponent!!)

lim
N→∞

lim
K→0+

Z(α) =

{
1 if α ≤ d

0 if α > d ,
(75)

Integrate-and-fire type oscillators

Definition/model:

for a given oscillator: i) x state variable, monotonously increasing until the threshold
x = 1. ii) At this point x immediately jumps back to zero and the cycle starts
from the beginning. iii) the evolution of x: let x = f(φ), where f : [0, 1] → [0, 1]
smooth, monotonously increasing function (at this point we also assume it is convex),
i.e., df/dφ > 0 and d2f/dφ2 < 0. Here φ ∈ [0, 1] is a phase variable, such that,
dφ/dt = 1/T , where T is the period, and x = 0 ⇔ φ = 0 and x = 1 ⇔ φ = 1.
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From these it follows trivially that f(0) = 0 and f(1) = 1. Since f invertible, let
g = f−1, i.e.., g(x) = φ).

Interaction: when an oscillator ,,fires” (xi = 1), then it increases the state variable of
the other oscillators by ε or increases their x up to the threshold (if xj + ε would be
larger than 1)

xi(t) = 1 ⇒ xj(t
+) = min(1, xj(t) + ε) ∀j 6= i. (76)

Let us first consider two oscillators (here always ωi = ω = 1/Ti)

It is easy to see (also graphically) that they tend to synchronize continuously.

If it is true for two, than it is true for many.

Absorption

Definition: an avalanche is a series of firings induced by a single firing, so that all of
the firings are resulted from the intermediate effect of the previous one within the same
avalanche

There is no ”recovery” stage (an oscillator which fired in a given avalanche does not
react to the rest of the firings within the same avalanche

question of time scales

Mechanism of synchronization

Valid for any monotonously increasing mapping

If there are groups of oscillators already synchronized they ”move” with different phase
velocity!

It starts if there are at least two oscillators for which xi+1 − xi < ε

The probability of this can be estimated from a Poisson distribution of the initial states
and the result agrees with the intuitively expected one: there is such a pair of oscillators
with a probability close to 1 if 1/N < ε.
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MICROSCOPIC MECHANISMS OF BIOLOGICAL MOTION

The physics of microscopic objects

Processes involving microscopic objects (proteins) are inherently stochastic.

The motion of any object in a thermal environment can be described by the Langevin
equation :

mẍ(t) = −γẋ(t) + γ
√

2Dξ(t) + F (x, t) , (77)

where x, m, γ, and D denote the position, mass, viscous friction coefficient, and
diffusion coefficient of the object, respectively. ξ(t) is white noise.

Viscous friction and the thermal noise are not independent. Their magnitudes are
connected by the fluctuation-dissipation theorem (or Einstein relation):

D =
kBT

γ
. (78)

τrelax = m/γ - characteristic time for loosing velocity. λrelax = vm/γ - characteristic
distance. If λrelax/a ¿ 1 the damping is strong, because the particle stops on a much
shorter distance than its size a. Supposing that m is proportional to a3ρ and γ is
proportional to aη (cf. Stokes law), where ρ and η are the density and dynamic
viscosity of the medium respectively, λrelax/a becomes proportional to

R =
va

η/ρ
=

va

ν
, (79)

which is called the Reynolds number (ν = η/ρ is the kinematic viscosity).

Reynolds number for biomolecules is in the order of 10−3 (substituting actual numbers).
It means that the viscous friction can stop a protein on a distance (∼ 10−3 nm) much
shorter than the size of the atoms/molecules.

Thus, the acceleration term of the Langevin equation (77) can be neglected:

ẋ(t) = F (x, t)/γ +
√

2Dξ(t) . (80)

From this stochastic ordinary differential equation one can derive a deterministic partial
differential equation, the Fokker-Planck equation for the probability density P (x, t) of
the position of the particle:

∂tP (x, t) = −∂xJ(x, t) , (81)
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where

J(x, t) =
F (x, t)

γ
P (x, t)− kBT

γ
∂xP (x, t) (82)

is the probability current of the particle. One particle, stochastic − > many particles,
deterministic.

If the force field F (x, t) is the negative gradient of a potential: F (x, t) = −∂xV (x, t),
the probability current can be written in the form

J(x, t) = −kBT

γ
e−V (x,t)/kBT∂x

[
eV (x,t)/kBTP (x, t)

]
. (83)

because ∂[af(x)]/∂x = af(x)∂f(x)/∂x

Kramers rate and Arrhenius law

For Brownian particles wiggling in deep potential wells (compared to kBT ), rarely jump-
ing out into one of the neighbouring wells.

the escape (or jumping) rate constants, k, follow the Arrhenius law

k = ν e−∆E/kBT , (84)

where ∆E denotes the threshold energy for activation and ν is a frequency prefactor.

For deep potential well probability density near the bottom can be well approximated
by its equilibrium value

Peq(x) = P0e
−V (x)/kBT , (85)

which can be derived from Eq. (83) by setting its right-hand side to zero:

∂x

[
eV (x,t)/kBTP (x, t)

]
= 0 , (86)

eV (x,t)/kBTP (x, t) = Const , (87)

The normalisation factor is approximately

P0 =
1∫ c

b

e−V (x)/kBTdx

, (88)
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Molecular motors

The origin of biological motion: motor proteins operating at the molecular scale. Numer-
ous different families of these molecular motors have been discovered, and the newest
experimental techniques developed in recent years have allowed to study in vitro the
operation of individual motor proteins.

The motors move in discrete, unidirectional steps with step sizes in the range of a few
nanometers, and exert piconewton forces. The motors use the chemical energy stored
in adenosine triphosphate (ATP) molecules or in proton gradient as fuel and convert
it into mechanical work.

Characterisation of motor proteins

Two important kinds of filamentous structures: the microtubules, the actin filaments.
Along these polymeric filaments molecular motor proteins can move. Three different
motor protein families have been identified by now: kinesins, dyneins which move along
the microtubules, and myosins which move along the actin filaments.

