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1 Introduction  

 

This book is concerned with the various aspects of hierarchical collective behaviour which is 

manifested by most complex systems in nature. From the many of the possible topics, we plan to 

present a selection of those that we think are useful from the point of shedding light from very 

different directions onto our quite general subject. Our intention is to both present the essential 

contributions by the existing approaches as well as go significantly beyond the results obtained 

by traditional methods by applying a more quantitative approach then the common ones (there 

are many books on qualitative interpretations). In addition to considering hierarchy in systems 

made of similar kinds of units, we shall concentrate on problems involving either dominance 

relations or the process of collective decision-making from various viewpoints. 

 

1.1 General considerations 

 
Since hierarchy is abundant in nature and society, but many of its quantitative aspects are still 

unexplored, the main goal we intend to achieve is the systematic interpretation and 

documentation of new unifying principles and basic laws describing the most relevant aspects of 

hierarchy (being perhaps the most widespread organizing principle in the Universe). To do so we 

shall discuss recent experiments and models that are both simple and realistic enough to 

reproduce the observations and develop concepts for a better understanding of the complexity of 

systems consisting of many organisms. We shall cover systems ranging from flocks of birds to 

groups of people.  

The related research goes beyond being interdisciplinary and can be rather described as 

multidisciplinary, since it involves many kinds of systems (both living and non-living), various 

techniques and technologies typically used in different branches of science and engineering. The 

topics we address might look too diverse. However, one can always think of these research 

directions as facets of a single, to be explored idea. 

Although we shall concentrate on hierarchical collective behaviour in general, there will be 

two aspects of it which will pop up in the majority of cases: collective motion and dynamically 

changing partially directed networks (and the natural relation of the two). A few of the many 

possible examples are visualized in Fig. 1. In addition, we give a brief description of the most 

relevant concepts which hierarchy is related to. 

 

Organisms versus agents, entities or ñparticlesò 

 

Throughout of this book we shall consider systems made of many (from a few dozens to several 

thousands) organisms, i.e., living entities. Of course, hierarchy is present in the non-living world 

as well; starting from elementary particles through the solar system up to the whole universe, but 

that is a beautiful and long story which is not the subject of the present work.  
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Fig. 1 a Axon arborisation (the end part of a major kind of neuronal cells) shows typical hierarchical tree-like 

structure in space. b The wiring of a human brain. Hierarchy is not obvious, but closer inspection and additional 

MRI images indicate hierarchical functional operation. c And this is a possible interpretation of how we think 

(thoughts being one of the end products of a functioning brain. d The visualization (of the by today 

commonplace) idea of the evolutionary tree. e The famous first drawing about the branching of the phylogenetic 

tree with the ñI thinkò note by Darwin. f This complex tree with its hundreds of branches shows the birth of new 

variants (associated with new plant species) of a single protein! g The well-known hierarchy of wolfs indicated 
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by who is licking who (subordinates do this with those above them). The same behaviour can be observed 

between a dog and her owner. h Perhaps the only hierarchy named after a person. This pyramid is called the 

ñMaslovôs hierarchy of needsò. i Visualization of the connections (call relations) between the various parts of a 

C+ software system (containing many thousands of entities and relations: more closely related parts are colour 

coded and bundled). j The strength of the directional correlations between pairs of pigeons in a flock (individuals 

being denoted by A0,é,9. The asymmetric structure of the dominant part of the matrix (whole matrix minus its 

symmetric components) indicated strictly hierarchical leader-follower relations. k The picturesque representation 

of the two pyramids of medieval relations among the member s of a society: left corresponding to social, the 

right side corresponding to the religious organization. l And finally: we show a huge community of relatively 

simple animals. Where is here the hierarchy? Nowhere, the groups of many thousands of animals (large flocks of 

birds, schools of fish) typically do not display the signs of hierarchy (and, and, indeed, are assumed not to be 

hierarchically organized.) (All pictures are freely available from the internet except j which is from one of our 

papers)  

 

Hierarchy in life can be understood in several ways. For example, one may rank a quality as 

more important than another type of quality. However, in most of the cases hierarchy involves 

many ñunitsò which are related to each other in relatively simple ways. The stress is on ñmanyò 

and on ñsimpleò. Perhaps the best way to demonstrate this point is to consider a group of people. 

The interactions (relations) among them can be extremely complicated (just think of two people 

being in love with each other). Instead of considering such interactions, we assume that two 

people, let us say, in a large organisation are either working in the same kind of unit or one of 

them has a job of a leader (of a group, a department, a division, etc.). In this case, we assume that 

there is a directed link between the two which is pointing from the leader to the regular member 

of the company. When accounting their relation, this will be the aspect we shall consider and all 

of the other, extremely complex features of the two persons (they are made of cells, they feel the 

smell of the other person, etc.) will be neglected.  

This is how ñparticlesò can be defined even for a system of people: particles are units whose 

interactions can be - in the given context (!) - assumed to be very simple. 

ñAgentsò are a bit more complicated than particles. Although their interactions are assumed 

to be also relatively simple, these units have a ñpurposeò. The purpose is usually also simple and 

can be interpreted as optimizing/maximizing some sort of advantageous quantity. In its most 

typical form this quantity is the difference between the ñbenefitò and the ñcostò usually called 

fitness. Fitness can be defined for a whole group of agents as well.  

 

To summarize the above: hierarchy is typically defined for systems of agents and can be 

advantageous to a varying degree. One of the main messages of our text is that the main reason 

for the hierarchical structure of the relations among organism is that such a structure is more 

advantageous than a fully regular or a random or any other arrangement. 

 

Collective behaviour 

 

Collective behaviour applies to a great variety of phenomena in nature, which makes it an 

extremely useful notion in many contexts. Examples include collectively migrating bacteria, 

insects or birds; or phenomena where groups of organisms or non-living objects synchronize 

their signals ð think of fireflies flashing in unison or people clapping in phase during rhythmic 

applause. The main features of collective behaviour are that an individual unitôs action is 

dominated by the influence of its neighbours ð the unit behaves differently from the way it 

would behave on its own. On one hand such systems show interesting ordering phenomena as the 
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units simultaneously change their behaviour to a common pattern (Camazine 2003, Sumpter 

2010) and on the other hand can form structures that are capable of exhibiting much more 

complex functions than a single unit (consider, e.g., a single neuron versus a complete brain). 

The world is made of many highly interconnected parts over many scales, whose 

interactions result in a complex behaviour needing separate interpretation for each level. This 

realization forces us to appreciate that new features emerge as one goes from one scale to 

another, so it follows that the science of complexity and the closely related hierarchy is about - 

following a classification based on major analogies - is expected to reveal the principles 

governing the ways by which these new properties appear. 

Over the past decades, one of the major successes of statistical physics has been the 

explanation of how certain patterns can arise through the interaction of a large number of similar 

units. Interestingly, the units themselves can be very complex entities, too, and their internal 

structure has little influence on the patterns they produce. It is much more the way they interact 

that determines the large-scale behaviour of the system. It has been found that not only 

interacting spins or atoms, but also assemblies of molecules or granular particles, and even large 

groups of complex biological structures (bacteria, ants, birds, etc.) can be examined by statistical 

physics models (Vicsek 2001).  It has been demonstrated that the collective behaviour of units 

has a number of features typical for many different systems. From the point of statistical physics 

these could be considered as ñuniversality classesò or major types of behavioural patterns.  

