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Abstract
Humans predominantly form their beliefs based on communication with other
humans rather than direct observations, even on matters of facts, such as the shape of
the globe or the effects of child vaccinations. Despite the fact that this is a well-known
(not to say: trivial) observation, literature on opinion dynamics and opinion formation
largely overlooks this circumstance. In the present paper we study the effects of limited
access to information on the level of knowledge of members of groups embedded into
an environment that can be observed. We also study the consequences of false
information circulating within the group. We find that exposure to fake news makes
intense communication counterproductive, but, at the same time, calls forth
diversification of agents with respect to their information spreading abilities.

Keywords: Communication network, Optimal group structure, Limited access to
information, Fake news, Disinformation, Diversity

Introduction
Humans believe in great many things. We have beliefs regarding history, art, proper
and improper behaviour, law-systems, companies, climate change, child vaccination, etc.
Many of these things are “social constructions” in the sense that they do not correspond
directly to some kind of external reality, rather to some kind of shared abstract idea
(for example ‘proper behaviour’ or ‘law-system’, from the above list) (Searle 2011). On
the other hand, many of our ideas do refer to some kind of external reality (like climate
change, the usefulness or harmfulness of child vaccination or the shape of the globe),
which concepts are in intricate relations with the former ones (Berger and Luckmann
1991; Hacking 2000). What is common in all beliefs is that humans form them mostly
based on communication with fellow humans rather than direct observations (Sloman
and Fernbach 2017). This is a fundamental feature of all social constructions, but it firmly
holds for scientific ideas as well: most of us have never measured or looked up statistical
data regarding the effects of homeopathic medicament or the speed with which the polar
ice layer attenuates, yet most of us have a clean-cut opinion in these matters.
The above examples refer to complex scientific problems in which the ratio of the data

to which an average individual has access to is extremely small: observation data related
to the climate change for example is far more abundant than being accessible for one
person. Moreover, with the development of information technology, people are exposed
to an ever increasing amount of data. By now, for an ordinary person under ordinary
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conditions, it is basically impossible to check the source and dependability of every piece
of the received information, partly due to inefficient access to the source of information,
partly simply due to lack of time – not to mention other, psychological and social factors
(O’Connor and Weatherall 2018; Scheufele and Krause 2019). On the other hand, not all
factual questions are this complex, as many of them can be decided based on only a few
aspects – these cause debate more rarely.
In the present paper we focus on the effect of limited information access, in groups

aiming to achieve a clear idea regarding an “external reality” which can be observed.
We study the optimal structure of such groups – described by the communication net-
work and the observation/communication activities – under various exposure levels to
fake news. This model refers more to scientific fake news rather than political ones
since in the present model we assume that there exists an observable external real-
ity. Agents placed into a randomly generated, but observable environment can modify
their beliefs either by direct observation (which is a costly activity) or via communicat-
ing with their fellow group members (which is a much less costly action). Agents are
exposed to fake news during the entire run. The features of the most effective groups
are then determined by optimizing the communication network and the activity levels
(both communication and observation) for each agent, with a genetic algorithm. The fit-
ness function is defined by the accuracy of the group after the run, minus the costs of the
activities.
Although in the literature false information, fake news, misinformation and disinfor-

mation mean different things (disinformation contains intentionally distorted data while
in case of misinformation the distortion can be unintended), in the present article we use
them as synonyms, since from the point of view of our model, the reason why the infor-
mation is false does not matter.We adjust the information-accessing abilities of the agents
by a parameter called H which refers to the portion of the environment an agent is able
to observe (see also Fig. 1). Accordingly, it can be interpreted in two ways: the ability of
the agents, assuming an environment with fixed complexity, or alternatively, the complex-
ity of the environment, assuming that humans have (by and large) similar abilities (for
example a simple “environment” can be comprehended by each agent individually, while
if they are embedded into a more complex environment, then only a portion of it will be
accessible).
Despite the fact that the limited nature of information access is a fundamental property