Kinesin

Native kinesin is a dimeric molecule with a tail and two globular (∼9×3×3 nm) head
domains. The heads are highly conserved, and each contains an ATP and a tubulin
binding site.

– kinesin moves unidirectionally parallel to the protofilaments towards the plus end
of the microtubule;

– under an increasing load the speed of the kinesin decreases almost linearly;

– under its stall force (about 5 pN) kinesin still consumes ATP at an elevated rate;

– in the absence of ATP (in rigor state) kinesin binds to the microtubule very
strongly: it supports forces in excess of 10 pN

– the step size (∼ 8 nm) is identical with the periodicity of the protofilaments

– kinesin hydrolyses one ATP per each 8-nm step;

– occasionally kinesin takes backward steps;

– one step consists of two sequential subprocesses with

Moreover, changing a few amino acids in the neck can reverse the directionality of the
motor

Muscle contraction
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Myosin cross-bridges extending from the thick myosin filaments attach to the binding
sites of the thin actin filaments and exert force on them, inducing a relative sliding of
the actin and myosin filaments.

Rotary motors

Bacterial flagellar motor, DNA motors move unidirectionally along their polymeric
track, while they are also rotating around it.

ATP synthase: The function of the ATP synthase is to couple the synthesis of ATP
with a proton flux across the membrane down the proton gradient. binding change
mechanism

Motility assay

Optical trap uses a highly focused laser light to grab and manipulate microscopic di-
electric objects. The dielectric energy density in the object is

ρ(x) = −1

2
∆αE(x)2 , (89)

where E(x) is the electric field of the light, and ∆α is the polarisability of the object
relative to the suspending solution. Energy density is minimal in the center of the
focal region.

Fluctuation driven transport

Thermal ratchets

non-equilibrium fluctuations

Sawtooth shaped periodic potential. In his Lectures, Feynman used the “ratchet and
pawl” engine to illustrate some implications of the second law of thermodynamics.

The two basic types of nonequilibrium fluctuations are the i) fluctuating potential (or
“flashing ratchet”), where the potential is time dependent and fluctuates between two
or more different states; and the ii) fluctuating force (or “rocking ratchet”), where the
potential is static but a fluctuating external force with zero time average is applied.

The Langevin equation (80) for the motion of a particle in such systems can be written
as

γẋ = −∂xV (x, t) + F (t) + Fload + γ
√

2Dξ(t) , (90)

where V (x, t) is the periodic ratchet potential, F (t) is the fluctuating external force (if
there is any), and Fload is the load force.

Basic ratchet models
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1. Flashing

Parrondo’s game

Game A: win with p− ε, (loose with 1− p + ε)

Game B: if capital is multiple of M win with p1 − epsilon, otherwise win with p2 − ε

Two separately loosing games played together win! (e.g., for p = 1/2, p1 = 1/10 and
p2 = 3/4

2. Rocking

If an external force alternates between +F and −F , than when the force points to the
right (F (t) = +F ), the energy barrier for jumping to the right becomes smaller by
F -times λ1. In the opposite case the barrier becomes smaller but only by F -times the
shorter distance λ2.

Frequency response is very different
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Illustration of the second law of thermodynamics

v(x, t) = V (x). In the steady state, when the probability density P (x, t) and the current
J(x, t) have their stationary values Pst(x) and Jst(x), this leads to ∂xJst(x) = 0, i.e.,
the stationary current is constant in space: Jst(x) = Jst. Integrating Eq. (83) from 0
to λ

Jst
γ

kBT

∫ λ

0
eV (x)/kBTdx = −

[
eV (x)/kBTPst(x)

]λ

x=0
. (91)

The period is λ, thus, the right-hand side of this equation is zero. The integral on the
LHS is always positive,

Jst = 0 , (92)

Note that the stationary (or equilibrium) solution of the probability density is the
Boltzmann distribution:

Pst(x) =
e−V (x)/kBT

∫ λ

0
e−V (x)/kBTdx

, (93)

which follows from Eq. (83) with zero current as was discussed in the case of the
Arrhenius law.
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Realistic models

Kinesin

i) We suppose that each of the two Brownian heads moves along its own one-dimensional
periodic potential with period L = 8 nm. ii) Each period contains a deep potential
well corresponding to the binding site of the β-tubulin and the potentials everywhere
else are flat. iii) Each well has an asymmetric “V” shape reflecting the polarity of the
protofilaments iv) the heads are connected at a hinge, and a spring acts between them.
At the beginning the spring is unstrained. v) After one of the heads binds an ATP, its
hydrolysis causes a conformational change in this head; this means that the rest length
of the spring changes from zero to 8 nm right after the hydrolysis. Reaching its new
8 nm rest length another conformational change occurs in the head as a consequence
of the ADP release: the rest length of the spring changes back to zero.

We assume a constant force F applied to the hinge.

The motion of the heads can be described by two coupled Langevin equations

γẋ1 = −∂xV (x1)− F load
1 −K [x1 − x2 − l(t)] + γ

√
2Dξ1(t) ,

γẋ2 = −∂xV (x2)− F load
2 + K [x1 − x2 − l(t)] + γ

√
2Dξ2(t) ,

where x1 and x2 denote the positions of the front and back heads respectively, V (x) is
the periodic ratchet potential, K is the stiffness of the spring, F load

1 = F load
2 = F/2 are

the load forces acting on the heads, and the two thermal noise terms ξ1(t), ξ2(t) are
uncorrelated.

l(t) represents the rest length of the spring, which is not an explicit function of time, but
alternates stochastically between 0 and 8 nm as ATP is hydrolysed or ADP is released.
Depends also on x1 and x2 because ATP can be hydrolysed only in the relaxed state
of the molecule.

The parameters can be estimated including the depth Q of the potential valley.

