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Abstract  
 

Hierarchical organization is abundant in both natural and artificial social structures, 

among humans just as among animal species. However, despite of this abundance and the 

vast literature on related fields, quantitative results are rare, and mostly considering two-

level hierarchies in which individuals are either “leaders” or “followers”. In this paper we 

overview some of our latest quantitative results, including biological observations and 

computational models. These studies reveal multi-level hierarchical structures as opposed 

to the two-level organization. We also review a measure that can serve as a common base 

for the quantitative determination of the level of hierarchy of complex networks. 

 

Keywords: Hierarchy, multi-level hierarchy, hierarchy measure. 

 

Introduction 

 

Motivation 

 

In a recent study ultra-light GPS devices had been installed onto homing pigeons in order 

to record their flight trajectories on their way home with high precision (see Fig. 1 a). 

The pairwise velocity correlation analysis, applied on these GPS logs, revealed that 

during collective decision making (i.e., navigating home as a single group), pigeons 

choose their common direction of flight as a result of dynamically changing hierarchical 

leadership-followership interactions (Nagy et al., 2010). The question whether this 

hierarchy is somehow related to the pecking order (the dominance structure birds known 

to live in), naturally arises. 

 In order to get insight into the above problem, the social dominance and the in-flight 

leader-follower relationships had been compared in a flock of homing pigeons, consisting 

of ten individuals (Nagy et al., 2013). Surprisingly enough, dominance and leadership 

hierarchies have been found to be completely independent of each other (See Fig. 1 B and 

C). Dominance is known to be correlated with aggression and access to food, based on 

some individual characteristics such as physical strength, in order to strangulate the 
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violence to a minimum level within the group. At the same time, these results imply that 

the stable leadership hierarchies arising in the air must be the resultant of a different set 

of individual competences. But how do these hierarchies emerge? What are the main 

features optimized by hierarchy: Flow of information? More efficient production? 

Controllability? Better decision making process? And what are the main signatures of 

hierarchy? Despite the abundant literature on hierarchy (Celko, 2012; Chisholm, 1992; 

Saaty, 2012; Kipfer, 2001; Williamson, 1983; Thompson et al., 1991), widely accepted 

quantitative interpretation of the origin and emergence of multi-level hierarchies do not 

exist, leaving all the above questions open.  

 In this paper we attempt to give an overview of some of the first results that try to 

approach these questions in a quantitative way. 

 

 
 
Figure 1 – Dominance and leadership networks in a flock of homing pigeons, based on data 

collected by recently developed technologies, such as high-precision GPS devices.  (a) 

Releasing pre-trained homing pigeons from the loft with small, ultra-light, high-precision GPS 

devices on their back (the device is in the small white bag on the back of the bird). (Courtesy of 

Zs. Ákos). (b) The pecking order and (c) the flight leadership network. Directed edges point from 

the dominant (or leader) towards the subordinate (or follower) with edge widths corresponding to 

interaction strength. Nodes are ordered vertically according to rank, with dominants on the top. 

The two hierarchies are obviously very different. From (Nagy et al., 2013). 

 

Hierarchy measure for complex networks 

 

In absence of a widely accepted definition of ‘hierarchy’, finding a well-usable quantity 

(measure) seems to be a promising first step towards a quantitative approach. Although 

measures have been proposed, they have various undesirable properties, such as 

involving free parameters that are often unknown (Carmel et al., 2002) or being defined 

only to some specific graph types, like fully directed or fully undirected graphs (Trusina 

et al., 2004), preventing them from becoming universally accepted. According to our 

expectations, an ideal quantity should satisfy the following conditions: 

1. Absence of free parameters and a priori metrics in the definition.  

2. The definition should be for unweighted directed graphs (digraphs) and it should 

be easily extendable to both weighted and undirected graphs. 

3. The hierarchy measure should be helpful for generating a layout of the graph. 
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We distinguish three different types of hierarchies: “flow”, “nested” and “order”. In case 

of an order hierarchy, the network behind the system is neglected, and the system is 

described basically as an ordered set, based on an arbitrary characteristic of the elements. 

