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Numerical models indicate that collective animal behaviour may emerge from
simple local rules of interaction among the individuals. However, very little is
known about the nature of such interaction, so that models and theories mostly
rely on aprioristic assumptions. By reconstructing the three-dimensional position
of individual birds in airborne flocks of few thousands members, we prove that the
interaction does not depend on the metric distance, as most current models and
theories assume, but rather on the topological distance. In fact, we discover that
each bird interacts on average with a fixed number of neighbours (six-seven),
rather than with all neighbours within a fixed metric distance. We argue that a
topological interaction is indispensable to maintain flock’s cohesion against the
large density changes caused by external perturbations, typically predation. We
support this hypothesis by numerical simulations, showing that a topological
interaction grants significantly higher cohesion of the aggregation compared to a
standard metric one.

Introduction

Collective behaviour of large aggregations of animals is a truly arresting natural
phenomenon (1). Particularly interesting is the case when aggregations self-organize
into complex patterns with no need of an external stimulus. Prominent examples of such
behaviour are bird flocks (2), fish schools (3) and mammal herds (4). Apart from its
obvious relevance in ethology and evolutionary biology, collective behaviour is a key
concept in many other fields of science, including physics (5), control theory (6), mobile
robotics (7), economics (8), and social sciences (9).

How does collective behaviour emerge? Numerical models of self-organized
motion, inspired both by biology (10,11,12,13,14,15,16), and by physics (17,18,19),
support the idea that simple rules of interaction among the individuals are sufficient to
produce collective behaviour. Unfortunately, we have very scarce empirical information
about the precise nature of such rules. The main theoretical assumptions (attraction
among the individuals, short range repulsion, and alignment of the velocities) are
reasonable, but generic, and there are as many different models as different ways to
implement these assumptions. Without decisive experimental feedback it is difficult to
select what is the ‘right’ model, and therefore to understand what are the underlying
fundamental rules of animal collective behaviour.

The main goal of the interaction among individuals is to maintain cohesion of the
aggregation. This is a very strong biological requirement, shaped by the evolutionary
pressure for survivor: stragglers and small groups are significantly more prone to
predation than animals belonging to large and highly cohesive aggregations (3,20).
Consider a flock of starlings under attack by a peregrine falcon: the flock contracts,
expands and even splits, continuously changing its density and structure. Yet, no bird
remains isolated, and soon the flock reforms as whole. The question we want to answer
is: what kind of interaction maintains cohesion in such a robust way?

Dramatic density changes as the ones observed in animal aggregations are not at
all common in physical systems: the density of an aggregate of particles is changed by
changing the external constraints, as the volume of the box containing a gas. When, on
the other hand, particles condensate in open space, the density is determined mainly by



the dependence of the inter-particle force on the distance, dependence that is a
characteristic of the material and is therefore fixed. If the aggregation is subject to a
strong external perturbation, density does not vary, but cohesion breaks down. Flocks
and schools, however, live in an open space, and yet undergo enormous density changes
without losing cohesion, in a very flexible way. This seems a challenging problem when
tackled within the framework of standard physical interactions.

To grant cohesion, models make the sound assumption that individuals align and
attract to each other, and that such interaction decays with increasing distance between
individuals. The vast majority of models, both developed by physicists and biologists,
adopt a definition of ‘distance’ that is the same as in physics, i.e. metric distance. In a
metric context, two birds 5 meters apart attract each other less than two birds 1 meter
apart. Animals can estimate metric distance in various ways, including stereovision,
retinal image size, and optic flow (21). Thus, a metric interaction seems natural.
However, physical systems warn us that an interaction based on metric distance may be
unable to reproduce the density changes typical of animal aggregations. An alternative
is topological distance. In economics, for example, the relevant quantity is not how
many kilometres separate two countries (metric distance), but rather the number of
intermediate countries between them (topological distance) (22). If the interaction
depends on the topological distance, each individual interacts with a fixed number of
neighbours, irrespective of their metric distance. The crucial difference between metric
and topological interaction really kicks in when the density varies: in the topological
case, two birds 5 meters apart in a sparse flock attract each other as much as two birds 1
meter apart in a denser flock, provided that the number of individuals between the two
birds is the same. The strength of the interaction remains the same at different densities.
This seems more suitable to keep cohesion in the face of strong density fluctuations. By
means of empirical observations we show that the topological paradigm is in fact the
correct one.

Structure is the foremost effect of interaction, and, conversely, interaction is
ciphered in the inter-individual spatial structure. Hence, in order to learn something
about the interaction ruling collective behaviour it is necessary to analyze the structural
organization of individuals within the aggregation. To do this, however, it is essential to
have data on the 3D positions of individuals in large aggregations: collective behaviour
is a qualitatively different phenomenon, with emerging complex patterns, only when the
number of individuals is big; moreover, in small aggregations the surface-to-volume
ratio is large, and the bias introduced by the border is inevitably very strong (see
Methods). Unfortunately, gathering quantitative 3D data on even moderately large
groups of animals is very difficult. Most empirical studies have two major limitations: a
small number of individuals (few tens), and loose group arrangements (23,24), at
variance with the huge, highly cohesive natural aggregations.

