
Topic 5

Biological
Synchronization
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First example of spontaneous 
synchronization

• Huygens, 1665

• Inventor of 
pendulum clocks

• Hang two clocks to 
the same wall

• In half an hour they 
always regained 
synchrony

• Opposite wall: one 
loosing 5 sec a day 
relative to the other

• Theory of coupled 
oscillators

2Not so obvious:   https://www.youtube.com/watch?v=SGgbRkix_hY



First explanation
• Huygens wrote about “sympathy of two clocks” in a letter 

to his father
• He also provided a qualitative explanation of this effect of 

mutual synchronization; 
• he correctly understood that the conformity of the rhythms 

of two clocks had been caused by an imperceptible motion 
of the beam. 
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Oscillating metronomes – a  demonstration

https://www.youtube.com/watch?v=bl2aYFv_978 4



– The burst into 
spontaneous 
applause     

– Human physiology: 
walking, breathing

– Neuron network

– Pacemaker cells in 
the heart

– Chirping of crickets

– Fireflies

– Etc.

5https://www.youtube.com/watch?v=ZGvtnE1Wy6U

https://www.youtube.com/watch?v=ZGvtnE1Wy6U



First models of biological oscillators
• Arthur Winfree, late 1960s

– Ignored all biological differences and focused on the only 
common things: the ability to send and receive signals

– Complication: both of these are often a function of phase
• “Influence function” – what signal it sends

• “Sensitivity function” – how an oscillator responds to the signals it 
receives

Oscillators can  advance or delay, depending on where they are in 
their cycle when they receive a pulse. (Experiments show that most 
biological oscillators are like this)

Assumptions:
All the oscillators in a given population have the same influence and 

sensitivity function

But the natural frequencies can vary, according to a bell shape

Connectivity (the way the oscillators are connected)
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Kuramoto model

• 1975

• assumptions:  

– the oscillators are identical or 
nearly identical (bell-shaped 
distribution of natural 
frequencies)

– the interactions depend 
sinusoidally on the phase 
difference between each pair of 
objects.
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• Later it has found 
widespread 
applications in other 
fields too 
(neuroscience, physical 
systems, etc.)



The Kuramoto model (KM)

• Continuous time and phase
• Consists of a population of N coupled oscillators
• Each tries to run independently at its own frequency, 

while the coupling tends to synchronize it to all  the  
others
• 𝜙𝑖 : the phase of oscillator i (in the sense of mod 2π)
• 𝑡 : time
• 𝑇𝑖 : periodic time

• 𝜈𝑖 =
1

𝑇𝑖
: natural frequency

• 𝜔𝑖 =
2𝜋

𝑇𝑖
: natural angular frequency

• One oscillator (an oscillator without interaction):
𝑑𝜙

𝑑𝑡
= 𝜔
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The Kuramoto model in mean field approximation

• IN GENERAL: N coupled oscillators interacting with each others 
pairwise :

𝑑𝜙𝑖

𝑑𝑡
= 𝜔𝑖 + 

𝑗=0

𝑁−1

Γ𝑖𝑗(𝜙𝑗 − 𝜙𝑖) , 𝑖, 𝑗 = 0,1, … , 𝑁 − 1

• Γ𝑖𝑗(Δ𝜙) : interaction, a function with 2π periodicity
• All the oscillators interact with each other the same way (this 

was the simplifying assumption of Kuramoto):

Γ𝑖𝑗 𝜙 =
𝐾

𝑁
sin(𝜙) , 𝑖, 𝑗 = 0,1, … ,𝑁 − 1

• K : strength of the coupling
• If K > 0 → Γ minimizes the phase difference 9



The Kuramoto model in mean field approximation

• The basic formula of the KM with MF approximation:

𝑑𝜙𝑖

𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁


𝑗=0

𝑁−1

sin(𝜙𝑗 − 𝜙𝑖) , 𝑖, 𝑗 = 0,1, … , 𝑁 − 1

• How do such oscillators synchronize?
• The interplay between the coupling strength and the distribution of the 

natural frequencies determines how many oscillators are synchronized.

• How can we measure the level of synchronization?

– Order parameter: An order parameter is a measure of the degree of 
order across the boundaries in a phase transition system; it normally 
ranges between zero in one phase and nonzero in the other.

• A trivial order parameter can be: 𝑅 =
𝑁𝑆

𝑁
, where NS is the 

number of synchronized units
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Order parameter for the Kuramoto model

• The “Kuramoto order parameter” is more 
appropriate to monitor the transition towards 
synchronization)

• Let us assume that 
– the 𝜔𝑖 natural frequencies are taken from a 

Gaussian distribution 𝑔(𝜔)

– The expected value of the 𝑔(𝜔) density

function is 𝜔0, with 𝜎 standard deviation 

𝑔 𝜔 =
1

𝑁


𝑖=0

𝑁−1

𝛿(𝜔𝑖 − 𝜔) =
1

𝜎 2𝜋
𝑒
−
(𝜔−𝜔0)

2

2𝜎2
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Defining the order parameter