It is, however, very important to note that in the above context the hierarchical nature of 

interactions has been largely neglected, especially for the directed (or asymmetric) case (except a 

few network theory papers). Our basic assumption is that by observing and quantitatively 

interpreting the patterns of behaviour in hierarchically organized systems is likely to lead to a 

unified picture of hierarchical collective behaviour, and, in an ideal case, to the discovery of a 

number of basic relations or ñlawsò describing them. 

 

Collective motion 

 

The actions of moving individual organisms add together creating patterns of motion, so 

complex that they seem to have been choreographed from ñaboveò. Flocks and schools have a 

distinctive style of behaviour - with fluidity and a seeming intelligence that far transcends the 

abilities of their members. Vast congregations of birds, for example, are capable of turning 

sharply and suddenly en masse, always avoiding collisions within the flock. It has turned out 

over the two decades that computer models and sophisticated techniques to collect data about a 

large number of animals have been very useful for establishing a significantly better 

understanding of such systems than before (Vicsek and Zafeiris 2012).  

 

Networks 

 

When ñgeneratingò life as we perceive it today, nature ñmade use ofò the existence of the above 

mentioned hierarchical levels by spontaneously separating them as molecules, macromolecules, 

cells, organisms, species and societies. The big question is whether there is a unified theory for 

the ways elements of a system organize themselves to produce such a highly hierarchical 

structure of behaviour typical for wide classes of systems. Interesting principles have been 

proposed, including self-organization, simultaneous existence of many degrees of freedom, self-

adaptation, rugged energy/fitness landscapes and scaling, etc. Physicists are learning how to 
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build relatively simple models producing complicated behaviour. At the same time researchers 

working on inherently very complex systems (biologists or economists, say) are uncovering the 

ways how their infinitely complicated subjects can be interpreted in terms of interacting, well-

defined (i.e., simpler) units (such as proteins) with the interactions corresponding to links (which 

can be directed and weighted) and the units to nodes (having attributes) in a complex network 

(Albert and Barab§si 2002, Newman 2010, Barab§si 2016).  

Most of the networks in life and technology are dynamically changing and are highly 

structured. For example, a dynamically changing network can be associated with a flock of 

collectively moving organisms or robots interacting as a function of their positions.  

 

1.2 Motivation  

 

It is widely accepted that we do not understand deeply enough the reasons behind the abundance 

of multi-level hierarches. However, there must be an advantage of such an organization, because 

of the permanent evolution of the corresponding systems preferring more efficient variants. But 

where is this advantage? Better adaptability? A more efficient, robust or stable structure? A faster 

spreading of relevant information? Or, perhaps, better controllability (think of, e.g., an army)? 

On a more abstract level: What are the conditions for a hierarchical organization to emerge? Are 

there any general (valid for many systems) necessary and/or sufficient condition for this 

emergence?  

These are challenging questions and if we can answer them it could bring us to designing 

and producing much more efficient devices or perhaps, more importantly, creating much better 

functioning industrial, educational or many more kinds of organizations. 

Motivated by the above reasons, in this book will be centered around topics and answers 

related to questions like: 

 

What is our subject? 

 

We shall consider primarily systems (structures, processes, phenomena) that are common in the 

living world. The related, practical questions are: what are the conditions under which hierarchy 

emerges? What kinds of mathematical tools are appropriate for describing the various aspects of 

hierarchy? 

 

Why do we study? 

 

We use a quantitative approach to interpreting realistic situations in life because most of the 

presently available experimental and theoretical treatments of hierarchical organization are 

predominantly qualitative so a need arises in presenting results involving numerics. On the other 

hand, the interest in the topic seems to be increasing quickly. Understanding leadership and 

further aspects of hierarchy are expected to be very useful from the point of optimizing 

economy-related structures. On a less applied level, getting a deeper insight into the collective 

behaviour of groups has also been attracting growing interest.   

  

How do we study? 
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As mentioned above (and explored here in a bit more detail) there can be several methods to treat 

the various quantitative aspects of hierarchy. First, it is possible ï but far from being trivial ï to 

design experiments for studying how a hierarchical set of leader-follower relationship emerges 

from an originally disordered set of living entities. Second, one can design models and study 

them either analytically or using computer simulations. The two major quantitative approaches 

have been: game theory and agent-based modelling. In this book we treat the second alternative, 

since the game theoretical works we know of allow a less straightforward comparison with 

actual, real life observations and experiments. A rare but important exception is the very recent 

book by Boix (2015) delivering an impressive mixture of calculations, facts and ideas to treat 

large scale (political) hierarchy. Our work, concerned with hierarchies on a smaller scale of 

groups or collectives can be looked at as complementing the book of Boix. 

 

1.3 Hierarchical structures in space and in networks 

 

There exist a few fields in sciences which are closely related to the general notion of hierarchy, 

but fall beyond the scope of our work (they represent the self-similar aspect of hierarchy). This is 

mainly so because these areas represent a research field of their own. In addition, in most of the 

present book we consider hierarchy as a set of related entities, such that the relation between two 

connected entities is directed (one is, in ways later to be specified, plays a role being 

superior/leading/embedding etc. considering the other entity). Thus, here we only briefly touch 

upon the topic of spatially hierarchical objects (called fractals) and undirected (symmetric 

relations) but still hierarchical networks (called scale free). For further details about such self-

similar aspects of hierarchy we suggest that the readers use as a source the following books 

(Falconer 2003, Feder 1988, Vicsek 1992 - about fractals, and Bar§basi 2009, Newman 2010, 

Newman et al. 2006, Dorogovtsev and Mendez 2003, Pastor-Satorras and Vespignani 2007) ï 

about networks and scale free networks). 

Fractals are objects for which the topological dimension (the number of independent 

directions one can move into from a given point of the fractal) is smaller than the dimension of 

the Euclidean space they can be embedded into. They also possess a self-similar geometry which 

means that a small part of a fractal has the same statistical features than the whole. Here by the 

expression ñsame statistical featuresò we typically understand that the density correlations are the 

same. This is equivalent to saying that scaling up (blowing up) a small part of a fractal results in 

a structure which is statistically identical to the full fractal itself.  This is a non-trivial feature and 

involves the fact that the dimension of the fractals is a non-integer number as opposed to regular 

objects having dimensions 1, 2 or 3. 

Interestingly enough, a large variety of living systems involve fractal geometry in one way 

or another. As one proceeds from simpler to more complex manifestations of life, it is possible to 

encounter fractal bacteria colonies (Matsuyama and Matsushita 1993), ant trails (Jun et al. 2003) 

or the network of blood vessels in higher order organisms described by - among other important 

features - by the so called allometric scaling laws in biology in general (West et al. 1997) and, in 

particular, in mammalian metabolism (see, e.g., White and Seymour 2005). Perhaps on the 

largest scale built by organisms are the cities we live in display fractal-like features as well 

(Batty and Longley 1994). 

The so-called scale-free networks can also be considered as manifestations of a self-similar 

structure. Such a structure is not realized in space but shows up in the specific way the entities of 
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a system are connected to each other. Using the language of network theory, the degree of a node 

(entity) is the number of edges (connections) this node has leading to its neighbours in the 

network. The degrees may follow all sorts of distributions, but if this distribution is a power law 

then the degree distribution is invariant under scaling: a smaller part of the network will possess 

the same power law distribution as the whole network.  

The possible examples for systems which can be characterised in terms of scale-free 

networks are numerous. Most of these are not assumed to exist in real space. Going from smaller 

to larger scale, examples include networks corresponding to the interactions among proteins in a 

cell, then, with a large jump, many human made systems (internet, web pages, airlines, etc.) or 

the various networks of social interactions (friendships, collaborations, industrial relations, etc.). 

