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Abstract: The present work describes a bio-inspired approach designed to solve some tasks 
raised in the ‘Bionic Eyeglass Project’ [1], which aims to help the everyday life of blind or 
visually  impaired  people.  The  purpose  of  this  approach  is  to  provide  a  specific  kind  of 
information or to determine the region of interest (“ROI”) in a low-resolution and unstable 
video flow recorded with a mobile phone by the visually impaired person. In the present paper 
we  introduce  a  new  stabilization  method  and  three  different  tasks  are  resolved:  firstly, 
locating LED (light-emitting diode) indicators, secondly,  locating traffic signs, and thirdly, 
deciding whether there is any switched-on lamp in a room. The test database has been made 
out of real-life scenes. We provide detailed evaluation results referring to the execution of 
those tasks. 
Our  descriptive  context  refers  to  the  recently  modeled  mammalian  retina  channel 
decomposition [2].  Using it  we can avoid - at  least  partially - the classical  difficulty that 
image processing algorithms nowadays face, namely that the intensity or color values of the 
same object largely depend on the actual lighting conditions. A further difficulty referring to 
the lamp-detection is that the solution has to be completely independent of the input’s actual 
brightness. The method we introduce relies only on a single retina channel and achieves a 
very high accuracy: the ratio of the correct answers is around 99%. The other two tasks are to 
carry  out  an  approximately  real-time  ROI-detection  algorithm  based  solely  on  image 
information from an unstable low-resolution video-flow containing complex real-life scenes 
with unconstrained lighting conditions. The accuracy of the introduced methods is around 
80%.

We also make use of a stabilization algorithm designed especially for this project. In 
order to yield the desired information, we process channel-data as well as saliency maps. The 
presented method can be useful in a variety of  other application areas.

Keywords: Video flow stabilization, retina channel, CNN, Cellular Wave Computing, region 
of interest, saliency map

1) Introduction:

Although  an  encouraging  progress  has  been  already  achieved  concerning  retinal 
prostheses, the everyday usage of the related techniques still seems to be remote. Until then, 
and in many other situations, different methods should help the everyday life of the blind or 
visually impaired people. This paper describes a bio-inspired method aiming to locate those 
 correspondence e-mail address: lazar@digitus.itk.ppke.hu



regions in the visual scene that, with a high probability,  contain important information for 
visually impaired people – that is: to define the Region of Interest (ROI) in an unstable, low 
resolution  video  input.  For  this  purpose,  we  also  use  the  mammalian  retina  channel 
decomposition. After locating the regions that include the required information, according to 
the  actual  task,  different  pattern-detection  or  object  recognition  algorithms  can  be  used. 
Similar  situations  arise  at  some  other  blind  navigation  tasks,  in  robotics,  and  other 
applications. 

In this stage of the project, the input comes from a mobile phone’s video camera in 
176  x  144  pixel  resolution,  but  the  phone  is  now  being  extended  by  a  Cellular  Visual 
Microprocessor∗. The diversity of interesting tasks as well as the construction of the required 
database has been compiled with the help of members of the ‘Hungarian National Association 
of Blind and Visually Impaired People’ [1].  In this paper we present efficient new algorithms 
for:
• Finding light sources (lamps) – this task (although it seems to be a trivial ‘problem’ for a 

person with normal vision),  could prevent annoyance for visually impaired people, for 
example, by preventing the lamps to remain switched-on for weeks after a guest. 
Here, the most important  criterion is that  the solution has to be independent  from the 
input’s actual brightness, that is, the accuracy should be the same in the case of a sun-
drenched and a dark room.

• Locating LED indicators (in real-life indoor and outdoor scenes)
• Finding traffic signs in real-life street scenes.