of opinion dynamics and opinion formation, it has not gained attention up to now. In
contrast, phenomena related to fake news have gained more and more attention recently.
Fake news exists since humans do, but its spread has always been subject to the current

technologies of information transfer. In recent times, along with the development of com-
munication technology, newer and newer channels of information distribution appeared
which in the meantime led to initiations aiming to preserve the solidity and verity of
news – such as the fairness doctrine introduced in the US in the middle of the 20th
century (Iyengar and Massey 2018). However, the appearance of internet and not much
later the break-in of social media made the publishing and the dissemination of news
cheaper and easier, thus it has become the most important platform of false news, too.
Unreal news even though mimics traditional news’ content, lacks the traditional editorial
norms that ensures the accuracy of information and appears in different forms depending
on its goal and content (Iyengar and Massey 2018; Lazer et al. 2018).
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Fig. 1 The basic properties of the model a An “external reality” (or “environment”), which can be observed by
the agents, is given. This environment is represented by K randomly generated numbers taken from the [0,1]
interval with uniform distribution. In the example of this figure K = 5. b Each agent-member of the
group-maintains a K-long “belief vector” reflecting their information about the “external reality”. Agents are
able to observe only a fraction H of the environment (marked green). In this example H = 0.2, that is, the
given agent is able to observe 1 element of the environment vector. c and d Agents can also communicate,
during which a “source” individual shares the data of a randomly selected element of their belief vector
(marked red) with the “target” individual. As a results, the corresponding element of the target individual’s
belief vector gets closer to that of the agent sending the data. That is, their corresponding beliefs get closer
to each other. This type of communication defines a one-directional information transfer

The spread of unreliable information can be traced back to various reasons: apart from
the fact that people in general enjoy gossip (which often precedes news diffusion) (Szekfű
and Szvetelszky 2005) they are not particularly keen on creditable information either due
to psychological factors such as the confirmation bias (the preference to keep contact with
people maintaining similar views, leading to the reinforcement of the original beliefs) or
the desirability bias (the tendency to accept pleasing information) (Garrett and Weeks
2017; Lewandowsky et al. 2012; van Prooijen 2016) – just to mention two out of the
many factors. Thus, decreasing the vulnerability of individuals to fake news, especially on
social media is a major challenge, aggravated by other non-psychological factors such as
the appearance of social bots or trolls who often speed up the process of spreading false
information to the same order of magnitude as the propagation of reliable information
(Vosoughi et al. 2018; Shao et al. 2018;MitchellWaldrop 2017; Pennycook and Rand 2019;
Bovet and Makse 2019; Varol et al. 2017).
Agent-based modelling is a popular way to study complex systems composed of many

interacting autonomous units (Macal and North 2010; 2006). These models often include
some kind of environment which can provide information about the spatial location of the
agents or correspond to an observable external reality, similarly to our approach (Nepusz
and Vicsek 2013). Regarding the belief systems of the agents, there is a whole range of rep-
resentations with various levels of complexity, from very simple ones (Nepusz and Vicsek
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2013), through elaborate models (Smets and Kennes 1994; Smets 1994; Rojas-Guzmán
and Kramer 2013), up to complex methods developed in the field of artificial intelligence
(Bengio et al. 2013). For example, in Ref. (Chung and Reynolds 1996) the authors propose
a dual inheritance evolutionary algorithm, called cultural algorithm, in which individuals
maintain a shared belief system. Agent-based models tend to put an emphasis not only on
the inner structure and/or behaviour of the units, but also on their interactions (Hare and
Deadman 2004; Epstein and Axtell 1996; Bousquet and Le Page 2004). The models also
widely differ in the goals of the agents (Vedres and Scotti 2012), such as reaching consen-
sus (Olfati-Saber and Murray 2004) or learning to forecast in an economic environment
(Bullard and Duffy 1999).