There are, however some spatial structures that can be best interpreted in terms of 

hierarchical networks. Louf et al. (2013) introduced a generic model for the growth of a spatial 

network based on a general concept of cost-benefit analysis. Their model leads to a wide variety 

of hierarchical spatial structures (trees) minimizing a conditions-dependent fitness function. The 

work by Daqing et al. (2011) connects the fractal and the network aspects of a structures by 

calculating the dimensions of spatially embedded networks. 
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2 Definitions and Basic Concepts  

 

As we indicated in the introduction, the notion of hierarchy applies to a great variety of topics 

and contexts, let it be the social structure of animal groups, human virtues, psychological needs 

or the structure of a computer program. Accordingly, it does not have a compact, precise, widely 

accepted definition that would be applicable for all cases. Available definitions usually by-pass 

the problem of clarification by using synonymous words ï which are, unfortunately, similarly 

unclear. For example, according to the Cambridge dictionary, hierarchy is ña system in which 

people or things are arranged according to their importance.ò Here ñimportanceò is the keyword, 

but importance is highly subjective: something that is important in a given context might not be 

important at all from another point of view. Here we also find that hierarchy corresponds to ñthe 

people in the upper levels of an organization who control itò. So we learn that it is about control, 

but according to this definition, hierarchy is restricted to people in an organization ï which is a 

very narrow interpretation. Checking a very popular cite, Wikipedia, we find that ñA hierarchy 

(from the Greek hierarchia, "rule of a high priest", from hierarches, "leader of sacred rites") is an 

arrangement of items (objects, names, values, categories, etc.) in which the items are represented 

as being "above," "below," or "at the same level as" one anotherò. However, this interpretation 

does not inform us about the basic aspects of the arrangement, which represent, on the other 

hand, the heart of the problem. 

As we shall see, it turns out from more strict investigations that usually we talk about 

hierarchy if entities of a system can be classified into levels in a way that elements of a higher 

level determine or constrain the behaviour and/or characteristics of entities in a lower level. 

That is, in the heart of hierarchy we find control of behaviour.  

 

Definition : A system is hierarchical if it has elements (or subsystems) that are in dominant-

subordinate relation with each other. A unit is dominant over another unit to the extent of its 

ability to influence behaviour of the other. In this relation, the latter unit is called subordinate.  

 

 
Fig. 2.1 An example for flow hierarchy. The 

feeding-queuing hierarchical structure of a 

pigeon flock. Each square represents an 

individual. The edges point from the higher 

ranked bird towards the subordinate one with 

edge widths corresponding to the ability to 

influence the behaviour of the lower ranked 

individual. For the sake of better visibility, 

higher ranked notes are depicted higher on the 

picture. Reproduced from Nagy et al. (2013). 
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A typical hierarchical structure can be seen in Fig. 2.1 depicting the ranks within a pigeon 

flock. The inner structure of the group has been established by observing and measuring the 

feeding-queuing behaviour of its members (Nagy et al. 2013)  

Note that this definition does not tell how hierarchical the system is. Instead, it expresses 

whether its elements (or subsystems) are in hierarchical relation or not (manifesting itself in a 

dominant-subordinate relation). Furthermore, it tells the origin (reason) and extent of the 

dominant-subordinate relation. Consider for example the Rockïpaperïscissors game. According 

to the rules,  

 

¶ The rock blunts the scissors (and hence ñdisarmsò it, beats it) 

¶ The scissors cut the paper, and 

¶ The paper covers the stone. 

 

Figure 2.2 shows how the elements overpower each other. Based on the above definition, the 

hierarchical (dominant-subordinate) relation among the units is clear, but the hierarchical nature 

of the whole system is not: is this network hierarchical at all? 

 

 
Fig. 2.2 The graph representation of the rock-

paper-scissors game. The dominant-subordinate 

relationship among the elements is clear, but the 

hierarchical nature of the entire system is not. 

 

 
 

In other words, from a graph-theoretical point of view, the above definition gives a lead 

regarding the arrows (where they should be and what is their deeper meaning) but it does not tell 

us how hierarchical the entire system is. At this point, we choose to keep it this way, mainly 

because the extent of hierarchy within a system has subjective aspects: for some, the rock-paper-

scissors game is ñfullyò hierarchical, since its elements are clearly in hierarchical relation. For 

others it is not, because no source (leader) can be determined. 

Many approaches have been proposed to measure the hierarchy of a network, but none of 

them is ñuniversalò, or accepted by everyone for all cases. Sect. 2.1.2 ñMeasuring the level of 

hierarchyò, gives an overview of these measures and algorithms. 

 

A few comments related to the definition: 

 

¶ During different group activities the influence of the members might vary. In other 

words, hierarchy is context/task sensitive, even in the same group! For example, as we 
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shall see it in Sect. 3.1.3, ñLeadership versus dominanceò, the members of the same 

pigeon flock arrange themselves into different hierarchies according to the actual activity: 

when they feed, the ranks are entirely different from the ones that can be observed during 

flight. This phenomenon is even more expressed in human groups. 

 

¶ Hierarchy might vary over time. As certain characteristics of the group members change 

over time (for example the physical strength of the individuals in a pack of wolves) so do 

their ranks.  

 

¶ This definition implies that the units behave somehow, or have some observable 

characteristics. In other words, entities without observable behaviour or characteristics 

cannot form a hierarchical structure. 

 

¶ The influence can be either forced by the higher ranked individual (e.g., when a higher 

ranked pigeon does not let a lower ranked one near to the food source), or it can be 

voluntary (for example leader-follower relationships during flight). 

 

¶ A higher ranked unit, by influencing the behaviour of other units more extensively, has a 

larger effect on the collective (emergent) group behaviour as well. 

 

 

Hierarchical systems can by classified into the following subtypes: 

 

1. Order hierarchy is basically an ordered set, in which a value is assigned to each element 

characterizing one of its arbitrarily chosen features. This assigned value defines the rank 

of the entity within the hierarchy. An example for this can be the ranking of artists, e.g. 

painters or sculptors, based on the average price of their artworks. In this example the 

ñsetò is composed by the artists, and the feature is the average price of their artwork. 

Another example can be a hierarchy of firms, ordered by, say, the number of employees. 

In this type, the network behind the system is neglected or it does not exist. More 

formally, this type of hierarchy is ñequivalent to an ordering induced by the values of a 

variable defined on some set of elementsò (Lane 2006). 

 

2. Nested (or embedded, containment, inclusive) hierarchy is a structure in which entities 

are embedded into each other. Higher level entities consist of and contain lower level 

entities, or, as Wimberley (2009) has formulated it, ñlarger and more complex systems 

consist of and are dependent upon simpler systems and essential system-component 

entitiesò. (According to some categorizations, a nested hierarchy can contain only one 

entity at each lower level, a bit like in case of the Russian Matryoshka dolls, while a 

generalized nested hierarchy allows multiple objects.) Uncovering nested hierarchy 

structure within a system is closely related to community detection in graphs. 

Containment hierarchy has two sub types: 

¶ A subsumptive containment hierarchy (a.k.a. taxonomic hierarchy) is a structure 

in which items are classified from specific to general. For example domestic cats, 

lions, tigers and cheetahs (gepards) belong to the family of cats called ñFelidaeò, 

dogs, foxes and wolfs belong to the family of carnivorans a.k.a. ñCanidaeò, 
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Canidae and Felidae both belong to the order of Carnivora, etc (See Fig. 2.3 a). 

Entities are containers, containing other containers.  