We assume that at the beginning both heads are in the same well of the potential.
When the spring stretches the it has a large probability p+

0L = k+
0L/(k+

0L + k−0L) that
the front head jumps to the forward direction, and a backward step has only a small
probability p−0L = k−0L/(k+

0L +k−0L) where k+
0L and k−0L denote the corresponding jumping

rate constants.

The average lifetime t0L = 1/(k+
0L + k−0L) of the stressed state for larger load increases.

Completing this subprocess the second conformational change occurs: the spring is
trying to contract. Now for low load force the probabilities are: p+

L0 = k+
L0/(k

+
L0 + k−L0)

(is close to 1), while p−L0 = k−L0/(k
+
L0 + k−L0) << 1
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Since the potential wells are deep compared to kBT , the jumping rate constants can
be calculated from the Kramers rate with a potential that is the sum of the ratchet
potential, the quadratic spring potential, and the linear potential of the load force.
From the jumping rate constants one can calculate the average displacement

d = (p+
0Lp+

L0 − p−0Lp−L0)L =

(k+
0Lk+

L0 − k−0Lk−L0)[1/(k
+
0L + k−0L)][1/(k+

L0 + k−L0)]L

and duration

t = t0L + tL0 = 1/(k+
0L + k−0L) + 1/(k+

L0 + k−L0)

of a step.

At large ATP concentration dividing the average displacement by the average time
gives the average velocity v = d/t of the kinesin. At low ATP concentration the rate-
limiting factor is the diffusion of the ATP to the kinesin, thus, the average velocity
is proportional to the average displacement during one cycle multiplied by the ATP
consumption rate

ν(cATP) =
νsat cATP

Km + cATP

≈ νsat

Km
cATP ≈ const cATP , (94)

where cATP denotes here the ATP concentration, νsat = 1/t is the inverse of the cycle
time, and Km is the mechanochemical Michaelis-Menten constant.

Long-Stride model

Chemically reversible model

the direction of motion is controlled by subtle differences in the chemical mechanism of
ATP hydrolysis

In this model the direction of motion changes when the relative rates for releasing Pi

and ADP change.

Single head?

Collective effects

muscle tissues, eukaryotic cilia and flagella rigidly attached dynein molecules drive the
microtubules sliding, large group of motor proteins can carry the same cargo, motility
assays

Interesting collective effects, reversal of current, etc for the non-connected

Collective behaviour of rigidly attached particles
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Figure 1: Ratchet mechanism for chemically reversible motion. The motor concomitantly cycles through
its chemical states while catalysing ATP hydrolysis (in the vertical direction) and translocates through
space along a microtubule (horizontally). (After [?])

periodic, asymmetric potential, is turned “on” and “off” independently for each particle,
and the particles are attached to a rigid backbone (incommensurate with the period
of the potential)

the particles are uniformly distributed in the periods. Pon(x, t) and Poff(x, t) = 1 −
Pon(x, t) show which fraction of the particles is in the “on” and “off” states of the
potential respectively at time t and position x (0 ≤ x < 1). The equations of motion

∂tPon + v∂xPon = −ωon(x)Pon + ωoff(x)Poff ,

∂tPoff + v∂xPoff = +ωon(x)Pon − ωoff(x)Poff , (95)

where ωon(x) and ωoff(x) denote the transition rate constants between the to states of
the potential, and the velocity of the backbone, v, is determined by v = fext + f . The
external force fext and the average force

f = −
∫ 1

0
dx (Pon∂xVon(x) + Poff∂xVoff(x)) (96)

exerted by the potentials (which should be zero for the flat potential) are normalised
per particle.
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In the steady state, using the relation Poff = 1− Pon,

v∂xPon = −(ωon(x) + ωoff(x))Pon + ωoff(x) , (97)

fext = v +

∫ 1

0
dxPon∂x(Von(x)− Voff(x)) , (98)

allowing the determination of the external force fext(v) as a function of the velocity v

of the backbone. Eq. (97) can be solved either analytically for some potential shapes
or in a power expansion as a function of v.

Collective effects for symmetric periodic potentials

Let the perturbation ΩΘ(x) > 0 around the equilibrium state for the given parameters,
be also symmetric, and different from zero close to the minimum only. Then (it can
be shown) if Ω is smaller than Ωc, the velocity of the backbone is zero, but for Ω > Ωc

the solution bifurcates to v = ±v(Ω), while the v = 0 solution becomes unstable!

Qualitatively: For v = 0 the localised excitation ΩΘ(x) leads to a depletion of Pon(x)
near the minimum. Since Θ(x) and the potentials are spatially symmetric, the force
f vanishes. If due to perturbation v becomes > 0, the depletion of Pon(x) is being
transported to the right. Population along the positive potential slope is depleted,
while along the negative increases. The average force f pulls the backbone to the right
(and increases the effect).
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COLLECTIVE MOTION

Flocking: collective motion of self-propelled particles

Models and simulations

A generic model for two dimensional SPP systems

Particles with location ~xi and velocity ~vi pointing in direction ϑi. Magnitude of the
velocity fixed to v0, local neighbourhood is S(i)

ϑi(t + ∆t) = 〈ϑ(t)〉S(i) + ξ, (99)

where the noise ξ is a random variable with a uniform distribution in the interval
[−η/2, η/2]. Updated as

~xi(t + ∆t) = ~xi(t) + ~vi(t)∆t (100)

with |~vi| = v0 = const

Ferromagnetic analogy, but momentum is not conserved.
v → 0 (XY modell) and v →∞ (mean-field) limits.

Galilean invariance violated

Scaling properties

Results from simulations

Order parameter

φ ≡ 1

N

∣∣∣∣∣
∑

j

~vj

∣∣∣∣∣ . (101)

Simulations started from a random, disordered configuration with φ(t = 0) ≈ 0. Phase
transition:

φ(η) ∼
{

(ηc(%)−η
ηc(%) )

β
for η < ηc(%)

0 for η > ηc(%)
, (102)

where ηc(%) is the critical noise amplitude

β2d = 0.42± 0.03, (103)

found to be different from the the mean-field value 1/2.