An example for this is the grades in a school, where student are organised into grades 

according to their age, and are referred to as ‘first graders’, ‘second graders’, etc. In case 

of a nested hierarchy, higher level elements consist of lower level ones, like in the 

biological organizational hierarchy: molecules form cells, cells form tissues, tissues form 

organs, etc. When a network is structured in a flow hierarchy, the system can be 

described by a directed graph in which two nodes are connected if one influences the 

other. In case of armies, the nodes can be the ranks with edges indicating the flow of 

orders. Since order and nested hierarchy types can be converted into flow hierarchy, the 

ideal quantity is defined for flow hierarchy. 

 In this section we overview a measure proposed by (Mones et al., 2012) which 

satisfies all the above expectations and has been developed for flow hierarchy. 

Accordingly, we believe that this quantity can be widely accepted and used to measure 

the level of hierarchy. The central idea is that the rank of a node within a network should 

be related to its ‘impact’ on the whole system, and ‘impact’ can be measured by the ratio 

of nodes that are reachable from the given node. Such a quantification can be done via 

the concept of local reaching centrality:  

 Local reaching centrality, CR(i), of node i in an unweighted directed graph, G, is the 

proportion of all nodes in the graph that can be reached from node i via outgoing edges, 

that is, the maximum possible number of nodes reachable from node i divided by N - 1. 

In short, hierarchy is the heterogeneous distribution of the local reaching centralities of 

the nodes (see Fig. 2).  

 
Figure 2 – Distributions of the local reaching centralities for the different network types: Tree, 

Erdős-Rényi(ER) and scale-free(SF). All the curves are averages of 1000 graphs with N=2000, 

of the appropriate graph type. From (Mones et al., 2012). 

 

In order to demonstrate the above idea (namely that the distributions of the local reaching 

centralities reveal the hierarchical nature of a network), three different graph types are 

compared in Figure 1: Erdős-Rényi (ER), hierarchical (“Tree”), and Scale-free (SF). As it 
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can be seen, the three distributions are markedly different: The directed tree is the most 

heterogeneous, following a power-law which is distorted due to the random branching 

numbers, with very few nodes having CR(i) close to 1. Accordingly, this one is the most 

hierarchical network. Since a well-usable measure does not return a distribution, but 

much more a number, the proposed definition is an expression that grasps the 

heterogenity of the distribution as follows. Let CR
max denote the highest local reaching 

centrality. Then, Global Reaching Centrality, GRC, is defined as next: 
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The GRC values for our three example graphs are the following:  

 Tree: 0.997 ± 0.001, which is the highest. 

 Scale-free: 0.127 ± 0.008, that is, SF networks are slightly hierarchical, 

 Erdős-Rényi: 0.058 ± 0.005, that is, these are not hierarchical at all. 

 

These values (the means and variances) have been calculated for an ensemble of 1000 

graphs, and they demonstrate nicely that the measure returns values that are close to our 

‘intuitions’. 

 The above definition applies to unweighted directed graphs. The generalizations to 

undirected and/or weighted networks are based on the modification of the definition of 

the local reaching centrality. Regarding the visualization abilities, Figure 6 depicts two 

hierarchical networks plotted using the present approach. 

 

Group performance is maximized by hierarchical competence distribution 

 

Hereunder, in the present section and in the next one, we shall overview two frameworks 

investigating the emergence of hierarchy within groups consisting of individuals with 

diverse abilities.  

 The first framework was motivated by the observations made on pigeon flocks (and 

shortly discussed in the Introduction), namely that individuals contribute unequally in 

solving a common problem (navigating home). Among others, it turned out clearly that 

the flight leadership network is much more complicated than a two-level hierarchy in 

which one or a few leaders would lead the rest of the group. Accordingly, the network 

structure depicted on Fig 1 C is probably based on the different navigational skills of the 

pigeons, but is this only an assumption that “seems reasonable” or is this really the case? 