Results

Thanks to novel stereometric and computer vision techniques, we measured 3D
individual birds positions in compact flocks of up to 2600 starlings (Sturnus vulgaris) in
the field. This is an advance of almost two orders of magnitudes compared to former
experiments. A typical flock and its 3D reconstruction are shown in Fig.1 (see also
Figs.S3 in Supplementary Material [SM]). Starlings’ aerial display provides a



paradigmatic case of collective behaviour (25). These birds gather in the evening over
the roost and form sharp-bordered, strongly cohesive flocks, ranging from few hundreds
to tens of thousands birds (see SM Figs.S1-S2). We reconstructed and analyzed ten
flocking events recorded at the roosting site of Termini railway station (Rome, Italy)
between Dec. 2005 and Feb. 2006. Each event is defined by a series of up to 80 stereo
photographs, shot at 10 frames-per-second. Different events correspond to different
flocking flight sequences, recorded on separate sessions. Observations were done at
dusk. Details on the experiment and on the reconstruction algorithms can be found in
the Materials and Methods section.

The clearest characterization of the structure of birds within a flock is given by the
spatial distribution of the nearest neighbours. Given a reference bird, we measure the
angular orientation of its nearest neighbour with respect to the flock’s direction of
motion, i.e. the neighbour’s bearing and elevation. We repeat this by taking all
individuals within a flock as reference bird, and in this way we map the average spatial
position of nearest neighbours (see caption of Fig.2). This map (Fig.2a) shows a striking
lack of nearest neighbours along the direction of motion. The structure of individuals is
therefore strongly anisotropic. The possible reasons for this anisotropy, probably related
to the visual apparatus of birds, are discussed in SM. The crucial point, however, is that
this anisotropy is the effect of the interaction among individuals. To support this claim,
we compute the distribution of neighbours very far apart from the reference bird
(Fig.2b). This distribution is uniform, as for a completely isotropic, non-interacting
aggregation of points. This is a direct empirical indication that interaction decays with
the distance, and it demonstrates that we can use the anisotropy to get information about
the interaction (see also SM on this point).

To quantify the decay of the anisotropy we define a function y(n) that measures to
what extent the spatial distribution of the n"™-nearest neighbour around a reference bird
is anisotropic (see caption of Fig.3). The value of y for an isotropic, non-interacting
aggregation is 1/3. A value larger than 1/3 indicates that the interaction among the birds
makes the structure anisotropic. In Fig.3a we show that y(n) decays gradually to 1/3
when 7 increases. Hence, for each flock we can define an interaction range ., given by
the value of n where y becomes 1/3. By definition, birds farther than the 7" nearest
neighbour are isotropically distributed around the reference bird, and do not interact
with it. We note that Fig.3a is the first empirical determination of how the interaction
decays in a real instance of collective behaviour.

The n™ nearest neighbour of a given bird is characterized not only by its integer
label n, but also by its actual distance in meters » from the reference bird. For example,
in flock 32-06 (Fig.3b) the 6™ nearest neighbour of a bird is found, on average, at 1.25m
from it. Clearly, the relation between n and r depends on the specific density of the
flock. While n measures the topological distance from a reference bird, » measures the
metric distance. In addition to the topological interaction range in unit of birds, n., we
can therefore introduce a metric range, in unit of meters, .. Going back to flock 32-06,
we have n.=6, and r.=1.25m (Fig.3a).

The flocks we analyzed differ a lot one from the other in density. This implies that
the topological and metric ranges, n. and 7., cannot be both constant from flock to flock.
To elucidate this crucial point, let us consider two flocks with different densities. If the
interaction depends on the metric distance, then the range in meters 7. is the same in the



two flocks, while the number of individuals 7. within this range is large in the denser
flock, and small in the sparser one. Conversely, if the interaction depends on the
topological distance, the range in units of birds #. is constant in the two flocks, while
the distance 7. of the ncth nearest neighbour is small in the denser flock, and large in the
sparser one. The difference between topological and metric hypothesis is stark: in the
topological scenario the number of interacting individuals is fixed. On the opposite, in
the metric scenario, such number varies with density; for example, within the same
metric range there are 10 birds in our densest flock, and only 1 bird in the sparsest one.
Topological and metric ranges therefore are not interchangeable characterizations of the
interaction. Therefore, to understand whether it is the metric or the topological distance
that matters we must measure how . and n. depend on the flocks’ density.