Mathematically this arrangement can be formulated as:  

Foxes ְ  Canidae ְ  Carnivora (and Carnivora ְ Mammals ְ  Animals, to go 

further on). Each entity in a lower level ñis anò entity of a higher level: a fox ñis 

aò Canidae, a Canidae ñis aò Carnivora, a fox ñis aò mammal, etc. It is assumed 

that entities on a lower level are proper (or strict) subsets of the entities on a 

higher level. 

¶ Compositional containment hierarchy (a.k.a. level hierarchy) describes how a 

system is composed of subsystems, which are also composed of subsystems, etc. 

The ñhierarchy of lifeò is the best example for this structure, describing how 

organisms are composed of organ systems, which are composed of organs, which 

are composed of tissues, which are composed of cells, etc., see Fig. 2.3 b. Two 

important features often (but not always) appear in this type of hierarchy: firstly, 

there is a ñscalar qualityò, meaning that entities on higher levels are often bigger 

than entities on lower levels (a cell is bigger than a molecule). Secondly, 

emergent properties ï properties that are not present on lower levels, but due to 

interactions among the units, appear on higher levels ï also often accompany this 

structure. For example consciousness appears on the level of the brain (which is 

an organ), but it originates from the interactions of the neuron cells. Emergent 

properties are of prime importance, since they are a fundamental characteristic of 

ñcomplex systemsò. 

 

3. Flow (or control) hierarchy: ñintuitivelyò it is an acyclic, directed graph. The nodes are 

layered into levels in a way that nodes on higher levels influence nodes on lower levels, 

and the influence is represented by edges. Layers refer to power, that is, an entity on a 

higher level gives orders or passes on information to entities on lower levels. This is 

where the name is coming from: such a structure represents the flow of orders, or, 

equivalently, how entities control other entities. Armies, churches, schools, political 

parties and institutions are typically organized in this way. Downwards orders flow on the 

edges, upwards pointing edges correspond to requests or sending information. 

Technological systems are also often organized in this way. In this case a central unit 

controls devices which control lower level devices, etc. At the bottom-most level sensors 

do not control anything directly, but they send information upwards, which are used to 

refine the decision making process done by devices on higher levels. (See Fig. 2.1) 
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Fig. 2.3 The two types of containment hierarchies: ñtaxonomicò and ñcompositionalò. a In a taxonomic (or 

subsumptive) containment hierarchy entities are containers, containing other containers. b A compositional 

containment (or level) hierarchy describes how a system is composed of subsystems, which are also composed of 

subsystems, etc. The best known example for this type of hierarchy is the ñhierarchy of lifeò. b is Reproduced from 

Mader (2010).  
 

 

Importantly, these hierarchy types are not independent of each other. On the one hand, many 

systems can be described by more than one type. For example, members of an army form control 

hierarchy in a way that people having higher rank give orders to lower-rank soldiers, but, at the 

same time, the very same army forms a compositional containment hierarchy as well.  This is so 

since an army is composed of various divisions (infantry divisions, motorized divisions, airborne 

divisions, etc.) which are also composed of smaller contingents, all the way down to the soldiers, 

who are the ñunitsò in this structure. 

 On the other hand, both order and nested hierarchies can be converted to flow hierarchy. 

In an order hierarchy, a directed edge can be assigned to each pair of adjacent members in the 

hierarchy and this produces a chain of directed edges. In a nested hierarchy, a virtual node is 
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assigned to every sub-graph, and if a sub-graph contains another, then the two corresponding 

virtual nodes are connected with a directed link, which produces a flow hierarchy on the network 

of virtual nodes. 

Thus, flow hierarchy is the most important variant and we shall mainly concentrate on its 

manifestations.  

 

2.1 Describing hierarchical structures  

 

In this chapter we shall briefly summarize the basic concepts related to graphs, the mathematical 

object most often used in relation to hierarchy. It is important to highlight that graphs and 

networks are only the models of the real-life systems, not the systems themselves. It is a 

mathematical representation of the system under investigation, used because they, using graph 

theoretical methods and algorithms described in subsequent chapters, can reveal many important 

characteristics. An important further comment is that ï as it is done in the literature ï we shall 

use the term graphs for abstract mathematical constructions, while the term networks will be 

associated with the underlying interactions within a real-life structure. Readers familiar with 

graphs may skip this chapter. 

 

2.1.1 Graphs and networks  

 

As mentioned above, the most commonly used mathematical tool for describing hierarchical 

systems are graphs. Primarily, but not exclusively, they are connected to systems embodying 

flow (or control) hierarchy. Such systems and their graph representations go so much hand in 

hand, that when trying to assign a ñhierarchy valueò to a system (describing ñhow hierarchicalò 

the given structure is), usually it is the hierarchy level of the graph (representing the system) that 

is measured. 

The concept behind this representation is rather straightforward: the entities of the systems 

are the nodes of the graph, and if a pair of entities is in a subordinate-dominance relation, then 

there is a directed edge between them. 

In the followings, we give a short overview of the basic graph theoretical concepts. 

 

¶ A graph is a mathematical tool which is appropriate to handle a set of objects with 

connections among them. The objects are represented by nodes and the connections 

between them by edges. Formally, G = { V, E}  with a function f : E Ÿ V Ĭ V . The 

elements of V are the nodes (or vertices, or points), and the elements of E are the edges of 

the graph. The nodes are usually denoted by small Latin letters (e.g. i, j, k) or by Arabic 

numbers (1, 2, ..., N). Formally, f sends edges to pairs of vertices (which are the 

ñendpointsò of the edge), but in practice we usually forget about the function f and simply 

think of E (the set of edges) as a subset of V × V . Accordingly, edges are usually given 

by the starting and nodes, such as e = (i, j), for any e ҽ E. The word network is often 

used as synonym for graph in the case it stands for actually observed data. 
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¶ A graph can be either directed or undirected. In case of a directed graph (or digraph) the 

relation has a special direction as well. For example, in case of a hierarchy network, the 

direction can show which element dominates which other. In contrast, in an undirected 

graph the connections do not have special directions, like in the network representing the 

flight connections among cities. Informally speaking, in case of an undirected graph the 

edges are just ñlinesò, and in case of digraphs, they are ñarrowsò. 

 

¶ A simple loop is an edge that connects a node to itself. (An edge whose starting and 

endpoint is the same vertex.) 

 

¶ A path in a graph is a sequence of connected vertices. (Most definitions specify that the 

nodes within a path have to be distinct from each other.) 

 

¶ A cycle is a closed path, that is, a path whose beginning and endpoint is the same vertex. 

Many times cycles are also referred to as loops. 

 

¶ A tree is a graph in which there are no loops, cycles or multiple edges. In other words, it 

is a graph in which any two nodes are connected by exactly one path. There are two 

special kinds of vertices: (i) the root node, which does not have parents, and the leaves 

(or end-nodes), which do not have children. Accordingly, in a tree, nodes can be layered 

into levels. 

 

¶ A cluster (a.k.a. module, community or cohesive group) is a part of the graph in which the 

units are more densely connected to each other than to the rest of the graph. We will use 

this elastic description, since the concept does not have a well-defined, widely accepted 

definition. Importantly, in real-life networks, the presence of such modules is a signature 

of the hierarchical nature of the structure (see, e.g., Vicsek 2002, Ravasz et al. 2002, Palla 

et al. 2005). 

 

¶ A directed community is simply a community in a directed graph. Here the nodes can be 

related to each other based on the number of their incoming and outgoing links 

connecting them to other nodes within the same module. A node having more outgoing 

edges towards other members of the module is more like a ñsourceò-node, whereas a 

node with mostly incoming links from these members is more like a ñdrainò. (Palla et al. 