• Parameter transformation:
Ψ𝑖 ≔ 𝜙𝑖 −𝜔0𝑡
𝜔𝑖 ← 𝜔𝑖 − 𝜔0

(𝜔0 : average natural frequency)

• The Kuramoto formula is invariant to the above transformation:

𝑑𝜓𝑖

𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁


𝑗=0

𝑁−1

sin(𝜓𝑗 −𝜓𝑖) , 𝑖, 𝑗 = 0,1,… ,𝑁 − 1

• 𝜃(𝑡): the vectorial average of the (transformed) 𝜓𝑖 unit vectors
• Now we can define the order parameter as next (as the complex mean field

of the population):

𝑧 𝑡 ≔ 𝑍 𝑡 𝑒𝑖𝜃 𝑡 =
1

𝑁


𝑗=0

𝑁−1

𝑒𝑖𝜓𝑗(𝑡)

(here 𝑖 is not the index of an oscillator, but −1) 12



Defining the order parameter – cont.

𝑧 𝑡 ≔ 𝑍 𝑡 𝑒𝑖𝜃 𝑡 =
1

𝑁


𝑗=0

𝑁−1

𝑒𝑖𝜓𝑗(𝑡)

Complex order param.     Real part     
1

𝑁
𝑁 𝑒𝑖𝜓𝑗(𝑡)

=1 

• real part of 𝑧(𝑡), → 𝑍 = 𝑧

• the order parameter has the following properties:

– Expresses the “closeness” of the 𝜓𝑖 unitvectors

– If 𝑍 ≈ 1 → the 𝜓𝑖 phases are close to each other

– If 𝑍 ≈0 → the 𝜓𝑖 phases point in random direction
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Bifurcation
• In the uncoupled limit (K=0) each element 𝑖 describes limit-cycle 

oscillations with characteristic frequency 𝜔𝑖. 
• Kuramoto showed that, by increasing the coupling K the system 

experiences a transition towards complete synchronization, i.e. , a 
dynamical state in which 𝜓𝑖 𝑡 = 𝜓𝑗 𝑡 for ∀𝑖, 𝑗 and ∀𝑡.

• This transition shows up when the coupling strength exceeds a critical 
value whose exact value is

𝐾𝐶 =
2

𝜋∙𝑔(𝜔0)
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From: Mendoza et al., 2014, Synchronization in a semiclassical Kuramoto model.

(𝜔0 is the mean 
frequency of the 𝑔 𝜔
frequency distribution)
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Synchronization in the classical Kuramoto model. Each panel on the top shows the collection of oscillators 

situated in the unit circle (when each oscillator j is represented as 𝑒𝑖𝜓𝑗(𝑡)). 
The color of each oscillator represents its natural frequency. From left to right we observe how oscillators 
start to concentrate as the coupling K increases. In the panels below we show the synchronization diagram, 
i.e. , the Kuramoto order parameter Z as a function of K . It is clear that Kc = 1 .

From: Mendoza et al., 2014, Synchronization in a semiclassical Kuramoto model. 



Simulation results 
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Z : order parameter
t : time
N = 200 coupled oscillators
σ = 1
K = 2.5 (top curve), 

0.5 (middle curve)
0 (bottom curve) 

→ K=0 and K=0.5 (weak coupling) results in similar order parameter



https://www.youtube.com/watch?v=9zrOoVlN8tg
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Outlook: Kuramoto model on networks.
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https://www.youtube.com/watch?
v=hzRhdUkZc-s

The all-to-all coupling 
considered originally by 
Kuramoto can be trivially 
generalized to any 
connectivity structures 
by introducing other 
coupling forms (via 
(weighted) adjacency 
matrices, graphs, etc.) 

This allows for the study 
of the synchronization 
properties of a variety of 
real-world systems for 
which interactions 
between constituents 
are better described as a 
complex networks.



Noise in the discrete Kuramoto model

• The KM with the above defined noise:

𝑑𝜙𝑖

𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁


𝑗=0

𝑁−1

sin 𝜙𝑗 − 𝜙𝑖 + 𝜉𝑖

• Or in other form:

𝑑𝜓𝑖

𝑑𝑡
= 𝜔𝑖 + 𝐾𝑍 sin(𝜃 − 𝜓𝑖) + 𝜉𝑖

• ξ: a random value chosen from a normal (Gaussian) distribution of mean 
zero and width Τ𝛽2 Δ𝑡 , where

• 𝛽2 defines the strength of the noise, and
• Δ𝑡 is the time of the time-steps used in the simulations
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Simulation results with white noise introduced to the discrete KM
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From: Bryan C. Daniels: Synchronization of Globally Coupled Nonlinear Oscillators:
the Rich Behavior of the Kuramoto Model, Fig 4.2.

The dependency of the magnitude of the order parameter Z on the coupling K in presence of 
noise. 𝛽2 sets the strength of the noise. From theoretical results 𝐾𝐶 is predicted to occur at 

𝛽2 + 1 , shown as three vertical lines at 1.5, 2.0, and 2.5.

N=5000