To cast in a quantitative way the two opposite scenarios, we note that the average
distance r of the n™ nearest neighbour grows with n according to the relation » ~ r, n'”
(see Fig.3b). In this equation r is the average nearest-neighbours distance, which is a
direct measure of sparseness (the inverse of density); 7; varies from 0.68m in the densest
flock, to 1.51m in the sparsest one (see table S1 in SM). The equation above simply
means that the number 7 of individuals within a sphere of radius r is proportional to 7°.
The two ranges are linked by the same relation, 7, ~ 7 nc” 3. In a metric scenario, 7. is a
constant, and thus n.'*~ 1. Conversely, in the topological scenario . is a constant, and
thus 7. ~r;. We have measured n. and r. in each flock, and have studied how these two
quantities depend on the flocks’ sparseness 7. The experimental evidence clearly
supports the topological scenario: there is no significant correlation between n. "> and 7,
(Pearson’s correlation test: n=10, R*=0.00021, P=0.97), whereas a clear linear
correlation exists between 7. and r, (n=10, R*=0.78, P=0.00072) (Fig.3c,3d). The
topological range is therefore approximately constant from flock to flock. On average,
we find n.=6.5+0.9 SE.

We therefore showed that the interaction depends on the topological distance,
rather than the metric one. The interaction between two birds 1m apart in flock 4, is as
strong as that between two birds Sm apart in flock B, provided that A is denser than B
and that the topological distance 7 is the same. Our empirical result contrasts with the
assumption of most models and theories. Even though some models introduce a cut-off,
or numerical preference, in the number of interacting neighbours (so that this number is
fixed), they still ‘weight’ these neighbours metrically (26). We must stress that this is
not what we find here. It is the very shape of the interaction that depends on the
topological distance, not simply the cut-off, or the range (Fig.3a). Our result also rules
out for starling flocks the hypothesis that the anisotropic structure is a consequence of
the bird’s effort to take advantage of the wakes of its neighbours (27), since such
aerodynamic advantage would decay within a well-defined metric length-scale (see SM
for a discussion of this point). In fact, we believe that the only mechanism compatible
with our result is vision.

Discussion

Why 6-7 neighbours? This range is significantly smaller than the number of
visually unobstructed neighbours around each bird. We conclude that this specific value
of n. must derive from the cortical elaboration of the visual input, rather than from a
limitation of the input itself. In order to keep under control a fixed number of



neighbours, irrespective of their metric distance, it is necessary for the individuals to
have some pre-numeric ability, or, more precisely, an object-tracking, or ‘subitizing’,
ability (28). This capability decays beyond a certain number, and such perceptual limit
defines the range of interaction. Laboratory experiments show that trained pigeons can
discriminate sets of different numerosities provided that these sets have less than 7
objects (29). In our field study we find a range of 6-7 neighbours. Such a striking
agreement suggests that the same tracking ability at the basis of numerical
discrimination may be used for interacting with a fixed number of neighbours, and then
be an essential ingredient of collective animal behaviour. The existence of a perceptual
limit in numerosity is also found in 2D experiments on shoaling fish, and it is estimated
around 3-5 individuals (30). An alternative interpretation of the interaction range we
find 1s that the specific value of n. may be functional to optimize anti-predatory
response: if each individual interacts with too few neighbours, information is non-noisy,
but too short-ranged; conversely, if the interaction involves too many neighbours,
information is averaged over several ill-informed individuals, and it is too noisy (31). A
recent model for collective behaviour (15) locates the optimal range for anti-predatory
response in 2D between 3 and 5 individuals, to be compared to our 3D value of 6-7.

Why a topological, and not a metric interaction? Animal collective behaviour is
staged in a troubled natural environment. Hence, the interaction mechanism shaped by
evolution must keep cohesion in the face of strong perturbations, of which predation is
the most relevant. We believe that topological interaction is the only mechanism
granting such robust cohesion, and therefore higher biological fitness. A metric
interaction is inadequate to cope with this problem: whenever the inter-individual
distance became larger than the metric range, interaction would vanish, cohesion would
be lost, and stragglers would ‘evaporate’ from the aggregation. A topological
interaction, on the opposite, is very robust, since its strength is the same at different
densities. By interacting within a fixed number of individuals, rather than meters, the
aggregation can be either dense or sparse, change shape, fluctuate and even split, yet
maintaining the same degree of cohesion.

To support this hypothesis we analyze topological vs. metric interaction in the
context of one of the simplest two-dimensional flocking models, the Self-Propelled
Particles (SPP) model of (17) (see caption of Fig.4 for the equations defining the
model). The standard SPP model is strictly metric: each individual interacts with all
neighbours within a fixed metric range r.. The model, however, can easily be modified
to become topological: each individual interacts with a fixed number of neighbours, 7.
In absence of external perturbation, both interactions produce cohesive flocks in an
appropriate range of parameters. However, it is not simply cohesion we are after, but
robust cohesion. We therefore expose a cohesive flock to an external perturbation that
mimics the attack of a predator (see Fig.4). A possible outcome of the attack is to break
the original flock into many components (Fig.4a). Most of these M components consist
of isolated individuals, or small groups, which are of course very vulnerable to
predation. A robust interaction must preserve cohesion under attack, and thus keep the
number of components M as low as possible. M=1 indicates that the original flock
resisted the attack as a whole, and it corresponds to maximum cohesion. Cohesion of the
aggregation is therefore higher the lower the number of components M after the attack.
We perform the numerical experiment a large number of times, with different initial
conditions, and compute the probability of having M flocks after the attack.