Role of density. All of the φ(η, %) functions can be collapsed to the same function φ̃(x)
by rescaling η with ηc(%):

φ(η, %) = φ̃(η/ηc(%)), (104)

where φ̃(x) ∼ (1− x)β for x < 1, and φ̃(x) ≈ 0 for x > 1. The critical line ηc(%) in the
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η − % parameter space was found to follow

ηc(%) ∼ %κ, (105)

with κ = 0.45± 0.05.

Different from diluted ferromagnets.

3d SPP system

Generalisation of (99) for the 3d case

~vi(t + ∆t) = v0 N( N(〈~v(t)〉S(i)) + ~ξ), (106)

where N(~u) = ~u/|~u| and the noise ~ξ is uniformly distributed in a sphere of radius η.

Phase diagram: different from 3d disordered ferromagnets

1d SPP system

In 1d the dynamics is special (specific crowding effects).

A model of people, moving in a narrow channel.

N off-lattice particles along a line of length L with coordinates xi and dimensionless
velocity ui updated as

xi(t + ∆t) = xi(t) + v0ui(t)∆t, (107)

ui(t + ∆t) = G(〈u(t)〉S(i)) + ξi. (108)

〈u〉S(i) for the ith particle is calculated over the interval [xi−∆, xi+∆], where ∆ = 1/2.
The function G incorporates both the “propulsion” and “friction” preferring v0 on the
average: G(u) > u for u < 1 and G(u) < u for u > 1.

G(u) =

{
(u + 1)/2 for u > 0
(u− 1)/2 for u < 0,

(109)

Phase transition with

β1d = 0.60± 0.05, (110)

which is different from both the the mean-field value 1/2 and β2d ≈ 0.4 found in 2d.

Further variants of SPP models

Effect of boundary conditions.
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Short range “hard-core” repulsion

ϑi(t + ∆t) = Φ
(
−

∑
j 6=i

|~xj−~xi|<ε∗

N(~xj(t)− ~xi(t))
)
, (111)

Rotating phase within a circular region

Theoretical results

Continuum equations for the 1d system

We denote by n(u, x, t)dudx the number of particles moving with a velocity between
[v0u, v0(u + du)] at time t in the [x, x + dx]. The particle density ρ(x, t)

ρ =

∫
ndu, (112)

local dimensionless average velocity U(x, t) as

ρU =

∫
nudu. (113)

It can be shown that

∂tρ = −v0∂x(ρU) + D∂2
xρ (114)

with

D = v2
0τσ2/2. (115)

Corresponds to conservation of particles; the connection between its “macroscopical”
parameters v0, D and the parameters of the underlying microscopical dynamics is
established (σ2 is the average standard deviation of the local velocity distribution).
The diffusion term is a consequence of the non-vanishing correlation time τ .

For the local average velocity U

∂tU = f(U) + µ2∂2
xU + α

(∂xU)(∂xρ)

ρ
+ ζ, (116)

where f(U) = (G(U)− U)/τ , µ2 = (dG/dU)/(6τ), α = 2µ2 and

ζ =
1

ρτ

∫
νudu. (117)

Note, that f(U) is an antisymmetric function with f(U) > 0 for 0 < U < 1 and
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f(U) < 0 for U > 1. The noise ζ is not negligible in this case, and satisfies

ζ = 0 (118)

ζ2 = σ2/ρτ 2. (119)

Eqs. (114) and (116) with the coefficients µ, α, σ, v0 and D represents the continuum
theory of a large class of SPP models in 1d.

Non-linear coupling term (∂xU)(∂xρ)/ρ!

For α = 0 the dynamics of the velocity field U is independent of ρ, and Eq.(116) is
equivalent to the time dependent Ginsburg-Landau Φ4 model of spin chains, where
domains of opposite magnetisation develop at finite temperatures.

Numerics shows tansition

The existence of long-range order

Navier-Stokes equation for the continuum, long wavelength description.

Continuum equations of motion for ~v and ρ consistent with the symmetries and conser-
vation laws of the problem.

A simplified version is:

∂tv + (v∇)v = (α− β|v|2)v −∇P +

D∇2v + ~ξ

∂tρ +∇(ρv) = 0, (120)

where the α, β > 0 make v have a nonzero magnitude, D is diffusion constant and ~ξ

is noise.

The pressure P depends on the local density

P (ρ) =
∑

n

σn(ρ− ρ0)
n. (121)

Dynamic renormalisation group gives for the measure of the fluctuations, CC(~R), de-
fined as:

CC(~R) = C
(

~R
)
− lim
|~R′|→∞

C
(

~R′
)

, (122)

with

C(~R) ≡
〈
~v(~R + ~r, t) · ~v(~r, t)

〉
(123)
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and

C(~R →∞) = φ2, (124)

decays to zero much more rapidly, as |~R| → ∞, than the analogous correlation function
in magnets. Quantitatively, for points whose separation ~R ≡ ~R⊥ lies perpendicular to
the mean direction of motion

CC(~R) ∝ R2χ
⊥ (125)

holds, where the universal exponent is

χ = −1

5
(126)

exactly, in d = 2, and is smaller than its equilibrium value, 1− d
2 , in magnetic systems

for all d < 4.

Increased fluctuations in different parts of the system actually enhance the exchange of
information between those different parts (leading to supression of fluctuations).

Anisotropy: particles make small errors δθ in their direction of motion, their random
motion perpendicular to the mean direction of motion 〈~v〉 is much larger than that
along 〈~v〉; the former being ∝ δθ, while the later is proportional to 1− cos δθ ∼ δθ2.
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”Purposeful” collective motion

N organisms (pedestrians, particles) i of mass mi tends to move with a certain desired
speed v0

i into a certain direction ~e0
i , and adapts its actual velocity ~vi with a certain

characteristic time τi.