The main purpose of these two latter tasks are to realize a fast method that locates the 
areas which contain the traffic signs / LED indicators with high probability, on complex 
real-life  outdoor  scenes.  Subsequently,  a  classifier  algorithm has  to  analyze  only  the 
located  ROIs  instead  of  the  whole  input,  which  can  fasten  up  the  whole  process 
significantly.  The  main  difficulties  derive  from the  instability  of  the  by-default  bad-
resolution  input,  the  unconstrained  lighting  conditions,  and  from  the  variety of  the 
possible inputs.

The  algorithms’  main  functional  components  are:  video  stabilization,  retina  channel 
decomposition, (or “low-level feature extraction”), and saliency map generation.

 A summarizing flow chart can be seen on figure 1.

 This visual microprocessor is the Q-Eye in the Eye-RIS system: www.anafocus.com



Figure 1. The flow chart of the proposed method. The input is a strongly unstable, low resolution video flow coming 
from a mobile phone’s camera held by a visually impaired person. The output can be 
• Regions of interest (e.g. locations of LED indicators, traffic signs), or
• Specific information (e.g. is there any switched-on lamp).
The dashed line shows an optional information combination step (raised in the task of locating traffic signs, where retina 
channel data and saliency map data had been combined, see section 2.3.1)

Locali
ty 

Indoor / 

stabilization

Selecting the channels necessary for 
the actual task (min. 1, max. 10)

Information 
retrieving 
method

Pixel vise combination 
of the channel data

Define the 
proper RF 
& conv.

Retrieving the information or Regions of interest 
from the retrieved topographic map

Define the 
proper RF 
& conv.

Define the 
proper RF 
& conv.

Pixel vise combination 
of the saliency maps



2) The proposed method: 

Figure 1 summarizes the algorithm. The input of the whole process is an image flow 
taken by a mobile  phone extended with a Cellular  Visual Microprocessor, and the output 
consists of audio information for the person using the equipment. The present paper does not 
deal with the methodology of transformation of the demanded information into audio format, 
but with the problem of locating the demanded information within a video flow.
These steps are described in detail in the following sections.

2.1) Stabilizing the input frame

Image  flows  provided  by  a  camera  held  by  a  blind  walking  person  are  usually 
extremely noisy and unstable, often accompanied by fast, unexpected camera motions. The 
recording equipment (camera) can be

• rotated
• shifted in the vertical and horizontal direction, and
• transported in the direction of motion.

Additionally, often the picture’s main objects shift significantly from one frame to another, 
e.g. during turning around. 

The goal of the image stabilization step is to keep the steady objects (e.g. buildings) in 
the same pixel positions, while the moving objects (for example the pedestrians) can change 
position. 

It is useful to define the transformation-parameters between adjacent frames, instead 
of estimating the difference between the reference frame and the actual frame. In this manner, 
it is possible to trace bigger deformations throughout longer frame-series. Then, the calculated 
transformation ‘inherits’ from frame to frame, as follows: 

If  the  actual  reference  frame  is  the  ith one,  then  the  Pi+k,i vector  contains  the 
transformation parameters between the actual frame i+k and the reference frame i. In the next 
step, the vector Pi+k+1, i+k is calculated, which contains the transformation values between the 
actual adjacent frames: i+k+1 and i+k. Then Pi+k+1, i = Pi+k, i ⊕ Pi+k+1, i+k will be updated, and 
will  comprise  of  the  differences  accumulated  throughout  the  k+1 frames  that  have  been 
captured since the last reference-frame updating.

Figure 2 depicts the flow chart of the stabilization. (See also [3, 4]) The key element in it, is 
how the transformation parameters are defined (we highlighted this step with a bit  darker 
shade on the diagram).



We have estimated the transformation parameters between frames i and i+1 as follows:

Let f denote the image intensity function, which is the intensity value at x-y coordinate 
position at time t.  [5]  ( f = f(x, y, t))  Thus: 
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where ∂f/∂x and ∂f/∂y are the spatial  gradients in  x and  y directions, and ∂f/∂t is the time 
gradient. Since these quantities are measurable, using equation (1),  u and  v can be defined, 
which are the velocities in  x and  y directions, respectively.  (The unit can be pixel/frame.) 
Since the frames are not only translated,  u and  v differ for every single pixel position. To 
estimate these, we have used an affine transformation model, which can handle translation, 
scaling, rotation and shear: [3]
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 describes the scaling, rotation and shear.