Metric flocks very often break into more than one component, with a maximum
probability at M=5 (Fig.4b,d). This means that the average resilience of a metric flock
is extremely poor: many isolated birds and small groups are forced out of the main flock
by the predator’s attack. Cohesion in topological flocks, on the other hand, is far
superior (Fig.4c,e). The highest probability is at M=1, namely the most probable
outcome of the attack is that the original flock does not break up. Moreover the
probability decays very rapidly to zero. Flocks ruled by a topological interaction are
therefore much more stable under perturbations than metric ones. We repeated the same
experiment using an inter-individual interaction that decays as the inverse of the
distance, either metric (1/r) or topological (1/n). Results were exactly the same (Fig.S6
in SM). This proves a very important point: the nature of the interaction (metric vs.
topological) is much more relevant than the specific way it depends on the distance (flat
vs. decaying). We expect the difference between topological and metric interaction to
be even more striking in 3D, where achieving cohesion is more difficult due to the
larger number of individual degrees of freedom.

In conclusion, we presented large-scale 3D empirical data on a paradigmatic
instance of collective animal behaviour, namely starlings’ aerial display over the roost.
Our results show that the inter-individual interaction depends on the topological
distance, not the metric distance, at variance with most current models and theories. We
suggest that models should be reconsidered in the light of this result. We also argued
that a topological interaction is necessary to sustain strong density fluctuations and to
maintain cohesion under perturbation, most conspicuously predation. Our numerical
simulations support this idea in a compelling way. Given the strong adaptive advantage
of cohesion for all animal aggregations, it seems likely that topological interaction is a
fundamental ingredient also of other instances of collective animal behaviour. New
empirical observations of different systems are necessary to confirm this idea.

Materials and Methods

Location and materials. Images were taken in Rome, from the terrace of Palazzo
Massimo, Museo Nazionale Romano, facing the roost trees situated in the square in
front of Termini railway station. The apparatus was located 30m above ground level.
Wind speed never exceeded 12ms™. Average distance of birds was 100m. We used
Canon EOS 1D Mark II digital cameras (3504x2336 pixels), mounting Canon 35-mm
lenses. Focal length, optical centre, radial and tangential distortion were calibrated by
Menci-Software s.r.l.. Aperture was between 2.0 and 4.0; shutter speed between
1/1000s and 1/250s; ISO between 100 and 800. We used Manfrotto-400 micrometric
heads and Manfrotto-475 tripods. Cameras’ tilt-up (between 35% and 40%) was
measured by means of a Suunto clinometer.

Experimental technique. We used stereo photography (32,33). The distance between
stereo cameras (baseline) was d=25m. A third trifocal camera was placed at 2.5m from
the right stereo camera (Fig. S5). The error 0z on the relative distance of two nearby
targets located at distance z from the cameras is dominated by the error ds in the
determination of the images positions. For parallel focal planes we have,
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Each stereo camera was mounted on and aligned to a 680mm-long aluminium bar. A
thin (Z0.25mm) line run along the bars and connected the stereo pair (Fig. S5). The
nominal alignment error was thus 8a=0.25/680=3.7x10™ radiant, thus giving a nominal
error Az=0.14m (targets at 100m). Regular tests, performed with laser-metered targets
gave: 8s<0.4pixel = error on relative distance 8z<0.04m; d0:<2.3x10 radiants = error
on absolute distance Az<0.92m (for z=100m). Stereo cameras were slightly convergent
(0.22 radiants), to have maximal overlap of the fields of view (Fig. S5).

Temporization. The shutter release cables were connected to a timer, which fired the
cameras simultaneously at 5 frames-per-second (fps). Synch error was measured in lab
and resulted smaller than 10ms. At rates faster than 5 fps the release time lag of the
cameras became erratic. To increase shooting rate two interlaced cameras were mounted
on each bar (Fig.S5). Thus, our apparatus was shooting at 10fps. Buffers of the cameras
filled up after 40 photographs. Therefore each flocking event lasts at most 8 seconds.

Stereo Matching. After subtraction of the background, a segmentation algorithm
locates birds’ positions on the photographs (34). To perform the 3D reconstruction, each
bird’s image on the left photo must be matched to its corresponding image on the right
photo (Fig.1). For large and compact sets of featureless points this problem becomes
extremely severe, and it has been the main bottleneck in the 3D reconstruction of animal
aggregations. Our matching procedure involves 3 cameras, A, B and C (Fig. S5) and has
four steps: first, a newly developed algorithm, exploiting pattern-recognition and
epipolar invariance (33), matches approximately 20% of the birds on the stereo pair (A-
C). Secondly, the same algorithm matches approximately 90% of the birds on the two
nearby cameras (A-B). Third, these matches are used to calculate the nonlinear trifocal
tensor (35). Fourth, by means of the trifocal tensor and of an optimization assignment
algorithm (36), the (A-B) matches are transferred to the pair (A-C). In the cases we
analyzed, we match on average 88% of the birds, and never less than 80%. Tests with
synthetic data (distance and density as in the biological case) gave less than 5% of
mismatches (outliers). A framework software developed by Nergal s.r.l. coordinated the
various parts of the code. Our algorithms use some routines from the LTI-lib
(http://1tilib.sourceforge.net) and CGAL (http://www.cgal.org) libraries.