2007) 

 

¶ Vertices can be characterised by the number of links they have, reflecting how ñstronglyò 

they are connected to other nodes. Accordingly, the degree of a node in an undirected 

graph is simply the number of its edges. In a directed graph vertices can be characterised 

by their in-degree and out-degree values: the in-degree value refers to the number of 

links pointing towards the given node, whereas the out-degree value refers the number of 

links going outwards from the vertex. 
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2.1.2 Measuring the level of hierarchy  

 

In this section we shall focus on measures for flow hierarchies. More precisely, we consider 

measures for graphs representing flow hierarchy. We have two main reasons to do so: (i) 

observations and experiments, as well as results of computer simulations are likely to return flow 

hierarchy, (ii) all other hierarchy types can be transformed into flow hierarchy in a rather straight 

forward way. For example, considering a containment hierarchy, its clusters can be identified 

with the nodes of a graph in which the directed edges will indicate the containment relation. That 

is, in the graph there will be an edge pointing from node A to node B, if cluster B fully contains 

cluster A in the original structure (Nepusz 2013). 

Most of the proposed measures take values on the [0, 1] interval, returning nearly 0 for a 

completely hierarchy-less structure, like a full graph or a circle, and returning a value close to 1 

for òcompletely hierarchicalò structures, like a directed tree. Values for transient structures are 

up to ñintuitionsò, and intuitions differ from person to person. This is one of the main reasons 

why there is no ñmost appropriateò measure serving all needs. The measures reviewed in the 

present book have values on the [0, 1] interval, with higher values representing higher degree of 

hierarchy. 

This section of the book is relatively extensive for two reasons: (i) it is about an obviously 

central quantitative characteristic of a hierarchical structure, (ii) in spite of its essential 

importance there is no unique definition of the level of hierarchy of a system.  

This latter situation is analogous to that of the definition of a community in a network. The 

notion itself is so complex that, depending on the aspect that we are interested in, a suitable 

definition should be chosen. For example, a community (cluster) in a network can be defined as a 

sub-network of nodes that have relatively more connections among them than with the other 

nodes. However, we can require this ñrelatively moreò in various ways. Directed, weighted and  

connections specified according to further criteria make the problem of defining clusters in a 

network an open problem even more .  

To introduce this aspect of the problem of finding the best measure of hierarchy, the reader 

is asked to consider the following question: please decide which structure is more hierarchical. A 

set of nodes arranged into layers connected by directed edges all directing from an upper to a 

lower layer or a ñstarò consisting of a central node from which a number of directed edges lead 

to the other nodes of the network? To us, the right answer is: it depends on the context, on the 

function, etc. Next we account for a number of relevant possible angles from which such a 

question can be approached. 

 

Global Reaching Centrality  

The central idea of this approach is to give a rank to each node by measuring its ñimpactò on 

other nodes. Impact is defined by the ratio of vertices that can be reached from the focal node i. 

Local reaching centrality, CR(i) defines exactly this quantity: in a directed, un-weighted graph, 

CR(i) is the maximum number of vertices that can be reached from node i, divided by N ī 1. 

Then, the level of hierarchy is inferred from the distribution of the local reaching centralities: the 

more heterogeneous the distribution is, the more hierarchical the corresponding graph/network 

is. In order to demonstrate this statement (namely, that the distributions of the local reaching 

centralities reveal the hierarchical nature of a network), three different graph types are compared 

in Fig. 2.4: an ErdŖs-Rényi (random) graph (which is not hierarchical), a tree (which is highly 
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hierarchical), and a scale free graph (which is ñmoderatelyò hierarchical). The most 

homogeneous CR(i) distribution belongs to the ErdŖs-Rényi (ER) graph: the CR(i) values are 

either 0 or close to 1, marked by the two narrow spikes at these values with a solid black line. In 

contrast, we find all kinds of CR(i) values in a tree, as it is indicated by the red line in Fig. 2.4 

(note the log-log scale). 

This distribution follows a power law that is distorted due to the random branching numbers. 

The blue dashed line belongs to the ñmoderately hierarchicalò scale free graph, marking a 

ñmoderately heterogeneousò distribution. 

These curves represent distributions, while for a measure we expect a number. The 

definition proposed by Mones et al. (2012) grasps the heterogeneity of the CR(i) distribution as 

follows: Let CR
max

 denote the highest local reaching centrality in a graph G = (V,E). Then, the 

Global Reaching Centrality, GRC, is defined as: 
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(2.1) 

 

where V is the set of nodes, and N is the number of nodes in G. The GRC values for our three 

example graphs (Tree, Scale-free and ErdŖs-Rényi), are the following: 

 

 Tree: 0.997 ± 0.001, which is the highest. 

 Scale-free: 0.127 ± 0.008, that is, SF networks are slightly hierarchical, 

 ErdŖs-Rényi: 0.058 ± 0.005, that is, these are not hierarchical at all. 

 

These values, the means and variances, are calculated for an ensemble of 1000 graphs, and 

they demonstrate that the returned values are close to our ñintuitionsò. Eq. (2.1) applies to 

directed, un-weighted graphs. Its generalized version is suitable for analysing weighted and/or 

undirected graphs by an appropriate modified definition of the local reaching centrality (Mones 

et al. 2012). 
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Fig. 2.4 Distributions of the local reaching centralities for three kinds of directed networks: Tree, ErdŖs-Rényi 

(ER) and scale-free (SF). All the curves are averages of 1000 graphs with N=2000, of the appropriate graph type. 

Reproduced from Mones et al. (2012). 

 

 

Random Walk Measure  

 

The main motivation of this approach is the claim that ï in contrast to the assumptions behind 

most of the proposed methods ï it is not correct to treat all directed acyclic graphs as already 

maximally hierarchical, independently of their inner structure. This observation is based on 

the common intuition that a hierarchical structure often corresponds to a multi-level pyramid 

in which the levels become more and more wide as one descends from the higher levels 

towards the lower ones. 

The measure proposed by Czégel and Palla (2015) is based on properties of random walks 

within the graph, and, in accordance to the above mentioned claim, directed trees 

corresponding to multi-level pyramidal structures obtain higher hierarchy values than directed 

stars or chains.  

Intuitively, the method is based on the assumption that there is information flow coming 

from the high-ranking nodes towards to ones at the bottom, similarly as in the case of an army 

or company, where the leaders send instructions downwards the links. In order to track the 

sources of the instructions/information, etc., random walkers are dropped onto the nodes who 

then move backwards on the links. Once a steady state is reached, the density of such random 

walkers (the number of them visiting a given node) can be interpreted as being proportional to 

the rank of this node: high random walker density indicates that the vertex is a source of 

information, low density indicates the vertex is more likely to be just a ñreceiverò of orders ï 

that is, low in rank. The hierarchical nature of the network is then estimated based on the 
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distribution of these random walker densities: if the distribution is homogeneous, the source 

of information/order cannot be pinpointed, thus, the network is not hierarchical. In contrast, 

inhomogeneous distribution indicates clear information sources: the network is hierarchical. 

This homogeneity/inhomogeneity is measured with a value called H, with higher values 

reflecting more hierarchical structures (bigger inhomogeneity), and lower values less 

hierarchical networks. 