Finally, for every frame, the following matrix-equation has to be solved, where the vector P 
contains the six parameters: a0, a1, a2, b0, b1, b2, which describes the transformation. 

)( tIAP −⋅= +

A and  It contain the intensity gradients  and the general  coordinates,  the sign ‘+’ denotes 
pseudo inverse. For the detailed definitions and derivations, see the Appendix. 

Figure 2:  The flow chart diagram of the stabilization. The input (left hand side, top of the picture) is an unstable 
video-flow coming from a mobile phone’s camera. The output of this algorithm is the stabilized video flow (left hand 
side, bottom of the picture; Details in section 2.2).  The goal is to keep the steady objects (e.g. buildings) in the same 
pixel positions, while the moving objects (e.g. pedestrians) can change position.
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2.2) Retinal output channels

This section describes the background and the usage of the retinal output channels. We use:

• Seven “spatio-temporal”  channels (which are the ‘Transient’,  Local Edge Detector, 
‘Bistratified’,  ‘Alpha’, ‘Beta’, ‘Delta’ and the ‘Polar’ channels) [6,2].

• Three color channels (which are the Intensity and the two color opposition channels):
(“R” is the red value in the RGB system, “G” is the green, and “B” is the blue) [7]: 

o Red-Green opponent = R-G
o Blue-Yellow opponent = B – (R + G) / 2
o Intensity = 0.18*R + 0.81*G + 0.01*B

Systems designed to retrieve information of visual input often use some kind of “low level 
visual  feature-extraction”  before  further  processing.  The  main  reason  for  this  is  that, 
otherwise, the appearance of the different objects bewilderingly depends on the illumination, 
perspective,  scaling  and  other  actual  circumstances.  That  is,  the  same  object  can  have 
completely different intensity- or color values according to some accidental conditions. 

The  mammalian  nervous  system  also  applies  this  ‘trick’:  it  dissolves  the  visual 
information  simultaneously  in  approximately  a  dozen different  specialized  channels,  each 
coding different low level features [8]. Their exact function is defined by certain ganglion-cell 
types [6]. These spatio-temporal channels arise in the retina and persist up to the high brain 
areas, while performing several processing steps.

Our model includes all the ten, biologically measured [6] and artificially modeled [2] 
channels. This means that we take into account three time-independent (one intensity and two 
color opposition channels) as well as seven “spatio-temporal” channels. Although some basics 
are known, the method specifying how the colors are being processed is mainly undiscovered. 
From the viewpoint of the realization, we have applied what is known by the present: the 
Intensity channel is calculated as: 0.18*R + 0.81*G + 0.01*B [7], the red-green opponent 
channel is the difference between the red-value and the green-value, while the blue-yellow is 
calculated like “blue – (red + green) / 2”, as described above.

The seven parallel pathways have the same design; they only differ in the parameters 
that determine their distinct spatio-temporal characteristics [6, 2, 11]. For these channels, a 
neuromorphic model has been created, based on Cellular Neural/Nonlinear Network (CNN) 
architecture [9, 10]. In this, the basic processing principles of the retina have been kept, but in 
a simplified form. We mention that choosing a CNN simulator has been plausible because of 
the striking similarity between the CNN structure and the living retina layers.
The exact retina channel model we have taken as a basis is detailed in [2]. 