Events selection. We collected approximately 500 flocking events. The vast majority
of these events had to be discarded either because they were not included in the field of
view of all 6 cameras, or because they were too far (our photographic resolution
requires that flock are closer than 250m). Moreover, many events were recorded in too
severe light conditions. These criteria are non-biased, and do not affect the biological
features of the flocks, so that the ~50 events remaining are a fair sampling of roost’s



flocks. We then narrowed our target of investigation by selecting 10 out of these 50
events. We chose flocks with sharp borders, strong spatial cohesion and a large number
of birds (>400). We also had to discard flocks that were too dense, since our matching
algorithm put a limit to the maximum density (the constraint on density will be relaxed
as newer versions of our software are developed). Therefore, the final 10 analyzed
events are representative of the typical cohesive flocks over the roost. We finally
checked on synthetic data that the reconstruction software does not introduce any
significant bias in the flock’s shape and structure. All the reconstructions belonging to a
single event are statistically homogeneous, and were thus used to build statistics for that
particular flock.

The problem of the border. Flocks are not necessarily convex. Therefore the so-called
convex hull is not a suitable tool to define their border. In order to define the border we
used the a-shape algorithm (37): basically one excavates the set of points with spheres
of radius a.. For o= the border coincides with the convex hull, whereas for finite

a. concavities of size a are detected. Once the border’s points are defined, one has to
take care of the bias introduced by them. All methods to eliminate such bias basically
require excluding the border points from the analysis, and for this reason having large
aggregations is essential. We used the Hanish method (38). According to this method,
when computing a certain average quantity at a given scale », only the points having a
distance from the border greater than r are considered. We checked all our tools by
using them in test cases (as the Poisson and the hard-spheres distribution) where the
analytic results were known. In these test cases one gets wrong results if the border’s
bias is not eliminated.
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Figures

Figure 1

Fig. 1. A typical analyzed flock. This aggregation consists of 1246 starlings, flying at
approximately 70m from the cameras at about 11ms” (flock 28-10 in table S1). a,b, Left and
right photographs of the stereo pair, taken at the same instant of time, but 25 meters apart. To
perform the 3D reconstruction, each bird’s image on the left photo must be matched to its
corresponding image on the right photo. Five matched pairs of birds are visualized by the red
squares. c¢,d,e,f, 3D reconstruction of the flock under 4 different points of view. Panel d shows
the reconstructed flock under the same perspective as the right photograph (b).
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Fig. 2a. The angular density of nearest neighbours shows a strongly anisotropic structure of
individuals. This density is proportional to the probability of finding the nearest neighbour of a
bird at certain angles (¢, o) around it. The map is obtained as follows. For each bird /i we define
the unit vector u; in the direction of its nearest neighbour. We then place the vectors
corresponding to all nearest neighbours at the same origin and plot their density on the unitary
sphere. The spherical density is projected on the plane by means of an equal-area Mollweide
projection. We have normalized by the isotropic case, so that the density is uniform and equal
to 1 for a non-interacting aggregation of individuals. The reference frame is chosen in the
following way. The flock’s velocity V is the first reference direction. Since the velocity V and
gravity G are approximately orthogonal in all the flocks we analyzed (we find on average
V-G=0.13+0.02 SE), it is useful to consider as a second reference direction G,, the component
of gravity perpendicular to the velocity. In the map, the velocity V goes through the centre of the
map and G, corresponds to the zenith of the map, whereas the plane P orthogonal to G,
corresponds to the horizon. The latitude, or elevation, ¢ € [-90:90] indicates the angle in
degrees between u; and the horizon plane P. The longitude, or bearing, o € [-180:180]
indicates the angle in degrees between the projection of u; on the horizon plane P and the
velocity V. Therefore, the centre of the map (¢=0, a=0) corresponds to the front of the bird,
whereas the points (=0, a=+180) and (¢=0, a=-180) correspond to the rear of the bird. The
density is strongly anisotropic, with a significant lack of nearest neighbours along the velocity.
The map is calculated using data from one particular flock (flock 25-11, see table S1 in SM).
However, data from the other flocks all show the same lack of nearest neighbours along the
velocity (Fig. S4 in SM). On the other hand, the location of the maxima, which may suggest a
structural correlation with the plane P orthogonal to gravity, is less stable from flock to flock (Fig.
S4 in SM). A more detailed analysis of this feature is required before drawing any conclusion.
2b. The density the 10™-nearest neighbour shows no statistically significant structure and it is
compatible with a set of non-interacting points. This indicates that interaction with the 10™-
nearest neighbour has completely decayed.
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Fig.3. Assessmg the range of the interaction. Let u"

sparsenessr, (m)