 

 

 
 

Fig. 2.5 Hierarchy scores as a function of the network size. The different symbols correspond to different 

networks. The x axis marks the size of the network (N, number of nodes) on a logarithmic scale, whereas the 

y coordinate shows the hierarchy value (H) of the graph. Reproduced from Czégel and Palla (2015) 

 

 

The largest H values belong to regulatory networks, electric circuits and food webs, whereas 

the lowest ones belong to the informal networks of acquaintances in different organizations 

(Fig. 2.5). Moderately hierarchical are the Internet, various citation-, metabolic- language and 

trust networks, which results are in good accordance to our intuitive expectations. 

An even clearer picture regarding the hierarchical nature of a network can be obtained by 

ñnormalizingò the hierarchy measure H against the hierarchy measure of the same network, but 

under the assumption of random connections. This is the ñz-scoreò, defined as: 
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(2.2) 

 

where H is the hierarchy score,  <H> is the expected H value of the randomized graph, and 

ů(H) is the standard deviation of H in the randomized ensemble. 

 

 An overview of further useful measures 
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In the rest of the section we shall give an overview of some further measures, focusing on the 

main ideas behind them. Here our aim is not to give detailed description of the techniques but 

rather to flip through the type of concepts that have been proposed so far regarding the problem 

of measuring the hierarchy level of a graph.  

 

A measure for undirected networks 

 

The measure proposed by Trusina et al. (2004) quantifies the flow hierarchy of undirected 

networks. It is based on the assumption that every vertex already has a rank associated with it by 

denoting its place in the global hierarchy. This estimate for the rank can be the degree of the 

node (originally proposed by the authors) but can be other conceivable measures as well, such as 

betweenness centrality or eigenvector centrality. With these assumptions, the hierarchy measure 

is given by the fraction of directed shortest paths going strictly upwards in the hierarchy.  

More precisely, this method assumes that the shortest paths in the network consist of a part 

going upward the hierarchy (towards more important nodes), followed by a part going downward 

the hierarchy (towards less important nodes). Either part may be empty of course, but one should 

not turn back upwards after the downward part again. Paths of this type are said to be 

hierarchical, and the measure simply calculates the fraction of vertex pairs that are connected by 

a hierarchical shortest path. 

 

Determining the levels of organizations 

 

One of the first methods was proposed by Krackhardt (1994), whose main motivation was to 

measure the levels of hierarchy of organizations. He defined four measures that can be used 

together as an estimate to the extent of flow hierarchy in networks. These measures are: 

 

¶ Hierarchy: The fraction of unordered vertex pairs (i, j) such that vertex i is reachable from 

vertex j but vertex j is not reachable from vertex i, or vice versa. It works on directed graphs 

only.  

¶ Connectedness: The fraction of unordered vertex pairs (i, j) such that vertex j is reachable 

from vertex i via a directed path or vertex i is reachable from vertex j.  

¶ Efficiency: One minus the proportion of possible ñextraò edges that are not needed to 

maintain connectedness of the components. It is assumed that each component should be an 

out-tree (as an archetype of perfect hierarchy) and thus a component of size N must have at 

most N-1 links; any more than that is a violation of efficiency. This measure obviously 

penalizes cases when there are two separate paths leading upwards the hierarchy from a node 

A to its superior B; one of the paths is not required to maintain connectedness, hence the 

structure is inefficient.  

¶ LUBness: For each unordered pair of vertices (i, j), the lowest upper bound (LUB) is a vertex 

k such that both i and j are reachable from k. LUBness is the fraction of pairs having a LUB. 

This definition can be explained by Krackhardt's assumption of an out-tree being the perfect 

hierarchy one can achieve. 

 

Each of these metrics may take values from zero to one, and each metric measures some 

kind of a ñdeviationò from the perfect hierarchy Krackhardt assumed, i.e., a directed out-tree. (It 

also applies for in-trees if we reverse the edge directions in the definition of LUBness). 
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However, these measures (with the exception of efficiency) can be calculated only for directed 

networks. 

 

Concept for containment hierarchies 

 

Unlike the measures presented so far, the concept of Ravasz and Barabási (2003) addresses the 

notion of containment hierarchies. They observed that log k and log C are correlated in many 

real-world networks (where k is the vertex degree and C is the local clustering coefficient).  

They argue that this is due to a containment hierarchy in the network (although they have 

not used the word ñcontainmentò). In order to determinate this, they proposed a simple recursive 

generation process that creates graphs with a power-law degree distribution, a linear dependence 

between log k and log C and multiple levels of hierarchies contained within each other. The 

bottom line of their argument is that hierarchy in undirected networks can be quantified by 

looking at the log k vs. log C plot and fitting a straight line to the data; the larger the slope of the 

line is, the more hierarchical the network is. 

 

Layout-motivated measure 

 

Carmel et al. (2002) proposed a layout-based metric for measuring the amount of hierarchy in a 

directed graph. They have conceived a layout algorithm that places the nodes of the graph in 2D 

space such that a set of constrains related to the target level differences are taken into account as 

much as possible. More formally, this means the following. For each i-j edge, we assign a 

measure that describes the desired difference between the y coordinates of vertex i and vertex j. 

The graph is then laid out using their algorithm, and the difference between the maximal (maxY) 

and minimal y coordinates (minY) is compared to the diameter of the graph. A strictly 

hierarchical graph with no cycles can be laid out in a way that the distance between levels is 1, 

thus the difference between maxY and minY is equal to the diameter, while a cycle (i.e. a 

perfectly un-hierarchical graph) would be laid out with equal y coordinates, yielding a hierarchy 

measure of zero. 

 

The disadvantages of this method are twofold: 

 

¶ In the general case, it is not possible to assign desired target level differences to the 

edges. We could simply say that the desired difference is 1 for all the edges, but this 

would work only if none of the edges span more than one layer. Edges skipping layers 

but otherwise pointing to the right direction would skew the layout and decrease the 

hierarchy measure 

¶ This measure is not applicable to undirected graphs. 

 

.  

Measures for structures ñfrom down to topò 

 

Next in contrast to the way we assumed above, we shall consider the edges of directed networks 

to be oriented upwards (i.e. from lower to higher levels), like on a who-reports-to-whom 

organization diagram. We do so in order to follow the terminology of the related literature. It is 
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usually straightforward to apply the definitions to directed networks that use the opposite 

convention. 

Sometimes we will talk about layers or levels (sets of nodes with the same rank). Layers are 

indexed from 1 upwards, and a lower layer index corresponds to a higher rank. 

Some of these measures will work on networks where the ranks of individual nodes are not 

known in advance; others are defined for a network and a corresponding ranking of nodes, and 

therefore must be optimized by some optimization procedure when the ranks are unknown. 

 

Fraction of edges participating in cycles 

 

Here the main idea is to reveal somehow the possible asymmetry between nodes by assuming 

some sort of flow on the links, and then check if these flows exhibit any kind of overall 

directionality or not. One way to do so is to find all of the elementary cycles in the network, 

count the edges participating in them, and divide this number by the total number of edges. This 

approach works for undirected and directed graphs as well; in directed graphs, only directed 

cycles matter. (A cycle is elementary if no vertex appears in it twice). 

All the elementary cycles in a directed graph can be found simply using Johnsonôs algorithm 

(Johnson 1975), which is O((N+E)(c+1)) where N is the number of nodes, E is the number of 

edges and c is the number of elementary cycles. The case of undirected graphs is a bit more 

tricky as the union of two elementary cycles with at least one shared edge is also an elementary 

cycle (after removing the shared edges from the union), thus we can expect a lot more cycles 

than for directed graphs where this condition does not hold. It is therefore common to search for 

a cycle base instead, i.e., a set of cycles such that every other cycle can be reproduced from 

selected base cycles by taking their disjoint unions. Since every edge that participates in a cycle 

must also participate in one of the base cycles, finding a cycle base is enough for our purposes. 

