

PHASES AND PHASE TRANSITIONS IN THE COLLECTIVE DYNAMICS OF SIMPLE ROBOTIC FLOCKS <u>G. Vásárhelyi</u>¹, M. Nagy¹, D. Ábel¹, N. Tarcai¹, Cs. Virágh¹, P. Várkonyi², T. Vicsek¹

¹Eötvös Lóránd University, Faculty of Science, Department of Biological Physics, Hungary (<u>vasarhelyi@hal.elte.hu</u>) ²Budapest University of Technology and Economics, Department of Mechanics Materials and Structures, Hungary

Abstract

We developed the first experimental setup of very simple self-propelled robots that show collective behavior based on only inelastic collisions in a two dimensional toroidal space. A circular swimming pool and cheap commercial RC boats were used to observe different flocking related phenomena that had been suggested by many theoretical models before. We proved that noise level has a fundamental role in the generation of collective dynamics and showed that jamming, flocking and disordered motion are all parts of the world of such a simple experimental setup. Critical noise ranges were examined and characteristics of both first and second order phase transitions were found. Our work was extended with a simulation model, too, and high similarity between real and simulation results were observed.

Numerical simulation of boat dynamics

Ships are subject to:

- propulsion (forward/backward)
- propulsive torque if moving backwards
- damping by linear drag force, and torque

Collisions are assumed to be

- perfectly inelastic
- frictionless

The full dynamics is simulated using the Principle of Least Constraint

- a variational principle
- does not require determination of unknown contact forces

Simple Experimental Setup

Parameter	Value Unit
Outer diameter of toroidal pool	180 cm
Inner diameter of toroidal pool	97 cm
Size of boats	10x15 cm
Number of boats	27 pcs
RC control sequence [forward(fw) nop backward(bw) nop]	[2 1 x 1], where xc[0.6, 2.4] s
Speed of boats in fw phase	15 ± 5 cm/s
Angular velocity of boats in bw phase*	±1 ± 0.2 1/s
Image resolution	800x800 pixel
Recording framerate	10 FPS
Determined and saved parameters for each boat in each frame	position, orientation, time cm, (+ common control signal, rad, video frame) ms
Length of measurements	10-15 min
*Since boats turn in bw phase. bw phase length was taken as the noise	

– handles sudden collisions and continuous contact in a common framework

Order Parameters vs Time

Order Parameter Density Functions vs Noise

Visually Identified Dynamic Phases

level added to the system.

Distributions include all data from all measurements from the second half of *fw* control phases and the first half of the following *nop* phases. *Bw* phase length (noise, x-axis) is extended in simulation data.

Summary of New Findings

 Four different phases of collective motion were observed in an experimental SPP system with only inelastic collisions:

Vel. Corr. (c) 2009 Department of Biological Physics, Eötvös University

disorder

jamming

- a) jamming
- b) clustering
- c) ordered motion (in CW or CCW directions)d) disordered motion
- Phase transitions in time can be very sudden (first order)
- Noise level determines the overall state of the system
- Specific (nonzero) noise level is needed for ordered motion
- Phase transitions in the noise space are smooth (second order)
- Elongation of particles is needed in simulation for dynamic ordering

Berlin, 25–27 Nov 2009

 Real and simulation results are similar but lack of friction affects simulation in jamming phase with nonrealistic dynamics

Acknowledgements

This research was supported by the EU ERC COLLMOT project.

Collective Dynamics and Pattern Formation in Active Matter Systems – International Workshop