Keeping a velocity-dependent distance from other particles j and walls W . “Interaction
forces” ~fij and ~fiW . Acceleration equation

mi
d~vi

dt
= mi

v0
i (t)~e

0
i (t)− ~vi(t)

τi
+

∑

j(6=i)

~fij + ~fiW , (127)

while the change of position ~ri(t) is given by the velocity ~vi(t) = d~ri/dt. The tendency
of two organisms i and j to stay away from each other by a repulsive interaction force

Ai exp[(rij − dij)/Bi]~nij

where Ai and Bi are constants. dij = ‖~ri−~rj‖ denotes the distance between the centers
of mass, and

~nij = (n1
ij, n

2
ij) = (~ri − ~rj)/dij

is the normalised vector pointing from organism j to i.

If their distance dij is smaller than the sum rij = (ri + rj) of their radii ri and rj, the
”pedestrians” touch each other. Then, two additional forces a “body force”

k(rij − dij)~nij

counteracting body compression and a “sliding friction force”

κ(rij − dij) ∆vt
ji

~tij

impeding relative tangential motion, if particle i comes close to j. Herein, ~tij =
(−n2

ij, n
1
ij) means the tangential direction and ∆vt

ji = (~vj − ~vi) · ~tij the tangential
velocity difference, while k and κ represent large constants. Thus,

~fij = {Ai exp[(rij − dij)/Bi] + kg(rij − dij)}~nij

+κg(rij − dij)∆vt
ji

~tij ,

where the function g(x) is zero, if the pedestrians do not touch each other (dij > rij),
otherwise equal to the argument x.
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The corresponding interaction force with the wall reads

~fiW = {Ai exp[(ri − diW )/Bi] + kg(ri − diW )}~niW

−κg(ri − diW )(~vi · ~tiW )~tiW .

Simulations (two lanes in a ”corridor”, through a ”door”)

Herding versus individual motion

Each organism i has an individual direction ~ei and tries to follow the average direction
〈~e0

j(t)〉i of his neighbours j in a certain radius Ri. These options are weighted with
some parameter pi:

~ei(t + δt) = N
[
(1− pi)~ei + pi 〈~e0

j(t)〉i
]

, (128)

where N(~z) = ~z/‖~z‖ denotes normalization of a vector ~z. Individualistic behaviour if
pi is low, but herding behaviour if pi is high.

Simulations show optimum for intermediate p
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NETWORKS

Topology: the simplest aspect of complex systems. Still rich

(neural networks, food chains, genetic networks, friendship, scientific collaborators, etc)

Real networks are self-organized

The Erdős-Rényi model

Start with N vertices and no bonds. With probability pER, connect each pair of vertices
with an edge.

A tree of order k is a connected graph with k vertices and k − 1 edges (links), while a
cycle of order k is a cyclic sequence of k edges such that every two consecutive edges
and only these have a common vertex. If pER ∼ c/N with c < 1, then almost all
vertices belong to isolated trees, but at pER ∼ 1/N , (i.e. c = 1), cycles of all orders
appear.

pc ∼ 1/N is the percolation threshold of the (mean field percolation-like) system. At pc a
large cluster forms, that in the asymptotic limit contains infinitely many (proportional
to N) vertices (giant connected component).

Connectivity distribution.

Probability that a vertex has k edges follows the Poisson distribution

P (k) =

(
N − 1

k

)
pk

ER(1− pER)N−1−k, (129)

and its expectation value being λ = k̄ = (N − 1)pER. For large N

P (k) = e−λλk/k!, (130)

Diameter: L = 〈L(i,j)〉i,j (average of the number of edges along the shortest path
between randomly selected nodes i and j)

LER; N ∼ k̄LER, LER ∼ ln N/ ln k̄

The small-world (Watts and Strogats) model.
Crossover from regular lattice to random.

Each link is rewired with probability pWS. For p << 1, L = 〈Li,j〉 ∼ N ; for pWS = 1, L
grows logarithmically with N . For 0.01 < pWS the model is small-world, (L ' LER),
but its clustering coefficient C remains high.

C is an average over the clustering coefficients of nodes; ni = number of (nearest)
neighbours of i. ni(ni − 1)/2 is the total number of possible connections between
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them. li = number of connections actually present

Ci = li/[ni(ni − 1)/2]

ratio of the existing loops to the all possible ones.
Connectivity distribution depends on pWS: for pWS = 0 we have P (k) = δ(k−z), where
z is the coordination number of the lattice, while for finite pWS, P (k) is still peaked
around z, but it gets broader.
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Equilibrium networks

Real networks typically exhibit growth and rearrangement. Rearrangement: e.g., from
fully connected to star (as a function of conditions, hot or cold environment). Classes
of topologies as a function of fluctuations

Statistical ensembles for graphs.

We shall consider a set, {ga}, of undirected graphs, containing N nodes and M links.

In a heat bath at temperature T , the canonical ensemble is defined by the partition
function

Z(T ) =
∑

{ga}
e−Ea/T , (131)

where Ea is the energy assigned to the different configurations.

Restructuring: “diffusion” of edges or removing the given edge and connecting two
randomly selected nodes. Then, the energy difference ∆Eab = Eb − Ea between the
original ga and the new gb configurations is calculated and the relocation is carried out
following the Metropolis algorithm. If ∆Eab = Eb − Ea < 0 relocation is accepted;
otherwise relocation with probability e−∆Eab/T only. For T → ∞, the ER random
graphs.

The resulting dynamics, by construction, satisfies the detailed balance condition (absence
of currents).

WabPa = WbaPb

where Wab gives the transition rate from ga to gb, and Pa is the probability to find the
system in configuration ga.

Formal equivalence to a Kawasaki type lattice gas on a special lattice, which is the
edge-dual graph of the fully connected network. Interacting, diffusing ”particles”.