) be the unit vector

of the n" -nearest neighbour of bird i. We define the projection matrix M""

M =

where N is the number of birds in the flock. The unitary eigenvector w®
eigenvalue of M™ coincides with the direction of minimal density of the vectors u;

1 N
_Eugn) u”

v )

Pomtmg in the direction

o,f=xy,2

relative to the smallest
™ je.the

direction of minimal crowding of the n"-nearest neighbour. To measure the degree of anisotropy

in the spatial distribution of the n"-nearest neighbour we use the function y(n)=(W

") V)2, where

V is the velocity. The value of y for an isotropic, non-interacting distribution of points is 1/3. A
value of y(n) larger than 1/3 indicates that there is a lower probability to find the n"-nearest
neighbour along the direction of motion, and thus indicates anisotropy. a. The function y(n) is
plotted for two different flocks (32-06 and 25-11); error bars represent the standard error For
both flocks the structure becomes approximately isotropic between the 6" and the 7"-nearest
neighbour. The topological range n. is defined as the point on the abscissa where a linear fit of
y(n) in the decreasing interval mtersects the value 1/3. b, The average distance r, of the n-th

neighbour is plotted against n"
size). The linear relation between r, andn

® for the same flocks as in a (error bars are smaller than symbols
s very sharp in all flocks.

The slope of these

curves is proportional to the sparseness ry of the flock, i.e. the average nearest neighbours
distance. ¢, Topological range n, (to the power —1/3) vs. the sparseness ry of each flock. No
significant correlation is present (Pearson’s correlation test: n=10, R*=0.00021, P=0. 97).d
Metric range (in meters) r; vs. sparseness rq. A clear linear correlation is present in this case
(n=10, R?=0.78, P<O0. 00072). This proves that the natural scale of the interaction is the
topological distance, and not the metric one. The topological range is (on average) between 6
and 7 neighbours.
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Fig. 4. Numerical simulations: metric vs. topological interaction under predator’s attack. We
used the SPP model of (17): a set of ‘birds’ in 2 dimensions moves synchronously and interact
by aligning with their neighbours. Each bird i is characterized by its position r; and velocity v;.
The dynamics is defined by r{(t+1)= r(f)+v,(t+1). The velocities v; have constant modulus,
whereas their heading 6, obey the equation, 8,(t+1)=[0,(t)+Z; 0,(f)]AN;+1), see also (6). The sum
runs over the N; neighbours interacting with bird i. In the metric version of the model one
considers all neighbours within a fixed metric range r. around bird i, whereas in the topological
case only the first n, neighbours are considered, irrespective of their metric distances: Ni=n, for
all i. The flock and the predator are put in relative motion one against the other, with a vertical
offset d between the predator and the centre of mass of the flock. The predator exerts a
repulsive force on each bird, which decazys with the bird-predator distance as 1/r and gives a
contribution Fy [ y; cos(8)) — x; sin(8)) ]/ ri” to the equation for the heading 6,. The parameter F,
tunes the strength of this force relative to the inter-individual one. a Sketch of the experiment: an
initially cohesive and polarized flock moves towards the predator (orange arrow) and interacts
with it. b,c Typical flocks’ trajectories. In the metric case many birds are pushed out of the flock,
and remain isolated. Conversely, in the topological case the flock maintains cohesion, and no
stragglers arise. d,e Probability that the flock breaks into M connected components (CC) after
the attack; a CC is defined as a set of birds that are within a distance 3r, from at least one bird.
The value M=1 indicates that the original flock resisted the attack as a whole, i.e. maximum
cohesion. The probability is dramatically different in the two cases. Moreover, in the metric case
stragglers are the 43% of the CC, whereas in the topological case they are just the 5%. In a
second simulation, flocks are sent against an obstacle. In order to avoid it, the velocity of each
bird is randomly reassigned whenever it gets too close to the obstacle. The probability of M is
very similar to the predator setup; metric stragglers are 24% of the CC; topological stragglers
are 0.7%. These results prove that topological flocks are significantly more resilient than metric
flocks to perturbations. Parameters of the simulation are: N=200 particles; T=2000 time steps;
number of different initial conditions N;,= 5000 (metric case), 2000 (topological case); r.=0.15
(metric case); n.= 3 (topological case); |vi|= 0.25s"; d =0.9; F,=0.05. Initial birds are confined in
a region of size R=1, and have aligned velocities. Boundaries are open. We checked that the
results do not change qualitatively in an ample and stable range of parameters.



SUPPLEMENTARY MATERIAL

What is the origin of the anisotropy?