Figure 3 shows a snapshot of the ten retina channels for a natural scene. Interesting to 
notice, that only half of the channels’  function is known, in the sense that the aim of the 
process  of  the  remaining  five  channels  could  not  be  formulated  explicitly,  at  least  up  to 
present. Thus: the Transient channel filters out everything that is in motion and eliminates all 
the steady parts [11], the Intensity channel codes the intensity,  as its’ name presumes, the 
Blue-Yellow and the Red-Green are color opposition channels, and finally the ‘LED’ is for 
‘Local Edge Detector’, whose role is to emphasize the edges. The function of the Bistratified, 
Polar, Alpha, Beta and Delta are unknown, they are primary named after the ganglion cells 
that code them.



Figure. 3. An example for the ten retina channels. The input image (first picture) is processed by ten different 
pathways resulting in ten ganglion-cell types which form the ten retina channels [6]. The second picture in the 
first row (next to the input image) is the output of the “transient” channel which filters out the mobile parts of the 
visual scene and removes all the steady sections: at this moment the walking girl triggers the only response. 
Normally this  is  one of  the  ‘strongest’  channels.  The last  image in  the first  row depicts  the output  of  the 
“intensity” channel. In the second row we can see the blue-yellow- and the red-green contrast channels (these are 
the color opposition channels), the LED (local edge detector) and the “bistratified” channels. The functions of 
the channels depicted in the third row (alpha-, beta-, delta- and polar) are unknown at present (in the sense that 
we can not ‘phrase’ their function), as well as the bistratified channel’s task. Note that many of these channels 
can not be represented by still images or still inputs.

2.3) Receptive fields and saliency maps for the depiction of Regions of Interest

Saliency maps are two-dimensional, scalar maps of the physical world, whose activity 
topographically  represent  visual  conspicuity.  In  most  attentional  models,  every  channel 
creates its’ own saliency map, which is feature-dependent (the feature refers to what the given 
channel codes). Those saliency maps are afterwards usually unified into a final “master” map, 
which is thus feature-independent [12]. This process can be used effectively in different real 
applications as well. 

In  nature,  saliency is  “calculated”  via  receptive  fields  (RF),  in  which  neurons  are 
organized  into  concentric  circles:  a  central  and  a  peripheral  part,  which  respond 
antagonistically. If the central part of an ON-center - OFF surrounding RF is stimulated with 
light, the RF’s response will increase, while if the light falls onto the surrounding part, then 
the response will decrease. If both parts are exposed to light, then there will be no change in 
the ganglion cells’ response [7].

Practically, from an engineering viewpoint, a saliency map is a retina channel output 
(or the result of the ‘low level visual feature extraction’) convolved with a receptive field. RFs 
can be represented in matrix form.

As an example of the used receptive fields, we show how we have determined the 
optimal RF in the task of finding traffic signs. The outcome is depicted on figure 4. 



a)

b)
                                                                 c)

Figure 4.  Receptive field adjusted for the task of finding traffic  signs.  Figure  a):  the inner  diameter  of the 
receptive field and the size of the searched object should be the same in viewing angle. This criterion helps to 
determine the size of the RF.  b) and  c): the resultant; On  c) the height and the depth are proportional to the 
weights, which have – due to the antagonistical behaviour of the RF’s inner and outer part – opposite sign. The 
zero level is emphasized with purple line.

 The size of the receptive field is determined as follows: 
• from one hand, the viewing-angle of the mobile phone is ~45°, which occupies 176 

pixels. This means, that roughly 3.9 pixels cover 1°.
• from the other hand, on the video flow, the size of an object depends on its distance. 

Namely, its’ size in viewing angle is 
cetandis

object_the_of_radius
2tg =α  (figure 4 a). 

So, if we want to set the sensing-distance of a 45 cm diameter (0.225 m radius) 
traffic sign for ~7-8 m, then it covers a bit more than 3.3°. Thus, the optimal inner 
diameter of the receptive field is 13 pixels. (figure 4 (a) and (b) )

• The outer size of the RF has been adjusted according to ‘real’ RFs, in which the 
inner part covers around the half of the whole RF in viewing angle.