Z(T ) contains many terms corresponding to topologically equivalent graphs (indexing is
different only). We consider Eα that depend only on the topology tα,

Z(T ) =
∑

{tα}
Nαe−Eα/T . (132)

Here we introduced Nα to count the number of configurations belonging to topology
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tα. Expression (132) can be rewritten as

Z(T ) =
∑

{tα}
e−Eα/T+ln(Nα) =

∑

{tα}
e−Fα/T , (133)

Fα = Eα − TSα, (134)

Sα = ln(Nα), (135)

where Fα is the free energy and Sα is the entropy of the topology tα.

Singularities in the thermodynamic functions derived from Z(T ) correspond to phase
transitions in the topology!.

Order parameters:

i) Either Φ = Φs = smax/M , the number of edges of the largest connected component
of the graph smax normalized by the total number of edges M ,

ii) or Φ = Φk = kmax/M , the highest degree in the graph kmax divided by M . The
corresponding conditional free energy F (Φ, T )

e−F (Φ,T )/T = Z(Φ, T ) =
∑

{ga}Φ
e−Ea/T , (136)

where {ga}Φ is a subset of {ga}, consisting of all the graphs with order parameter Φ.

Sudden change in the position of the global minimum of F (Φ, T ) indicates discontinuous
(first order) phase transition, gradual shift: continuous phase transition.

Based on the lattice gas analogy we expect that if 〈k〉 < 1, then for a suitable choice of
the energy (one that rewards clustering) an ER type dispersed-compact or percolation
phase transition occurs at a finite temperature T (〈k〉). The simplest choice is

f(smax) = −smax = −ΦsM. (137)

In this case it can be shown that for

T > Tc(〈k〉) =
1

〈k〉 − 1− ln(〈k〉) , (138)

the free energy has a minimum at Φs = Φ∗
s(T ) = 0, i.e., the configuration is dispersed.

When the temperature drops below Tc(〈k〉), the minimum moves away from Φs = 0
and a giant component appears. Near the critical temperature Tc(〈k〉),

Φ∗
s(T ) = 2

T−1 − T−1
c (〈k〉)

〈k〉2 − 3 〈k〉+ 2
, (139)

indicating that we are dealing with a continuous topological phase transition.
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Next, energies are assigned to the vertices (local).

E =
N∑

i=1

f(ki), (140)

where ki denotes the degree (number of neighbors) of vertex i. The ”fitness” of an
individual vertex depends on its connectivity. Order parameter is Φ = Φk = kmax/M .

The energy E = −∑
k2

i : mapping to the Ising-model
Assign the negative energy −J to all pairs of edges that share a common vertex.

E = −J

2

N∑
i=1

ki(ki − 1) = −J

2

N∑
i=1

k2
i +

1

2
JM, (141)

This is like f(ki) = −(J/2)k2
i . The constant term can be omitted. This form of the

energy is in full analogy with the usual definition of the energy

E = −J
∑
<i,j>

ninj (142)

of a lattice gas on the edge-dual graph of the fully connected network with nearest
neighbor attraction. By measuring the energies (and temperature) in units of J we
can set J = 1.

Introducing the si ∈ [−1, 1] spin-like variables ni as ni = (1 + si)/2. The energy with
the help of the spins is expressed as

E = −1

4

∑
<i,j>

sisj − 1

2

N∑
i=1

si − 1

8
N(N − 1). (143)

This is similar to a ferromagnetic Ising-model in an external magnetic field. If nempty =
nfilled, then

∑
si = 0, no external filed like term.

For the particular form of f(ki) chosen, the topology with the lowest overall energy is
a “star” (for simplicity, we consider M < N), where all the M edges are connected to
single node.

Energy E = −∑
ki ln ki : continuous phase-transition

Another application-motivated choice for the single vertex energy is f(ki) = −ki ln(ki),
inspired, in part, by the logarithmic law of sensation.

In this case the configuration with the lowest energy is a fully connected subgraph [or
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almost fully connected if M cannot be expressed as n(n−1)/2]. The star configuration
is also quite favorable, since both maximal energies scale as −M ln M to leading order.
Amongst the sub-dominant terms in the energy, there is a difference in the order of√

M ln
√

M between the two, in favor of the fully connected subgraph. As before,
we choose the order parameter to be Φ = Φk = kmax/M , since this can easily distin-
guish between these two configurations: kmax ≈

√
2M for a fully connected subgraph

counting M edges, and kmax ≈ M for a star.

Due to the entropic part changing differently, there are two transitions: from disordered
to stars and from stars to ”full subgraphs”.
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Growing networks

The scale-free model

Many systems in nature have P (k) following a power-law. Origin: Real world networks
i) grow ii) preferentially. (e.g. WWW, genetic, friendship networks)

Rules:

(1) Growth: Starting with a small number (m0) of vertices, at every timestep we add a
new vertex with m(≤ m0)

(2) Preferential attachment: the probability Π that a new vertex will be connected to
vertex i depends on ki

Π(ki) = ki/
∑

j

kj. (144)

m is only parameter. P (k) ∼ kγ, and γ ' 3.

Calculation of P (k)

We assume that k is continuous

Π(ki) = ki/
∑

j

kj

can be interpreted as a continuous rate of change of ki (degree of vertex i). Conse-
quently, for a vertex i

∂ki

∂t
= AΠ(ki) = A

ki∑m0+t−1
j=1 kj

. (145)

Since
∑

j kj = 2mt and that at a time step is ∆k = m, we obtain A = m, resulting in

∂ki

∂t
=

ki

2t
. (146)

ln k = 1/2 ln t + Const, ki = Const t1/2

with the initial condition that vertex i was added to the system at time ti with connec-
tivity ki(ti) = m, is

ki(t) = m

(
t

ti

)0.5

. (147)

“rich-gets-richer” phenomenon Using (147), the probability that a vertex has a connec-
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tivity ki(t) smaller than k, P (ki(t) < k),

P (ki(t) < k) = P (ti >
m2t

k2 ). (148)

We add the vertices at equal time intervals,

Pi(ti) =
1

m0 + t
. (149)

Substituting this

P (ti >
m2t

k2 ) = 1− P (ti ≤ m2t

k2 ) = 1− m2t

k2(t + m0)
. (150)

The probability density for P (k) can be obtained using

P (k) =
∂P (ki(t) < k)

∂k
=

2m2t

m0 + t

1

k3 , (151)

predicting

γ = 3, (152)

independent of m.