A similar spatial anisotropy as the one we find for starling was reported in fish
schools (39), and it seems therefore a typical feature of collective behaviour in both
birds and fishes. What is the origin of this anisotropy?

Numerical models with isotropic interaction break the directional symmetry,
giving a non-zero velocity of the aggregation, but fail to reproduce the structural
anisotropy (40-41). This suggests that the anisotropy is not simply an effect of the
existence of a preferential direction (the velocity), but is rather an explicit consequence
of the anisotropic character of the interaction itself. Vision is a natural candidate, given
its anisotropic nature in both birds and fishes. In particular, starlings have lateral visual
axes and a blind rear sector (42), and this fact is likely to be related to the lack of nearest
neighbours in the front-rear direction. Indeed, several studies interpreted the anisotropic
flight formations in birds as the result of the optical characteristics of the birds’ eye
(43,44,45). To investigate further this hypothesis, it would be very important to have an
argument that connects in a quantitative way the physiological field of view of the birds
to the actual position of the nearest neighbours. Unfortunately, there is no such model
to-date. A distinct idea is that the mutual position chosen by the animals is the one that
maximizes the sensitivity to changes of heading and speed of their neighbours (46).
According to this hypothesis, even though vision is the main mechanism of interaction,
optimization determines the anisotropy of neighbours, and not eye’s structure.

Radically different is the claim that anisotropic structures both in bird and in fish
aggregations save energy thanks to aerodynamic (or hydrodynamic) advantages (AA)
(47,48,49). In particular, this hypothesis has been often invoked to explain V-formations
in migrating birds. It may be plausible to advocate an energy-saving principle for
migrating birds, but it seems much less so for flocking starlings, when birds appear to
do everything but economize on energy. In fact, the energy-saving principle has been
challenged both for birds (50) and fishes (51). Our discovery that flocking is ruled by a
topological interaction rules out the AA hypothesis, at least for starlings in evolution
over the roost. Indeed, topological interaction and AA are completely incompatible: in
order for AA to work, animals must keep roughly constant mutual positions in space,
because aerodynamics is ruled by metric scales. In the topological case however, the
anisotropy is the same for dense as for sparse flocks, and the mutual metric positions of
birds change drastically with the density. We cannot exclude that for migrating birds
things are different. In that case, the aggregations may keep a constant density in time,
making the AA thus possible. Only empirical observations can clarify this question.

Topological range or renormalized metric range?

Our experimental results show that the interaction among the individuals depends
on the topological distance, rather than the metric one. This means that, given two
flocks with different density, the topological range is the same in the two flocks (say 6
birds), whereas the metric range is large in the sparse flock and smaller in the denser
flock. Formally, we can introduce a renormalized metric range, by dividing the normal



metric range by the average nearest neighbours’ distance, i.e. the sparseness, r.’ = r. /7.
Of course, this quantity is nothing else that the topological range to 1/3, r.’=n.">. The
renormalized metric range is therefore the same in the two flocks, as it does not depend
on sparseness anymore.

From the mathematical point of view, introducing a topological range, or a
renormalized metric range is equivalent. There are, however, many reasons, both
technical and biological, to prefer the topological vs. metric description, rather than the
renormalized metric vs. purely metric one. To implement the topological interaction in a
simulation, one simply makes each bird interact with all its . nearest neighbours, which
is technically easy to do. On the other hand, one could compute the metric distance of
the neighbours, compute the average nearest neighbours’ distance in the whole flock,
divide the two, and make the bird interact with all birds within a certain renormalized
metric distance. This is much more complicated to do. Secondly, a topological range is
more suitable to spell out the cognitive implications of our result. The topological range
of the interaction (6-7 neighbours) is the same as the threshold of numerosity
discrimination found in experiments on birds (7 objects). It would harder to appreciate
this result by saying that the renormalized metric range of interaction is constant, and
equal to 1.5 (for example). The renormalized range would be dimensionless, and it
would very poorly connect with experiments on the cognitive capabilities of birds.

The connection between structure and interaction

Several numerical models of collective behaviour are ruled by completely
isotropic interactions and, consequently, do not display any anisotropy in the spatial
structure of individuals. Yet, individuals are strongly interacting. One may then argue
that there is no link, in general, between structure and interaction. However, this is not
true. The fact that interaction in real flocks gives rise to anisotropy in the structure is
just a fortunate condition that allows us to trace the interaction in a very straightforward
way, and find its range. Had the interaction not been anisotropic, it would just have been
harder to trace the interaction from the structure, but still quite possible; for example, by
carefully analyzing the so-called structure factor as it is normally done in liquid theory.
So, in order to read the interaction from the structure, it is important to find the right
tracer. For flocking birds, we found that the anisotropy is a very good tracer.