 The values of the matrix have to satisfy the criteria of 
• giving maximal response if antagonistic stimuli hit the RF’s inner and outer area
• giving no answer if the input image-region contains equal values – that is, in case of 

uniform lighting.
The maximal value is arbitrary, since it is only a constant multiplier (“C” on figure  4 
(b)).



 
2.3.1) Locating traffic signs

The main purpose of the present algorithm is to realize a fast method locating the areas 
which contain traffic signs with high probability,  on complex real-life outdoor scenes. The 
main difficulties derive from the instability of the input – which has by default bad resolution 
– and from the fact that the lighting circumstances can vary on a wide range.

Traffic signs – due to their color and shape design - can effectively be detected by 
circle-shaped receptive fields on color opposition channels. For solving this task, we have 
used  the  RF  determined  in  the  previous  section  (figure  4  b)  on  the  Blue-Yellow  color 
opposition  channel.  According  to  the  experiments,  rooftops  and  building  walls  often 
effectuate salient areas with the blue sky, something that can lead to false results. In order to 
avoid these errors, we have applied the Delta channel’s data as well: since it gives a vivid 
response on light sources, only those regions have been taken into account, where this channel 
has given a smaller response than a given threshold. 

Figure 5: Some typical frames from the test database we have used to evaluate the task aiming to locate traffic 
signs. In all the four rows, the left-most image is a frame from the input video flow with the areas identified as 
traffic  signs  (white  circles).  The other  two images  in each  row are  the corresponding outputs  of  the used 
channels: the middle ones are the Blue-Yellow color opposition channels’ output and the right ones are the 
response of the Delta channel.  a) and  b) are  examples for correct  results.  c) The prime cause of the false 
negative answers (when the sign is not located) was due to the loss of the color information, which happened 
when the sign was in shadow. On figure c) the blue arrow points to a traffic sign being in shadow. (These signs 
are difficult to see even with “pure eyes”) From closer they can be identified: b) is the same as c) from a few 
meters nearer).  d) depicts the typical reason for false positive results: vivid colors with the ‘appropriate size’. 



The input frames are distorted because of the stabilization. Table I and II indicate the test results. 

Figure 5 shows some typical frames from the test database. The distortions of the input frames 
are due to the stabilization method. Important to note, that this method does not exploit any 
additional information or knowledge (for example, that traffic signs are primarily expected in 
a given height), thus with the guidance of the equipment the results can be further improved. 
According to the test results, the main error sources have been: from one hand, shadow, which 
leads to false negative results because of the loss of color information (figure 5 c), and from 
other hand, objects with ‘appropriate’ size and vivid colors, which lead to false positive 
results (figure 5 d). Important to note, that – because of the lack of a commonly accepted test 
database for these problems - the evaluated information significantly depends on the test 
database. Tables I and II show our test results.

(frame percentage) Correct answer False answer

There is traffic sign on the 
input video frame
(total 502 frames)

73.7%
(370 frames out of 502 frames)

26.3%
(132 frames out of 502 frames)

There is no traffic sign on the 
input video frame
(total 414 frames)

95.4%
(395 frames out of 414 frames)

4.6%
(19 frames out of 414 frames)

Total
(916 frames)

83.5%
(765 frames out of 916 

frames)

16.5%
(151 frames out of 916 

frames)
Table I. The results for the task: “Locating traffic signs”. “Correct” answer means that EITHER the input frame 
has no traffic signs on it and there are no located areas on the output either, OR, there is at least one sign on the 
input and there are located areas on the output as well. The test video set included 916 real-life frames from 

different locations and with different lighting conditions.

Since Table I does not indicate the accuracy of the located areas (“ROIs”), we provide 
another table (Table II) showing these results.