Themodel
Here we introduce an agent-based model in which agents are embedded into an envi-
ronment that can be observed, the observation abilities of the agents are limited, and
individuals can choose to modify their beliefs either by observation or communication.
The “external reality” is represented by a vector of K randomly selected (with a uniform
distribution), independent real numbers taking values from the [ 0, 1] interval, represent-
ing K independent pieces of information. We call this vector the environment. A group
consists of N agents, each of which maintains an image (or idea) regarding the envi-
ronment. These are the belief vectors, which, along with the environment vector, are set
randomly at the beginning of each run. Accordingly, the beliefs of a group at any moment
can be described by N real vectors, all of length K.
Each agent is able to “see” only a portion of the entire environment, which portion is

defined by the parameter H (H ∈[ 0, 1]). In the present paper we focus on two cases: (i)
whenH = 0.1, that is, when each agent has access only to 10% of the environment vector,
and (ii)H = 1, that is, when the agents can see the entire environment vector without any
restrictions (see Fig. 1). In case H < 1, the specific elements of the environment vector
that are observable for the various agents are set randomly at the beginning of each run.
During a run, agents modify their belief vectors due to two activities: communication

and/or observation. Communication is a one-directional information flow, during which
the source agent i shares a piece of information with the target agent j, who modifies their
belief vector in a way that it becomes more similar to that of agent i’s. For example if agent
i shares the 5th element of their belief vector (corresponding to the 5th element of the
environment vector) with individual j then the fifth element of the belief vector of agent j
will get closer to that of agent i’s with a random portion. That is, only the source individ-
ual influences the beliefs of the target agent. In case agent i chooses to communicate, the
probability of communication with agent j is defined by the element aij of the adjacency
matrix. However, agent i communicates only with probability Ai

Comm(≤ 1). Accordingly,
the “true” probability of communication between agents i → j is wij = aijAi

Comm. In the
following, when we refer to the communication network, we consider this latter network,
containing the wij values for all the i → j agent pairs. Whether the communication makes
agent j better-informed or not, depends on the accuracy of the beliefs of the source agent
i.
In contrast, observation always improves the accuracy of the beliefs of the observer. The

reason why despite this fact not all agents observe the environment directly, is twofold:
(i) if H < 1 then the agents simply do not have access to all elements of the environment,
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and (ii) observation is much more costly than communication. Specifically, we assume
that both activities have a cost, and that the cost of observation Cobs is much higher than
the cost of communication Ccomm. (Looking up the measurement data related to climate
change takes much more time and energy than talking about this subject with others.)
Each run consists of several rounds during which each agent i communicates and/or

performs observations with probabilities Ai
Comm and Ai

Obs, respectively.
“Fake news” is represented by a vector whose ith element, fi is 1 − ei, where ei is the ith

element of the environment vector. For example, if the sixth element of the environment
vector is e6 = 0.37, then the sixth element of the fake news vector will be f6 = 1 −
0.37 = 0.63. Considering values near 0.5 as "neutral statements" and values near 0 and 1
"extreme", this definition can be interpreted as negating the original viewpoints/pieces of
information. We study three levels of exposure to fake news, RFN = 0%, 1% and 5%.
Exposure to fake news is incorporated into the model as next: at the beginning of each

round, a certain (RFN) percentage of the elements of the belief vectors maintained by the
group members are set to the value of the corresponding element of the fake news vector.
The elements to be modified are chosen randomly.
Our question is the following: What is the optimal group structure (described by the

communication network and the activities of the agents, both observation and commu-
nication) under the exposure to various levels of fake news, if by “optimal” we mean that
the beliefs of the group members reflect the “reality” (represented by the environment
vector)? In other words, a group is optimal, if its members can reach an accurate idea
regarding their environment, despite the exposure to fake news or disinformation. We
optimize the group and not the individuals, so our results reflect the interest of a group
in case it aims to keep its members well-informed in the presence of disinformation.
The optimization is carried out by genetic algorithm in which the fitness function is

defined as:

F = αGrp − CActv (1)

where αGrp is the accuracy of the group (see Eq. 2), and CActv is the sum of the activity
costs (Eq. 3). Since in case of uniformly distributed random values for both the initial
belief vectors and the environment vector, the expected value of the initial error of the
group EInitGrpAvg (defined as the mean square deviation from the environment vector) is 1/6,
the first term of the fitness function, αGrp is:

αGrp =
EInitGrpAvg − EFinalGrpAvg

EInitGrpAvg
=

1
6 − EFinalGrpAvg

1
6

= 1 − 6EFinalGrpAvg (2)

That is, the accuracy of the group is defined as the ratio of the original expected error
that has been worked off during the run. (We have also run optimizations in which the
initial error of the group was specified as the belief vectors’ empirical mean square devi-
ation from the environment vector, instead of the above defined expected mean square
deviation. According to our results, these two approaches produce very similar outcome.)
Regarding the second term of the fitness function, the activity costs, it is the average
observation activity < AObs > multiplied by the observation cost Cobs plus the average
communication activity < AComm > multiplied by the communication cost Ccomm:

CActv =< AObs > Cobs+ < AComm > Ccomm (3)
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Parameter settings

In the present study we focus on small groups, counting a few dozen members, in which
face-to-face communication is possible. Specifically, the parameters for the results delin-
eated in the present paper are the following:N = 30, whereN is the size of the group, and
K = 20, where K is the length of the environment and fake news vectors. These param-
eters mainly typify families and friendship groups. Due to limitations on computational
capacity, in the present paper we do not study the optimal structure of larger groups.
Smaller groups have been studied (N = 10 and K = 10) providing similar results.
Regarding the cost parameters, we have sought to satisfy the following two conditions:

(i) our original assumption (namely that the cost of observation CObs is considerably
higher than the cost of communication CComm), and (ii) staying within the boundaries
of the [ 0, 1] interval, from which all elements constituting the fitness function take val-
ues. The concrete results delineated in the present paper belong to the parameter pair
CComm = 0.1 and CObs = 0.5, but the conclusions hold for more extreme parameters as
well satisfying our requirements (see Fig. 6b.)
The number of rounds in each run, that is, the number of rounds during which agents

can communicate and/or observe their environment, is 50. The exact value of this param-
eter does not matter as long as it is (i) large enough for the group error to get significantly
closer to its asymptotic value, but, at the same time (ii) small enough to give room for
improvement originating from better group structures. Furthermore, a technical consid-
eration is that it should not slow down the simulations unnecessarily. Once it is set, the
same value is used throughout the optimization.
The detailed flowcharts of the model along with the genetic algorithm that we used for

optimization are depicted in Fig. 5 in the “Methods” section.

Results
The first and most upfront observation is that exposure to fake news severely deteriorates
the performance of the group. The decay is proportional to the amount of false informa-
tion circulating within the group, and it holds for all values of H (see Fig. 2). However,
better observation abilities (corresponding to higher values of H), independently of the
fake news ratio calls forth higher observation activities (Fig. 2a) resulting in better group
performances, reflected by both the fitness values (Fig. 2b) and the group accuracy val-
ues (Fig. 2c). It is also clear from subfigures (b) and (c) that even high observation abilities
can not compensate the exposure to false information, reflected by the constant distances
among the curves.
Furthermore, according to Fig. 2a, there is a clear inverse relation between the fake news

ratio and the optimal amount of communication within the group: the more a group is
exposed to false information the less communication is desirable among the members,
reflected by the curves marked with blue and green ’x’ symbols, corresponding to 5% and
1% constant exposure rate, respectively.
Since nodes – representing group members – receive information via incoming edges