Deterministic scale free models

Deterministic trees. Tree topology is typical and allows analytic calculations.

Step 0: Start with n edges going out radially from a centre.

Step 1: substitute each edge with n new edges ”starting” from the centre and ”ending”
on a circle (circle for visualization only).

Step 2: From every m-th node out of the the n2 nodes on the circle, draw n new edges,
so that each new edge ends on a new concentric circle.

Next, Step 1 and Step 2 are repeated many times so that each time an edge is substituted
with n edges stating from an edge’s inner end, and Step 2 is carried out only for edges
in the outmost layer.

After q iterations, there are

number of nodes with number of edges

j0 nq+1

j1 nq

..... ......
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jq n

with j = n2/m, q is the number of iterations, single edges leading ”back” not counted.
For n = 4,m = 2, j = 8. The ratio of nodes having k edges as P ′(k),

P ′(4k) = P ′(k)/8

If P ′(k) scales as k−δ, δ = ln 8/ ln 4 = 3/2. The corresponding ”smooth” distribution:

P (k) ∼ k−γ ∼ k−(3/2+1)

It directly follows from the above, that in general, γ = ln j/ ln n + 1.

Flux distribution assuming that an amount of flux ν = 1 is entering the network at its
”outmost” edges and the outflow takes place at the central node.

number of edges with amount of flux

j0 njq

j1 njq−1

..... ......

jqn 1

In the above example n = 4,m = 2, j = 8. Ration of nodes having flux ν is P ′(ν), we
have

P ′(8ν) = P ′(ν)/8

(there are 8 times less edges having 8 times more flux). P ′(ν) ∼ ν−∆, with ∆ =
ln 8/ ln 8 = 1. The corresponding continuous distribution and as above

P (ν) ∼ k−α

so that α = 2.

Here we obtained for the flux distribution an exponent α = 2 independent of the two
parameters. Seems to be universal. Independent of the form of boundary conditions.
Two classes one with exponent 2 one with exponent 2.2.

Metabolic fluxes. Internet traffic.

50



Hierarchical, no loops, zero C

Only loops (triangles), C = 1

for both:

i = 1 N(k) = 1 k = 14

i = 1 N(k) = 2 k = 6

i = 1 N(k) = 6 k = 2

after n iterations (2/3)3n−1 vertexes with degree 2i+1 − 2.

N(k/2) = 3N(k), N(k) ∼ k−γ

k/2−γ = 3k−γ, 2γ = 3

Delta function type distribution with peaks separated by a distance proportional to k.

For the density distribution (assuming that the delta functions are spread over intervals
of length k (N(k) values should be renormalized with 1/k

P (k) ∼ k−(1+ln 3/ ln 2)

Most advanced: scaling of C(k) ∼ k−ω (hierarchically connected clusters!)

Stability against attacks: random, intentional

stable against random, unstable against intentional

Spreading of infection:

Model: i) healthy vertex is infected with rate ν if has infected neighbour, ii) sick vertexes
become healthy with rate δ.

Effective spreading rate: λ = ν/δ. It was shown that for arbitrary P (k)

λc = k̄/k̄2

This is finite for ordinary networks. For scale free nets with γ < 3 the standard
deviation k̄2 diverges, epidemics spreads for arbitrarily small λ (see viruses on the
WWW, or HIV epidemics - sexual networks are scale free...(Nature, 2001))
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Network communites/clusters/modules

Large networks are bound to be structured

Internal organization is hierarchical

Finding dense sub-graphs: i) divisive/agglomerative methods (has serious problems),
ii) clique percolation

Clique percolation

Clique: maximal subgraph

k-cliques, the central objects of our investigation, are defined as complete (fully con-
nected) subgraphs of k vertices

We also introduce a few new notions specific to our problem. (i) k-clique adjacency:
two k-cliques are adjacent if they share k − 1 vertices, i.e., if they differ only in a
single vertex. (ii) k-clique chain: a subgraph, which is the union of a sequence of
adjacent k-cliques. (iii) k-clique connectedness: two k-cliques are k-clique-connected if
they are parts of a k-clique chain. (iv) k-clique percolation cluster (or component): it
is a maximal k-clique-connected subgraph, i.e., it is the union of all k-cliques that are
k-clique-connected to a particular k-clique.

A giant k-clique component appears in an E-R graph at p = pc(k), where

pc(k) =
1

[(k − 1)N ]
1

k−1

. (153)

Obviously, for k = 2 this result agrees with the known percolation threshold (pc =
1/N) for E-R graphs, because 2-clique connectedness is equivalent to regular (edge)
connectedness.

Expression (153) can be obtained by requiring that after rolling a k-clique template from
a k-clique to an adjacent one (by relocating one of its vertices), the expectation value
of the number of adjacent k-cliques, where the template can roll further (by relocating
another of its vertices), be equal to 1 at the percolation threshold.