Correctly identified locations Incorrectly identified 
locations

Altogether 490 
located areas

73.7%
(361 ROIs out of 490)

26.3%
(129ROIs out of 490)

Table II: the accuracy of the identified locations. Only those frames are included, where there was at least one 
located area. A ROI is “correct” if there is a traffic sign at that very location, and “incorrect” otherwise. Thus, 

an answer belonging to one single frame can contain both correct and incorrect locations (see for example figure 
5 d) 

2.3.3.) Finding light sources

A trivial matter for people with normal vision but often a hard task for the blind ones, 
is to detect whether the lamps are switched on or switched off - for example after guests. 
According to our consultant from the “Hungarian National Association of Blind and Visually 
Impaired People” – with whom the tasks has been defined together – an algorithm solving this 
task could prevent much annoyance.



Here, the most important criterion is that the solution has to be independent of the 
input’s  actual  brightness,  that  is,  its’  reliability  should be the same in  the case of  a  sun-
drenched room and a dark cell.

The solution for this subtask differs from the former one in the sense that here we rely 
merely on retina channel information – instead of saliency maps. One channel proved to be 
enough for this task, namely the “Polar” channel, which seems to respond on light sources [2, 
6] (figure 7). It  gives strong reaction on primary light sources, both for natural  (sun) and 
artificial ones (lamps) – and, to reflecting surfaces as well (mirrors, glass-tables, etc.) which 
cause a small error rate. Still, the accuracy this channel enables is very high: the ratio of the 
correct answers reaches 98-99% (see table III). 

Since this channel responds on natural light sources as well (figure 7 c), the user is 
supposed to know where the window is, but this is not a real restriction in every-day practice. 
Otherwise, precise knowledge about the location of the lamp(s) is not a demand, since the 
visual environment can be scanned. 

a) b)

c) d)
Figure 7: The “Polar” channel responds on light sources, both for natural  (c) and for artificial ones  (d). The pictures are 
taken from the test video set. All the four figures show the input on the left, and the corresponding output of the Polar 
channel, on the right.  (a) and  (b): a part of a bright room in day light; the Polar channel is basically silent.  (d) had been 
recorded a few seconds after (b): the lamp is switched on, the Polar channel is excited. (The exclamation mark between the 
two channels  indicates  that  the answer  is:  “there  is  light  source  on the input”.)  The Polar  channel  enables  very high 
reliability for this task (see table).

According to the experiments, the Polar channel saturates (gives maximal response) on 
those areas where primary light sources are present, and give no answer elsewhere (figure 7). 
It follows that the accuracy of the algorithm is completely independent of the quality of the 
input video-flow, and also, it does not depend on the brightness either. The results depicted in 
table III are based on test videos made in sunshiny rooms. 

Correct answer False answer

There is light source on the 
input video frame

98.8% 1.2%

There is no light source on 
the input video frame

99.38% 0.62%

Table III: The test results of the algorithm aiming to detect primary light sources, independently from the 
brightness of the input, or in other words, from the intensity values. The process is based on one of the 

mammalian retina channels (namely the “Polar” channel [2]), which reacts on light sources. The small error is 
due to reflecting surfaces (a glass table in our case). These values are based on the evaluation of test videos 



made on shiny rooms, including 1563 frames together.

2.3.4) Locating LED indicators

In  many  public  buildings,  offices  and  transport  vehicles  basic  information  is 
transmitted by LED indicators. The aim of this method again is to carry out a fast solution that 
localizes the areas that contain the indicators in question with high probability,  on various 
indoor and outdoor real-life scenes. The main difficulty – except the bad resolution and the 
instability – originates from the variety of the possible inputs.

The test video set we have used includes multifarious scenes including different public 
and private places. Some of these can be seen on figure 8 and 9. On figure 8 we have also 
visualized those three channels that we have used for solving this task. These are the two 
color-opposition channels (blue-yellow and red-green) and the Delta channel. The function of 
the  Delta  channel  has  not  yet  been  precisely  formulated  up  to  present  (see  above),  but 
according to the observations, it gives significant response for small or fragile light sources as 
well (similarly to strong light sources). 