A second possible objection is that birds, in addition to the (probably) visual
anisotropic interaction that we identify, may also be using a different kind of
interaction, which however leaves no trace on their structure. In this case, of course, we
would not be able to say anything about this second ‘invisible’ interaction, and our
analysis would be partial. To this objection one can reply first of all that an interaction
that has no effects on the structure of individuals seems significantly less relevant than
one that does. Secondly, even though we cannot exclude such case, it seems more
reasonable to keep the number of possible ingredients to a minimum, and not to invoke
the existence of forces of which we find no effects in the empirical data.

Finally, we must remark that in this work we only studied the static structure of
individuals, leaving to a future work the analysis of the individual trajectories, with all
dynamical correlations. Dynamics is of course another very important effect of the
interaction, so it will be very interesting to compare the results coming from the
dynamical structure (range, interaction’s decay, etc) with the present static results.



Supplementary Figures

Figures S1-S2. Aerial display

Typical examples of starling aerial display. Various flocks, ranging from several hundreds to
thousands birds, wheel and turn above the roosting site.
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Figure S3. Flock image and 3D reconstruction

This flock (16-05) consists of 2631 starlings, flying at approximately 240 m from the cameras.
The cameras tilt-up was 40%. a,b, Left and right photographs of the stereo pair, taken at the
same instant of time, but 25 meters apart. ¢,d,e,f, 3D reconstruction of the flock in the reference
frame of the right camera, under 4 different points of view. Panel d shows the reconstructed

flock in the same perspective as the right photograph (b).
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Figure S4. Angular distribution map of nearest neighbours.

This figure shows the angular distribution map of nearest neighbours for two flocks (panel a and
b). The map is computed as described in Fig.2a. In both flocks there is a strong lack of
neighbours along the velocity. The location of the maxima is different in the two cases. With
reference to Table S1, the maps in this figure correspond to events 21-06 (panel a) and 29-03
(panel b).
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Figure S5. Experimental setup

Schematic illustration of the experimental setup. There are three observation points where the
cameras are located: two of them are 25m apart (stereo cameras) and the third one is 2.5m
further on the right (trifocal camera). In each observation point a pair of interlaced cameras
(green and blue in the figure) is mounted on and aligned to an aluminium bar. For stereo
cameras the bar is 680mm long and is equipped with a rigid graduated gauge. Bars have a
convergence angle a of 0.22 radiants to optimize the common field of view of the cameras and
a tilt-up which may vary from 35% to 40%. A thin line (&0.25mm) connects the stereo bars
passing close enough to the gauge to avoid parallax effects. In this way the nominal error on the
convergence angle is 3.7x10™ radiants. The left (blue) cameras on the bars shoot
simultaneously with a period of 200ms (5fps). The same is true for the right cameras (green).
Left and right cameras are interlaced with a shift of half a period such that the global shooting
rate is 10 fps.
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Figure S6. Simulations with interaction decaying with the distance

Numerical simulations: probability of the number of connected components (CC) after the
predator’s attack, in the metric vs. topological case, with an interaction among individuals that
decays with the distance. The setup of the simulation is the same as Fig.4, but the way the
directions of the velocities are updated is different. In Fig.4 all neighbours, both in the metric and
topological case, were weighted the same in the update of the headings 6,. Here, however, we
weight each bird with a term 1/(1+r) in the metric case, and 1/(1+n;) in the topological one. So,
birds that are more distant from the reference one, interacts more weakly with it, but distance
can either be topological or metric. As in the flat, un-weighted case, the probability is
dramatically different in the two cases, with topological flocks much more cohesive than metric
ones under perturbation. Therefore the big difference is between the metric and the topological
case, and not between the flat and the decaying case. This proves that to keep cohesion under
perturbation, the definition of distance (metric vs. topological) is definitely more relevant than the
specific dependence on it (flat vs. decaying).



Table S1. Global quantitative properties
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Flocking events are labelled according to session number and position within the session. Each

quantity is averaged over the different shots of the event. Events are ordered by increasing
values of the average nearest neighbour distance, ry, which we call sparseness throughout our
study. The density p (the ratio of the number of birds to the flock’s volume) is proportional to r
(Pearson’s correlation test: n=10, R*=0.8, P=0.0004). The value of r, varies significantly,
ranging from 0.7m to 1.5m, in the analyzed events. Average body length and wingspan of
starlings are respectively BL=0.2m and WS=0.4m, and thus in the densest flocks r1~3.5BL and
ri~1.7WS. Velocity refers to the centre of mass (the average position of all birds in the flock).
The scalar product between gravity and velocity is always quite small: velocity is thus

approximately perpendicular to gravity.

Event Number of birds  gparseness r 4 (m) Velocity (ms'1) IV*Gl
32-06 781 0.68 9.6 0.06
28-10 1246 0.73 111 0.09
25-11 1168 0.79 8.8 0.12
25-10 834 0.87 12.0 0.18
21-06 617 1.00 11.2 0.09
29-03 448 1.09 101 0.27
25-08 1360 1.25 11.9 0.14
17-06 534 1.30 9.1 0.09
16-05 2631 1.31 15.2 0.19
31-01 1856 1.51 6.9 0.09
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