The above expectation value can be estimated as (k−1)(N −k−1)pk−1, where the first
term (k− 1) counts the number of vertices of the template that can be selected for the
next relocation, the second term (N−k−1) counts the number of potential destinations
for this relocation, out of which only the fraction pk−1 is acceptable, because each of
the new k − 1 edges (associated with the relocation) must exist in order to obtain a
new k-clique. For large N , it becomes (k − 1)Npk−1

c = 1

Thus, in the random graph there is a threshold, at which an ”infinite” community
appears and, as in ordinary percolation, around this point clusters of all sizes occur.
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N ∗, is the number of vertices belonging to the largest cluster. Order parameter associ-
ated with this choice as the relative size of the largest cluster:

Φ = N ∗/N. (154)

The other choice is the number N ∗ of k-cliques of the largest percolation cluster (or
equivalently, the number of vertices of the largest component in the k-clique adjacency
graph). The associated order parameter

Ψ = N ∗/N , (155)

where N denotes the total number of k-cliques in the graph (or the total number of
vertices in the adjacency graph). N can be estimated as

N ≈
(

N

k

)
pk(k−1)/2 ≈ Nk

k!
pk(k−1)/2, (156)

because k different vertices can be selected in
(
N
k

)
different ways, and any such selection

makes a k-clique only if all the k(k − 1)/2 edges between these k vertices exist, each
with probability p.

The largest component at the percolation threshold, becomes infinitely large (becomes
a giant component) in the N →∞ limit. Erdős and Rényi showed that for the random
graphs they introduced, the size of the largest component N ∗ at p = pc ≡ 1/N diverges
with the system size as N 2/3, or equivalently, the order parameter Ψ scales as N−1/3.

Since the giant component at the threshold has a tree-like structure, its number of
vertices, N ∗, also diverges as N 2/3.

If we assume, that the k-clique adjacency graph is like an E-R graph, then at the
threshold the size of its giant component N ∗

c scales as N 2/3
c . Plugging p = pc from

Expression (153) into Eq. (156) and omitting the N -independent factors we get the
scaling

Nc ∼ Nk/2 (157)

for the total number of k-cliques. Thus, the size of the giant component N ∗
c is expected

to scale as N 2/3
c ∼ Nk/3 and the order parameter Ψc as N 2/3

c /Nc ∼ N−k/6.

This is valid, however, only if k ≤ 3. For k > 3 it predicts that the number of k-cliques
of the giant percolation cluster, i.e., the number of vertices of the giant component in
the k-clique adjacency graph, N 2/3

c ∼ Nk/3, grows faster than N . Problem.

On the other hand, in analogy with the structure of the giant component of the classical
E-R problem, we expect that the giant component in the adjacency graph also has a
tree-like structure at the threshold.
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As a consequence, almost every vertex of the adjacency graph corresponds to a vertex
of the original graph. Thus, in the adjacency graph the giant component should not
grow faster than N at the threshold. Therefore, for k > 3 we expect that N ∗

c ∼ N ,
and using Eq. (157), Ψc = N ∗

c /Nc ∼ N 1−k/2. In summary:

Ψc ∼
{

N−k/6 for k ≤ 3

N 1−k/2 for k ≥ 3
. (158)

Finding overlapping communities

An order k community is a k-clique percolation cluster. This expresses the observation
that more densely connected parts have many fully connected small subgraphs in them.

Overlaps are important!

Each node i of a network can be characterised by a membership number mi, which is the
number of communities the node belongs to. In turn, any two communities α and β

can share nov
α,β nodes, which we define as the overlap size between these communities.

Naturally, the communities also constitute a network with the overlaps being their
links. The number of such links of community α can be called as its community degree,
dcomm

α . Finally, the size ns
α of any community α can most naturally be defined as the

number of its nodes.

Corresponding distributions

Weighted networks with wi being the ”strength” of the i− th link (connecting two given
nodes).

Find the right k and wcrit from the condition that the resulting network of communities
should be maximally structured. In practice, we decrease the threshold w∗ (below
which the links are neglected) until the largest community becomes twice as big as the
second largest one.

Results show scaling, indicating hierarchy. Community degree distribution has an ex-
ponential decay for small degree values.
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Collaboration networks

P (k) ∼ kγ, γ ' 2, 3

Π(k1, k2): probability of a new link between authors with k1 and k2 collaborators

A natural hypothesis is to assume that Π(k1, k2) ∼ k1k2

Modelling the web of science

ki(t) is the number of links node i has at time t; T (t) and N(t) are the total number of
links and total number of nodes at time t. New researchers join the field at a constant
rate

N(t) = βt. (159)

The average number of links per node in the system at time t is thus given by:

< k > =
T (t)

N(t)
. (160)

Probability that between node i and j a new internal link is created as

Πij =
kikj∑′

s,m kskm

2N(t) a, (161)

where the prime sign indicates that the summation is done for s 6= m values, a is
number of newly created internal links per node in unit time.

If node i has ki links, the probability that an incoming node will connect to it

Πi = b
ki∑
j kj

, (162)

where b is the average number of new links that an incoming node creates.

(Here the number of authors on a paper is constant; this is an approximation).

New links join the system with a constant rate, β,

dki

dt
=

bβki∑
j kj

+ 2 N(t) a
∑

j

′ kikj∑′
s,m kskm

. (163)

internal and external preferential attachment rules:

∑
i

ki = T (t) =

∫ t

0
2 [N(t′)a + bβ] dt′ = tβ(at + 2b). (164)
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< k > =
T (t)

N(t)
= at + 2b, (165)

′∑
s,m

kskm =
∑

s

ks

∑
m

km −
∑
m

k2
m ≈

(∑
i

ki

)2

. (166)

We have used here the fact that T (t)2 depends on N 2, while
∑

i k
2
i depends only linearly

on N (we investigate the N →∞ limit). From here:

dki

dt
=

bki

t(at + 2b)
+

2kia

at + 2b
. (167)

Introducing the notation α = a/b, we obtain:

dki

dt
=

ki

t

2tα + 1

tα + 2
. (168)

ki(t) ∼ (t/ti)
1/2 if t ¿ α

ki(t) ∼ (t/ti)
2 if t À α

The distribution function for the ti in the [0, t] interval is simply ρ(t) = 1/t. P (k) can
be obtained after determining the ti(ki) dependence

P (k) = −ρ(t)
dti
dki

∣∣∣∣
k

=

=
1

t
(tk−3) if t ¿ α

=
1

t
(tk−3/2) if t À α

Number of authors with N(k) has two scaling regimes, crossover kc scales with time
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