From here, the selection algorithm is the following: if on a given location at least one 
of the two color opposition channels gave bigger response than a certain threshold, then a 
“fitness – value” would be calculated, being directly proportional to the three channel-data at 
the given point. Afterwards these values would be arranged into descending order, and the 
first few locations would be the solution for the given frame, that is regions that the algorithm 
defines as presumptive LED locations.

Table IV shows the results we have measured on this task. The results are based on the 
evaluation  of  1207  frames.  We  have  tested  our  method  on  real-life  scenes,  taken  from 
different areas with various lighting conditions, reflecting areas, light sources, colors, etc. As 
it turned out, the algorithm is not sensitive to the quality of the input (e.g. resolution), to the 
lighting conditions or colors, either to the reflecting areas, but it is sensitive to colored lamps 
– which is not surprising since LEDs basically are small colored lamps, until no further object 
or pattern recognition algorithm is used. 

Correct answer False answer

There is LED indicator on 
the input video frame

(total 951 frames)

96.6%
(919 frames out of 951 frames)

3.4%
(32 frames out of 951 frames)

There is no LED indicator on 
the input video frame

(total 256 frames)

41%
(105 frames out of 256 frames)

59%
(151 frames out of 256 frames)

Total
(1207 frames)

84.83%
(1024 frames out of 1207 

frames)

15.17%
(183  frames  out  of  1207 
frames)

Table IV. The results for the task: “finding LED indicators”. The values are based on the evaluation of 1207 
frames. First row first column is the correct positive (96,6%), second row first column is the correct negative 

result (41%). The test database included complex real-life scenes with different lighting conditions, colored and 
reflecting areas and colored lamps. As it turned out, the algorithm in not sensitive to the quality of the input 
(resolution), to the lighting conditions and colors, either to the reflecting areas, but it is sensitive to colored 



lamps – which the few frames (total 256) that did not contain LED happened to teemed in. The bad results are 
due to these lamps (figure 9 b). In the third row (“Total”), all the frames are counted, that is, “correct answer” 

indicates the percentage of the frames where either the input included LED indicator (one or more) and the 
output was at least one located area, or the input did not include LED indicator and the output had no located 

areas. Accordingly, the line “False” indicates the rest. The percentage means frame percentage.

Since the input frame may contain more than one LED indicator, and also, the output can be 
more than one located region (see figure 8 and 9), the evaluation of this task – similarly to the 
task of finding traffic signs – is not as straightforward as in the previous task, where the 
answer was binary (“there  IS light  source on the  input”/“there  is  NO light  source on the 
input”). Thus we give another table as well, which indicates the correctness of the locations 
which the algorithm has given as solutions. In contrast with table IV, table V depicts  ROI 
percentage instead of frame percentage, that is, the ratio of the correct and false located areas. 
Only those frames are included, where there was at least one located area.

Correctly identified locations Incorrectly identified 
locations

Altogether 2075 
located areas

81.36%
(1688 ROIs out of 2075)

18.64%
(387 ROIs out of 2075)

Table V: the accuracy of the identified locations. Only those frames are included, where there was at least one 
located area. A ROI is “correct” if there were a LED indicator at that very location, and “incorrect” otherwise. 

Thus, an answer belonging to one single frame can contain both correct and incorrect locations (see for example 
figure 9 b, where the marking of the colored lamp is incorrect (left hand side, top of the picture), while the sign 

on the elevator panel is correct – right hand side, top of the picture). 

a)

b)
Figure 8. Two frames of the test database for the task “finding LED indicators”. The left-most pictures in both 
lines show the input with the identified locations on them. The other three pictures belong to those channels, 
whose data has been used in the execution of the task. These are the red-green and blue-yellow color opposition 
channels and the Delta channel. (a) LEDs belonging to a hi-fi set in a room. The various reflecting surfaces do not 
confuse the algorithm. (b) corridors in the university.



a) b) c)
Figure 9. Some frames from the videos that we have used for testing the algorithm that finds LED indicators. a) 
rack-railway from the inside (these indicators show the name of the next stop and the actual time) b) a colored 
decorating lamp (left) and a LED indicator (right) showing the floor-number on a lift-panel in a department 
store. c) tram interior.