And if so, then how are these skills distributed exactly within the flock?  

 In order to answer these questions we have defined four models, all describing a 

problem that had to be solved by a group of interconnected agents: (i) a minimal model, 

in which the group had to find the correct answer choosing from two options (yes/no, -

1/1, etc.), called “Voting model”, (ii), a very general model, in which a number sequence 

had to be estimated, called “Sequence guessing model”, (iii) a model for a specific 

problem, “Direction finding”, and finally (iv), the above mention “Flocking model”, in 

which a group of boids (units moving in a 2D surface) had to find a pre-defined target. 

The models are defined in a way that many real-life problems can be mapped on them. 
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For more details see (Zafeiris and Vicsek, 2013).  

 In each model, the quality of the groups’ performance, Pe, is quantifiable and 

characterized by a parameter with values in the [0, 1] interval. The capability of the group 

members, Coi, also varied between 0 (complete ignorance) and 1 (perfect knowledge). 

Each model consisted of the following iterative steps. (i) The behavior Bei
(t+1) of agent 

(member) i at time step t+1, depended both on its own estimation f(Coi) regarding the 

correct solution, and on the (observable) average behavior of its neighbors j(ϵR) in the 

previous step t, <Bet
j>jϵR: 
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denotes “behaviour-dependent summation”, where “behaviour” refers to various 

actions, such as estimating a value, casting a vote or turning into a direction, etc. i 

defines the pliancy (disposition to follow others) of unit i, also by a parameter taking 

values on the [0, 1] interval. Some kind of noise, explicitly or implicitly, was 

incorporated into all models. 

 The aim of the study was to identify the optimal distribution of the competence values 

(Coi) and pliancy values (i) within the group. The reason behind the phenomenon that 

during collective decision making processes not all members have perfect knowledge is 

that learning (gaining knowledge and information) is a costly process (and unnecessary at 

the same time, since group members can learn and copy from each other). Accordingly, 

our question can be put as follows: If the ‘available amount’ of competence is limited, 

then how to distribute it among the group members, if the group is to perform as efficient 

as possible? Apart from the scientific value of this question, potential applications 

include choosing the best composition for a team, where “best” means better performance 

using the smallest possible amount of resources (“competence costs money”). 

 Regarding the communication network (who shares information with who) we 

assumed four different graph types: (i) Erdős-Rényi, (2) Small-world, (3) hierarchical and 

(4) a real-life one describing the friendship relations in a high school, referred to as 

‘Friendship’. Figure 3 c summarizes our results for our minimal (‘Voting’) model on the 

Friendship graph (Fig. 3 a, b). In the Flocking model – in contrast with the other models 

– those boids communicated with each other which were closer than a given distance 

called ‘Range of Interaction’ (ROI), as depicted on Fig. 3 d.  

 

In all cases, we find that the optimal distribution of competences is a highly skewed 

function with a structured fat tail, as opposed to the often-assumed ‘bimodal’ distribution 

in which individuals are either ‘informed’ or ‘not-informed’. We believe that this more 

continuous nature of the optimal distribution is due to a phenomenon that we call 

“information spreading or mixing”, which can be summarized as next: Multi-level 

hierarchical interactions make the spreading (mixing) of the information between the 

individuals much more efficiently than in a two-level” system. 
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Figure 3 – Optimal competence distribution for The Voting model and for the Flocking model. 

a, The “Friendship graph”, a real-world social network reflecting the amity relations in a high 

school among 204 students. b, An enlarged portion of the network showing the influential 

relations from the viewpoint of the node coloured yellow. c, The optimal competence distribution 

for the Voting model: a highly skewed function with a fat tail. d, The optimal competence 

distribution for the Flocking model: the distribution of the competence values is a highly skewed 

function in this case too, with a structured tale. From (Zafeiris and Vicsek, 2013). 

 

 

 
 

Figure 4.- The optimal competence distributions for the three models and four network types. 