and send data via outgoing edges, the weighted in-degree/out-degree properties of the
nodes serve as an accurate estimate for the corresponding agent’s role in the infor-
mation propagation process (Albert and Barabási 2002). (The weighted in-degree of a
node is the sum of the edge weights for edges in-coming to the given node, and sim-
ilarly, the weighted out-degree of a node is the sum of the edge weights for edges
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Fig. 2 a The optimal amount of activities: observation (marked with filled ’o’ symbols) and communication
(marked with ’x’ symbols), b the fitness values, and c the group accuracy values, as a function of H, for three
fake news ratios: 0% (marked with red), 1% (marked with green) and 5%(marked with blue). a The observation
activity monotonically increases as a function of H, meaning that members of an optimal group observe
proportionally to their abilities. At the same time, at higher H values, the communication activities decrease,
at least in case of small fake news ratio. Under exposure to fake news, there is a clear inverse relation between
the fake news ratio and the optimal amount of communication. b and c As H increases, the performance of
the group also increases, but exposure to fake news deteriorates group-performance severely, for all H values

out-going from the given node). When inspecting these properties, the first striking fea-
ture is that the weighted in-degree values are very similar for all nodes, independently
of the values of H or the level of false information circulating among the members (see
the green bars in the insets entitled “Weighted degree distribution” in Figs. 3 and 4a).
This means that all agents receive similar amount of data from their peers within an
optimal group. However, the exact amount of the received data (referred to from the
weighted in-degree values) does depend on the level of exposure (and also on H): along
with the increment of the fake news ratio, the green bars shift towards the left, that
is, towards smaller values in the insets entitled “Weighted degree distribution”, and in
Fig. 4a the box-plots representing higher exposure to false information (outlined with
blue color) are located on significantly lower positions than the ones belonging to zero
exposure ratio (outlined with red color). In other words, the amount of data flowing
among members in an optimal group is inversely related to the group’s exposure to fake
news. (Note that this feature is in agreement with the decreased communication activities,
shown in Fig. 2a).
In contrast, the out-degrees – reflecting the participation in spreading the information

– behave very different: in case H = 0.1, that is, when each agents have access only to a
small portion of the environment (10%, in this case) and there are no false information
circulating, the best strategy to stay well-informed is to maintain a basically full graph in
which everybody is connected to everybody else in both directions (receiving and sending
data). This property is reflected by the uniformly high in-degree and out-degree values
in the histogram entitled “Weighted degree distribution” in Fig. 3a. However, as the ratio
of the fake news increases (bottom row), the out-degree values start to disperse, marking
a differentiation of the members regarding their activity in spreading the information.
Specifically, a significant portion of the members cease to participate in circulating data,
and remain connected to the group only via their in-coming edges (peripheral nodes on
the graphs in Fig. 3c and d) while others remain active.
Surprisingly, similar differentiation occurs with the increment of H (more specifically,

when H = 1) in case there is no exposure to fake news. In other words, in an opti-
mal group, in the ideal case when there is no false information circulating among the
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Fig. 3 Features of the optimal communication networks for different H and RFN values. The three pictures in
all the four subfigures are the following: (i) the graphic representation of the optimal communication
network, (ii) the weighted in and out degree distribution of the optimal communication network, and (iii), the
observation activity values as a function of the communication activity values. In order to retrieve a more
intuitive representation of the optimal communication network, we have omitted the edges with very small
weights (the ones smaller than 0.3

N = 0.01). As it can be seen in the insets entitled “Weighted degree
distribution”, the weighted in-degree values are very similar for all nodes, independently of H or the fake
news ratio (green bars). However, exposure to fake news (bottom row, subfigures c and d) results in smaller
weighed in-degree values (the green bars are shifted towards smaller values). Furthermore, exposure to false
information or high values of H (subfigures b and d) calls forth “blurred” out-degree distribution (magenta
color), marking the differentiation of agents regarding their role in spreading the information, which
phenomenon can not be observed in subfigure a. Agents with zero or close-to-zero communication activity
values are the peripheral nodes on the graphs who are connected to the rest of the group only via in-coming
edges