4) Future tasks

• During walking, a camera held in a hand, makes a quasi-periodic motion.  Most of the 
people have their own way of “swinging” the phone, thus the transformation-parameters 
(vertical/horizontal shifts, the angle of the rotation, etc.) characterizes the certain users. 
These quasi-periodic parameter values could be learned during a certain amount of frames 
(and could even be adjusted during the entire usage), thus they become predictable for a 
given user. In this manner, by taking the predicted transformation values into account, the 
quality of the stabilization can be improved.

• The model described in this paper is attentional in the sense that it locates regions on the 
input where something important appears. Naturally arises the possibility of applying a 
more elaborated pattern or object recognition algorithm onto the selected area.

• Many possibilities lie in the retina channel decomposition. Thus, the further investigation 
of the individual channels can lead to a promising basis for different scene analyzer and 
object recognition algorithms. For example, some time-dependent channel (primarily the 
Transient, Beta and the Bistratified channels) seem to play an important role in separating 
the different objects from each other – although, this area needs further investigations.

• In a more elaborated version, the threshold values can be adjusted by a learning algorithm, 
and also could be adaptive according to the different scenes and tasks.
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Appendix

The normal flow algorithm

To estimate the instantaneous velocity field we model the motion image by a continuous variation of 
image intensity as a function of position and time. The intensity value on position (x, y) at time t is described by 
the f(x, y, t) intensity function. 
If we expand this function in a Taylor series we get:

HTdt
t
fdy

y
fdx

x
ftyxfdttdyydxxf +

∂
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∂
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∂
∂+=+++ ),,(),,(   (A1)

where ‘HT’ is for higher-order terms, which are usually ignored.
The crucial observation that is exploited, is that if the image at some time t+dt is a result of the original image at 
time t being moved translationally by dx and dy, then 

),,(),,( tyxfdttdyydxxf =+++ (A2)

Thus, from equations (A1) and (A2) we get:
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are the quested values, namely the velocity in 

x and y directions.
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or, equivantly, uf
t
f ⋅∇=

∂
∂− ,

where  f∇ is the spatial gradient of the image and u=(u,v) is the velocity vector.

The calculation steps

 - Measured values: )(
x
fI x ∂

∂= , )(
y
fI y ∂

∂= , and )(
t
fI t ∂

∂= , the intensity gradients

 - Calculated values (the estimations): )(
dt
dxu =  and )(

dt
dyv =

With these notations (A4) will be, for every pixel:  Ix u + Iy v + It = 0 (A5), 

The measured values:

The Ix, Iy spatial gradients can be determined with a convolution, where the kernel is the 



[-1  8  0  -8  1] / 12 vector, which is a commonly used estimation in the literature [13]. (This kernel is applyed on 

the Gauss-filtered image, that is, we use the 
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 as “A” template, accoring to the CNN terminology.) 

The It time gradient is simply the difference between the two Gauss-filtered images.
(As it follows from the above process, these values are defined for each and every pixels, so Ix  is not a scalar, 
but a matrix, and Iy, It similar.)

Defining the quested paramteres:

For mapping function, we choose a linear affine transformation, which can handle shifts in x and y directions, 
scaling, rotation and shear, as next:

yaxaau 210 ++= (A6)

ybxbbv 210 ++=

where a0, a1, a2, b0, b1 and b2 are the parameters of the transformation, which we want to determine. In the 
matrix-form of (A6), the meaning of these parameters can be followed better:
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rotation and shear.

Thus, from (A5) and (A6), for every pixel we get:
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where k (the number of rows) is the number of the pixels.

With the notations:
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P , we get 

tIPA −=⋅ , from where )( tIAP −⋅= + (A10)

where ‘+’ denotes pseudo-inverse, and the P vector containes the transformation-parmeters, which we were 
looking for.