The optimal distributions are hierarchically ordered, highly skewed functions often with a 

structured tail. The size of the “Friendship” network is N=204, while the other graphs contain 

N=200 nodes. In the last column (belonging to the Sequence guessing model) we have marked the 

error bars for the Friendship and small world networks (the error bars for the rest of the plots 

fall into the same range). “GPM model” is the abbreviation of “group performance 

maximization model”. From (Zafeiris and Vicsek, 2013). 
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Emergence of hierarchical cooperation among selfish individuals 

 

In the previous section we have seen that if a problem is to be solved by interconnected 

agents, the group performs optimal if the members are structured into a multilevel 

hierarchical leadership network. But what kind of structure emerges – if any – if 

individuals keep in mind only their own interest?  

 (Nepusz and Vicsek, 2013) have designed and investigated a simple model in which 

selfish individuals are trying to optimize their own success in a continually changing 

environment, and found that such a setup leads to a hierarchical network-type 

organization. The obtained structures possess the two, perhaps most important features of 

complex systems: a simultaneous presence of adaptability and stability. By such a model, 

which due to its simplicity is applicable to a wide range of actual situations, we may take 

a significant progress towards getting a deeper insight into the hierarchy producing 

mechanism.  

 The main assumptions of the model are: i) groups of individuals are typically 

embedded into a changing environment and better adaptation (finding out about the new 

conditions as soon as possible) is one of the core advantages an individual (or the group) 

can have. Importantly, ii) the abilities of the actors to gain advantage from their 

environment on their own is obviously diverse, thus, iii) individuals are trying to follow 

the decisions of their group mates (learn from them) in proportion with the degree they 

trust the judgment of the others as compared to their own level of competence. iv) 

Maintaining a decision-making connection with a group mate has a cost (effort). When 

these common and natural assumptions are integrated into a game theoretical-like 

stochastic model, the process results in the emergence of a collaboration structure in 

which the leader-follower relationships manifest themselves in the form of a multi-level, 

directed hierarchical network. Neglecting any of the above four points leads to loosing 

the emergence of a multi-level hierarchical structure. 

The main steps of the decision making process in the model are:  

1. First the changing environment is defined (the state of which the individuals have 

to guess to gain benefit) in a very simple but unpredictable way. The state of the 

environment is chosen to have a value of 1 or 0 with a probability p. Such a 

definition corresponds to a random walk with a characteristic time of changing its 

direction proportional to 1/p 

2. Each of the individuals has a pre-defined ability (according to a given distribution 

with values between 0 and 1, see Fig. 5) to make a proper guess of the state of the 

environment. The guess of each actor in each turn is based on its interactions with 

the agents he/she trusts the most by making a weighted average of its own 

estimation and that of the most trusted k=1, 2, …, m actors (typically from 2 to 7). 

3. After all agents completed a round of making their guesses, the actual state of the 

environment is revealed, letting the units learn which ones have made the correct 

estimate. 

4. The above information allows the construction of an updated ‘trust matrix’ in which 

the elements correspond to the degree agent i trusts agent j. This trust is 

proportional to the number of times agent i made use of the estimate of agent j in 

such a way that the guess by j contributed positively to the correct guess of agent 

i. Accordingly, individuals are trusted on the basis of their prior performance. 
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More trusted agents are „listened to” more frequently. Naturally, the trust matrix 

is updated as the collective decision making process progresses. 

 

 The above steps iterate during which the system typically converges to a trust matrix 

in which the values depend on a non-trivial way on the original abilities of the agents. A 

typical run starts with a uniform (except the diagonal) trust matrix which then evolves in 

time in such a way that after some time, the values of the permanently changing matrix 

more or less suddenly jump into a state which optimizes the overall performance of the 

group to a much higher degree than a random matrix (See Fig. 5). 