members, agents specialize with regard to their information spreading activity in case
all agents have full access to the entire environment (H = 1), and maintain a full net-
work in which everybody is connected equally to everybody else in case the access to
information is limited (H = 0.1) (see the top row of Fig. 3). Although diversity has
been reported to be advantageous from many points of views (Page 2010), the above
phenomenon is still remarkable, since here we have a case in which originally similar
agents specialize themselves with respect to their function within the group, under certain
conditions.
According to the insets depicting the observation activities as a function of the com-

munication activities (bottom insets in Fig. 3), peripheral agents (maintaining small
communication activities) are not characterized by higher observation activities, rather –
especially in subfigure (b) – the observation and communication activities correlate with
each other (agents with smaller communication activities have smaller observation activ-
ities as well). This correlation relaxes in case of exposure to fake news marking the
appearance of agents with diverse characteristics.



Berekméri et al. Applied Network Science           (2019) 4:101 Page 9 of 13

Fig. 4 Box-plots of the a in-degrees and b out-degrees of the nodes of the optimized communication
networks as a function of H, for 5% and 0% fake news ratios. In both subfigures blue represents 5% fake news
ratio, and red denotes the case when there are no fake news. The weighted in-degree values of the agents
are much more homogeneous than their weighted out-degree values independently of H or RFN . As a
general rule, exposure to fake news calls forth smaller in-degree and out-degree values, in agreement with
the decreased communication activity. Exposure to fake news also disperses the out-degree values, marking
the diversification of agents regarding their information-spreading abilities

The scope of the model andmain results

In the present study we assume (i) small groups counting a few dozen members in
which face-to-face communication is possible, (ii) that communication is information
flow during which an agent modifies the beliefs of an other agent, (iii) equal informa-
tion accessing abilities, (iv) the existence of an “external reality” that can be observed,
and (v) in some cases, the presence of fake news, meanwhile we omit psychological fac-
tors such as confirmation bias or desirability bias. In real life, these assumptions hold
for small communities, such as families or smaller circles of friends aiming to be well-
informed regarding some observable data within their environment.We show that in case
of exposure to fake news, specialization with respect to information spreading activity
among the members is beneficial, along with intensified observation and weakened com-
munication activity. Furthermore, observation activity – independently of the level of fake
news – should increase as a function of H, that is, better access to information in general
should give rise tomore observation. Regarding the communication activity, higher expo-
sure to fake news makes intense communication counterproductive, even in the extreme
case when CComm = 0, that is, when there is no cost associated with communication
(see Fig. 6b).

Methods
The code was written in Python. In order to find the optimal communication network
and activity levels, we have optimized these values by using a genetic algorithm (Eiben
and Smith 2010). Figure 5a depicts the flowchart of the used algorithm whose input are
the parameters and output is a population of optimized groups, each represented by a so
called "chromosome". In the corresponding literature, "chromosome" refers to an instance
of those parameters that the algorithm aims to optimize. Accordingly, in the present
model, each chromosome contains:
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Fig. 5 The flowchart of the a genetic algorithm and b the routine assigning a fitness value for each
chromosome. a Genetic algorithms – a popular and widely applied optimization approach – are designed to
optimise a population of chromosomes with respect to a pre-defined fitness function. b A crucial part of all
genetic algorithms is the way a fitness value is assigned to a chromosome: the input of this function is an
instance of chromosome (A and Bmatrices) and the output is the corresponding fitness value measuring the
"quality" of the input. The first two decision boxes (diamond shapes) stand for two for-loops, while the
second two decision boxes stand for two if-statements

• An adjacency matrix A := (ai,j)NxN whose values are taken from the [0,1] closed
interval. In this matrix, element (ai,j) defines the probability of communication
between agents i → j, in case agent i chooses to communicate in a certain round.
Accordingly – since these values define probabilities – the sum of each row is always
normalized to 1, and the elements in the main diagonal are set to 0 (since agents do
not communicate with themselves).