Luo and Magee (2011) proposed the opposite of this measure (i.e., the fraction of edges not 

participating in cycles) as a hierarchy measure for directed networks. A big advantage of this 

approach is its simplicity.  

 

Minimum fraction of edges to be removed to make the graph cycle-free 

 

This approach is slightly different from the one called ñfraction of edges participating in cyclesò. 

For instance, consider a graph consisting of two interlocking directed links sharing an edge. In 

this graph, all the edges participate in cycles (hence the previous measure would be 1.0), but 

removing the shared edge would make the graph entirely cycle-free. We call a set of edges 

whose removal makes the graph cycle-free feedback arc set. 
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Fig. 2.6 Illustration of the difference between ñthe fraction of edges participating in cyclesò and the ñfraction of 

edges to be removed to make the graph cycle-freeò. Subfigure a shows a graph where all the edges participate in 

cycles. However, as it can be seen in b, it is enough to remove a single edge (from J to A) to break both cycles 

and obtain a perfect hierarchy. 

 

Note that although Fig. 2.6 shows a directed graph, this measure works just as well for 

undirected graphsï but the number of edges to be removed may be different! For instance, the 

graph with the two rings on the left of Fig. 2.6 becomes cycle-free by removing one single edge 

if the edges are directed, but one has to remove two edges to make it cycle-free in the undirected 

case. 

This measure is very easy to calculate for connected undirected simple graphs. Since the 

graph is connected, the minimum number of edges required to connect N vertices is N-1. Adding 

any extra edge on top of these N-1 edges necessarily creates a cycle, thus the number of edges 

one has to remove from an undirected simple connected graph with N vertices and M edges is M-

N+1, and the fraction of such edges is therefore 1-(N-1)/M. 

For directed graphs, finding a minimum feedback arc set is an NP-hard problem (Healy and 

Nikolov 2013), but heuristic procedures exist to find an approximation. One such procedure is 

the greedy cycle removal algorithm by Eades et al. (1993) Namely: 

 

1. Create an empty ñdequeò (double-ended queue).  

2. If the graph is empty, we are done.  

3. While there are sink vertices in the graph, remove them one by one and add them to the 

beginning of the deque. 

4. While there are source vertices in the graph, remove them one by one and append them to 

the deque (add them to the end of the deque).  

5. If no sinks and sources remain, find a vertex where the difference between the out-degree 

and the in-degree is as large as possible, remove it from the graph, append it to the deque 

and return to step 2.  

 

At the end of the algorithm, the deque contains a possible ordering of vertices where 

ordinary edges point ñforwardò in the ordering and feedback arcs point ñbackwardò. The 
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cardinality of the feedback arc set found by this heuristic is at most M/2-N/6 where M is the 

number of edges and N is the number of vertices. 

Another heuristic is as follows. Scan each edge of the graph one by one and maintain two 

sets, S and T. In each step, check whether edge e forms a cycle with the edges already in S. If not, 

add e to S, otherwise add e to T. In the end, both S and T are acyclic and the smaller of the two 

sets gives a feedback arc set with at most half of all the edges. More sophisticated 

approximations are to be found in (Even et al. 1995) and (Saab 2001).  

 

For graphs up to a couple of hundred nodes, one can use the following strategy as well: 

 

1. If the graph is undirected, break it down into components, and calculate the sum of M-N+1 

for each component, where M is the number of edges in the component and N is the number 

of vertices. This is the total number of edges to be removed to make the graph cycle-free; the 

fraction follows by a straightforward division. 

2. If the graph is directed, break it down into weakly connected components and estimate the 

number of edges to be removed from each of the components as follows: 

¶ If the component is acyclic (i.e., it has a topological ordering), no edges have to be removed 

at all.  

¶ If the component has less than 20 edges, use a brute-force search to find the minimum 

number of edges to be removed to make it cycle-free.  

¶ Otherwise, find a minimum cut of the component, add the edges of the cut to the feedback 

edge set and proceed recursively with each side of the cut. 

 

Fraction of hierarchy-violating edges 

A hierarchy-violating edge is one that originates in a higher level and terminates in a lower level, 

meaning that someone up in the hierarchy ñreports toò someone on the lower level. This is a 

clear violation. Naturally, this measure requires the ranks to be known in advance as it is 

otherwise impossible to decide which edges violate the hierarchy. 

Another, more strict definition of a hierarchy-violating edge is that it is an edge where 

subtracting the rank of the origin from the rank of the target yields a result that is not zero and 

not one. This definition penalizes not only the edges that go ñthe wrong wayò in a hierarchy but 

also the edges that skip levels. 

In the absence of ranks, one has to find the ranking that minimizes the fraction of hierarchy-

violating edges, which leads to a problem that may be familiar from community detection. A 

trivial way to minimize the number of hierarchy-violating edges is to use the same rank for every 

node, assuming that edges between peers (i.e. nodes with the same rank) are allowed. A possible 

solution is to disallow edges between peers, which effectively reproduces the feedback arc set 

problem, since a directed graph minus a minimum feedback arc set is a directed acyclic graph 

which can then be decomposed into layers. Each feedback arc is then a hierarchy-violating edge.  

 

Average expected downstream path length 

 

This measure is based on random walks. More precisely, the expected length of a path a random 

walker is allowed to take on the graph with the following constraints: 

 



28 

 

1. The walker is only allowed to step downstream in the graph, i.e. towards lower layers. A 

path that goes downward in a layered hierarchy is called a downstream path (-hence the 

name of the measure).  

2. The transition matrix of the random walk is a usual right-stochastic matrix derived from 

the weighted adjacency matrix of the graph (loop edges are not allowed).  

3. The random walk terminates as soon as the walker ends up in a sink node or in a node 

that has neighbours in higher layers only.  

 

The measure also requires an a priori layer assignment, and it is an open problem to find the 

optimal assignment given the graph only. When the layers are known, the measure can be 

calculated very easily: one has to proceed recursively from the lowermost layer towards the 

uppermost layer and make use of the following two equations: 

 

1. If a vertex v is a sink, then the expected length of downstream paths from v is zero.  

2. If v is not a sink, the expected length is one more than the expected length of downstream 

paths from its lower-level neighbours, weighted by the probabilities of reaching those 

neighbours from v in a single step. Note that only the expected length of downstream 

paths for vertices in layers lower than v has to be known, therefore, a single sweep from 

lower layers to the uppermost layer is enough.  

 

To make graphs with different numbers of layers comparable, it is advised to normalize this 

measure as follows.  

Suppose that vertex v is at layer l(v) and there are k layers. The maximal value of the 

expected downstream path length originating from v (denoted by h(v)) is then k - l(v). The 

normalized variant of the measure takes the average of h(v)/(k - l(v)) for all non-sink vertices, 

assuming that 0/0 is 0. 

The above overview of the ñfurther hierarchy measuresò was composed using the working 

paper by T. Nepusz (2013). 

 

 

2.1.3 Classification of hierarchical networks 

 

The methods overviewed in the previous Sect. (2.1.2) assign a value for each graph, reflecting 

the extent to which the input network is hierarchical. Now we shall reverse the direction, and 

show an algorithm that creates a graph based on an input parameter p (taking values on the [0, 1] 

interval) indicating how hierarchical the output graph should be. p=0 refers to non-hierarchical 

and p close to 1 refers to strongly hierarchical structures. The method was proposed by Mones et 

al. (2012). 