 

 
 

Figure 5 - Behaviour and performance of the model as a function of time and noise for various 

ability distributions. The columns correspond to constant, normal, log-normal and power-law 

fitness (or ability) distributions with a mean value of 0.25 and a variance of 1/48. The upper row 

corresponds to the case of no noise; the middle row corresponds to 20% relative noise. The green 

and blue lines correspond to two hierarchy measures (fraction of forward arcs and global 

reaching centrality, expressed as numbers between 0 (no hierarchy) to 1 (maximal hierarchy that 

is theoretically possible). Red lines indicate the improvement of the overall performance of the 

individuals, expressed as percentages on the right axis. The heat maps in the bottom line 

represent the improvement as a function of time and relative noise level. Each data point is 

averaged from 500 trials with N=256 individuals; error bars represent the standard error of the 

mean but they are smaller than the corresponding markers on the plot. From (Nepusz and Vicsek, 

2013). 

 

The evolved trust matrix possesses all the information about the network that has 

emerged during the run. It is straightforward to derive the graph from this matrix: each 

agent is a node and the weight of the edge between nodes i and j is the (i,j) element of the 

matrix. Those edges are taken into account in the graph which have the highest weights – 
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which are the strongest ties. These networks are found to be hierarchically ordered with 

multiple levels in them. Figure 5 depicts how hierarchy emerges as a function of time by 

depicting the values of two complementary measures: the ‘global reaching centrality’, 

GRC, proposed by (Mones et al., 2012) and discussed in the section entitled ‘Hierarchy 

measure for complex networks’, and the normalized fraction of forward arcs, defined by 

(Eades et al., 1993). As it can be seen, the individuals show a strong tendency to structure 

themselves into a multilevel hierarchical organization which, importantly, seems to be the 

case in real-life social interactions as well. In a recent experiment, called “Liskaland”, the 

way by which the leadership-followership relations are being built up has been studied in 

a group of 86 people. In this experiment, human actors were participating in a process in 

which they were interested in gaining advantage (in the form of making a larger amount 

of virtual money) during a camp organized along the economic theory of Liska (Liska, 

2007). The participants were interested in getting good advice from others, and the 

information about their tendencies to follow others had been recorded using an online 

questionnaire (for more details see Mones et al). Fig. 6 shows the outcome of the 

experimentally registered network of directed interactions between the participants built 

up during their one week long interactions as compared to one of the typical networks the 

model reviewed in the present section predicts, for the same parameters, i.e., 73 nodes 

(13 participants remained segregated) and 142 edges. The good qualitative and 

quantitative agreement between the experimental and the model network provides a 

promising evidence in favour of the approach. 

 

 
 
Figure 6: Qualitative comparison of the experimental and the modelling results. The network 

on the right hand side had been generated by the approach reviewed in the present section 

showing features similar to those obtained during the Liskaland experiment. The data were 

plotted using the method introduced in section “Hierarchy measure for complex networks”. From 

(Nepusz and Vicsek, 2013). 

 

Conclusion 

 

Animal (and human) groups have been emerging as a result of evolutionary processes. 

Accordingly, it can be assumed that they are highly optimized systems regarding the most 

essential aspects. Since biological observations show that for complex societies multi-
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level hierarchical structures are abundant, this type of organization is most probably more 

advantageous than the other ones, including the ‘egalitarian’ type and the ‘two-level’ 

structure. We believe/conjecture that one of the advantages lie in the phenomenon called 

“information spreading or mixing theory” which claims that information is spreading 

more effectively (more quickly) in a multi-level hierarchical structure than it spreads in 

other kinds of networks. 

 Furthermore, members of the same group can maintain not only one, but more 

hierarchies in parallel, always arranging themselves according to the one that is optimal 

to the actual task and conditions. An example for this phenomenon is the pecking order 

contra the flight leadership network within a flock of homing pigeons, depicted on Figure 

1 B and C, which networks apparently differ from each other.  

 Importantly, such multilevel hierarchies appear spontaneously as well, when selfish 

individuals are trying to optimize their own success, regardless of any kind of group 

interest.  

 We consider the studies overviewed in the present paper as the first steps towards a 

quantitative interpretation of the origin and emergence of multi-level hierarchies. 
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