• A vector AComm := (
Ai
Comm

)
N whose i th element Ai

Comm is the communication
activity of agent i, and

• A vector AObs :=
(
Ai
Obs

)
N whose i th element Ai

Obs is the observation activity of
agent i.
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The elements of the vectors AComm and AObs are taken from the [0,1] closed interval
as well.

At the beginning of the optimization process, in the "Initialization step" (second box
in Fig. 5a) the values of the chromosome, that is, the elements of the matrix A and the
vectors AComm and AObs are taken from the [ 0, 1] closed interval with uniform random
distribution.
Throughout the optimization process these values become more and more "optimal"

with respect to a so called fitness function – this is what a genetic algorithm is designed for
(Eiben and Smith 2010). This fitness function returns a fitness value for each chromosome
reflecting its quality, that is, it is a numeric measure designed to describe how well a
certain chromosome solves the original problem. Figure 5b shows the flowchart of the
function we have used to assign a fitness value for each chromosome: its input is (i) a
communication network and (ii) the activity values for all agents (both observation and
communication), and its output is a fitness value. The exact formula of the fitness function
is defined by Eq. 1
Regarding theAi,j adjacencymatrix, it is important to highlight that its element aij refers

to the probability of communication between agents i → j, in case agent i chooses to
communicate in a certain round. However – as emphasized in “The model” section as
well – agent i does not necessary communicate in each round, but only in a portion of
them, defined by theAi

Comm(≤ 1) communication activity. Hence, the real ("effectuating")
probability of communication between members i → j is wij = aijAi

Comm. The results
reported in the manuscript refer to this latter "effective" communication network, defined
by the wij values. Since there is a one-to-one mapping between graphs and matrices, the
above adjacency matrix along with the communication activities unequivocally defines
the communication network (Bollobás 2002).
As seen in Fig. 5a, the genetic algorithm itself also has parameters which are inde-

pendent from the original problem. Namely, the attribute population_size sets the
number of chromosomes in each generation, while the parameter generation_no

defines the number of generations during the entire optimization process. The first
parameter, population_size, is the analogous of the genetic diversity within a (bio-
logical) population. In case of optimization problems, however, its proper size depends
on two (contradicting) considerations: on the one hand, larger population sizes result
more diverse "solution-propositions" in each generations rendering the appearance of
better and better solutions probable, but, on the other hand, too large population
sizes entail slower convergences, manifesting themselves in unnecessarily long compu-
tation times (unnecessarily high number of generations). Thus, the optimal value for
population_size is defined by the balance of the above two aspects (Gotshall and
Rylander 2002; Alander 1992; Roeva et al. 2013). Although it follows from the foregoing
that the parameter generation_no is related to the parameter population_size,
its proper value can be defined based on the shape of the so called "fitness curve" which
is the curve depicting the average fitness values as a function of the generation number.
At the beginning of the optimization process (at low generation numbers) the increase is
fast, which, after a while slows down and finally vanishes: this is when the fitness curve
"saturates" indicating that the chromosomes in the last generations are optimal solutions
for the original problem (see Fig. 6a). Keeping these considerations in mind, we have set
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Fig. 6 The progress of the optimization (a) and the optimal activity values for extreme cost values (b). a The
best (green dots) and the average (red dots) fitness values as a function of the generation number. Saturating
fitness curve indicates that the chromosomes in the last generations are optimal solutions for the original
problem. b Optimal activity values for as a function of H for CComm = 0 and CObs = 1. According to our
results, exposure to fake news calls forth intensified observation and weakened communication activity.
Observation activities in optimized groups – independently of the level of fake news – increase as a function
of H. In contrast to the observation activities (marked by filled circles), higher exposure to fake news makes
intense communication counterproductive, marked by the blue ’x’ marks which stay around 0.6, despite the
fact that no cost is associated to it

the parameters population_size= 1000 and generation_no= 900. The chromo-
somes in the last generations converge, that is, they are very similar to each other. Due to
this effect, it is reasonable to average them and define the solution as the average of the
population_size(= 1000) chromosomes of the last generation. The reported results
are obtained in this way.
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