The construction of the graph with tunable levels of hierarchy goes as follows (Fig. 2.7 a): 

 

¶ A level-value (ǎ) is assigned to every node in a directed tree in the following way: 

o The nodes at the ñbottom-levelò (that is, the leaves) are assigned ǎ=1. 

o The level-value of the root node is equal to the number of hierarchical levels in 

the tree. (for example ǎ=5 in Fig 2.7a of the root node) 

o All children of a node with level-value ǎ will have ǎ-1 as level-value. 
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¶ Next a given number of random directed edges are added to the tree according to the 

following rules: 

o 1-p proportion of these edges are added completely randomly by choosing their 

starting point (A) and end-node (B) with probability 1/N (N is the number of nodes 

in the graph). In case there is no directed edge pointing from A to B, such an edge 

is added to the graph.  

o Regarding the rest of the edges (accounting for the p proportion of the ñextraò 

edges) they are added only if ǎA> ǎB.  

 

Figure 2.7 b depicts the GRC values (see Sect. 2.1.2) for hierarchical graphs created with the 

above algorithm, for p=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. 

 

 
 

 

Fig. 2.7 a The different types of edges while constructing a hierarchical graph based on an input parameter p. 

Solid blue edges belong to the original tree used as the backbone of the output graph. Edges pointing downwards 

(green) conserve the hierarchy, horizontal edges (orange) have a slight influence and finally the ones directed 

upwards (marked with red) make strong change in the structure. 

b Distribution of the local reaching centrality (see Sect. 2.1.2) values for adjustable hierarchical networks with 

various p values. Each curve is an average of 1000 networks with N=2000 nodes for <k>=3. Note that from the 

highly random (p=0) to the highly hierarchical (p=1) state the distribution changes continuously and 

monotonously with p. Reproduced from Mones et al. (2012). 
 

Similarly to the problem of measuring hierarchy, the problem of classification of 

hierarchical structures is not trivial either. Next we shall overview a method proposed by 
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Corominas-Murtra et al. (2013) which is based on three expectations towards hierarchical 

systems. These are (i) treeness (ii) feed-forwardness, and (iii) orderability. (See later in more 

details.) 

Using the above three features, a 3D morphospace (ñphenotype-spaceò) can be defined in 

which the three axes are the tree quantifiable features. Placing real-life hierarchical and random 

null-models into such a coordinate system, fundamental characteristics can be revealed. As it 

turns out, networks do not occupy the entire morphospace, instead they accumulate in four major 

clusters within the large voids, which most probably results from the constraints under which 

they evolve. 

Letôs define the proper position of a network G(V,E) within the morphospace.  

First, G(V,E)=G is transformed into its corresponding node-weighted condensed graph 

GC(VC, EC)=GC which is an acyclic feed-forward structure where the cyclic modules (strongly 

connected components) of G are replaced by single nodes. Accordingly, in a node-weighted 

condensed graph GC, each node has a weight Ŭi indicating the number of nodes it includes from 

G, the original graph. For example, in Fig. 2.8, subfigure h depicts the node-weighted condensed 

graph GC corresponding to G, the one depicted on subfigure d. In this, node S2 includes 3 nodes 

from G and S1 includes 2. (This method, the localization of strongly connected components, is an 

often used approach to identify subsystems within a graph.) 

Then we calculate the three values using both G and GC. 

 

1. ñTreenessò, T, taking values on the [-1, 1] interval, captures how unambiguous the ñchain 

of commandò is within GC. In hierarchical networks, like the one in Fig. 2.8 a and on its 

corresponding node-weighted graph depicted on e, the chain-of-command is unequivocal, 

characterized by positive T values. In case the chain of command is ambiguous, the 

structure is said to be anti-hierarchical, marked by negative T values (Fig. 2.8 b and f). 

Intuitively, this feature is calculated by comparing the diversity of choices one can make 

top-down vs. the uncertainty on the way bottom-up, captured by the concepts forward 

and backward entropies.  

 

2. ñFeed-forwardnessò, F: Since the paths within cyclic modules (like S1 and S2 in Fig. 2.8 

h) violate the downstream order within the graph, they are penalized according to their 

size and position: larger modules closer to the top of G influence more the overall 

structure of G than smaller ones close to the bottom. Accordingly, they introduce larger 

penalty. F is defined on the [0, 1] interval.  

 

3. ñOrderabiliyò, O, is defined as the fraction of nodes that do not belong to any cycle. 

These nodes are orderable, accordingly, bigger ratio results higher orderability value. O 

takes values from [0, 1].  
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Fig. 2.8 A Visualization of the tree concepts characterizing hierarchical networks: treeness (T), feed-forwardness 

(F) and orderability (O). Based on these tree features, a morphospace can be defined in which the similarities 

and differences (resulting from evolutionary constraints) can be analysed. a A perfectly hierarchical graph is 

tree-like (or pyramidal, T=1) with feed-forward edges (F=1) and orderable nodes (O=1). b In anti-hierarchical 

networks (characterized by negative T values and head downwards pyramidal structures) the chain of command 

is ambiguous. c is non-hierarchical (T=0) and d is a graph with cyclic modules, violating the orderability of the 

nodes. (e-h): the corresponding node-weighted condensed graphs of the networks in the first row, with paths top-

down and bottom-up. (i-l) : the icon representation of the graphs in the first row, along with their TFO values. 

Reproduced from Corominas-Murtra et al. (2013) 
 

Figure 2.9 depicts the location of random null models (white circles) and 125 real networks 

within the morphospace. Since random networks are being built without any selection pressure, 

they are neither hierarchical nor anti-hierarchical, accordingly, they occupy the Tå0 segment.  

The main observation is that the vast majority of real networks fall into four clusters:  

 

i. Gene regulatory networks (plus a protein kinase NW) occupy the first cluster at the top of 

the coordinate system (Fig. 2.9), marked as ñGRNò. These systems are characterized by 

very high orderabiliy values (O) with variable F values. The broad range of F (feed-

forwardness) is caused by various sized modules near to the top of the networks, 

corresponding to a small fraction of genes, (transcription factors) participating in cycles. 

ii.  Electronic circuits and software graphs are strictly feed-forward (Få1) with orderable 

nodes (Oå1), biased slightly towards negative T values. This cluster (marked as ñTECHò 

in Fig. 2.9) is located on the top right edge of the morphospace. 

iii.  (ECO) The third cluster is defined by the ecological flow graphs, marked as ñECOò in the 

Fig. 2.9. Their positions within the morphospace reveal a certain degree of pyramidal 
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structure combined with the important role played by loops. This special, separated 

position is consistent with the trophic pyramid mingled with recycling.  

iv. And finally, the fourth cluster is composed of metabolic, neural, linguistic, and some 

social networks (ñLANG, MET, NEUò), embedded within the cloud of random graphs. 

These networks display a large central cycle, much larger than their randomized 

counterparts, which feature is most probably due to the advantage of reusing/recycling 

molecules. 

 

 
 

Fig 2.9 The position of 125 real networks and various random null models within the morphospace defined by 

the coordinates T (treeness), F (feed-forwardness) and O (Orderabiliy). The random networks are white, while 

the real networks are colour coded according to their types listed in the key. The size of the circles is 

proportional to number of nodes the corresponding graph includes. Reproduced from Corominas-Murtra et al. 

(2013)  
 

Two of these clusters (LANG/MET/NEU and TECH) overlap with random networks with 

similar connectivity, suggesting that non-adaptive factors shape the topological nature of these 

graphs. In contrast, the position of the ECO and GRN clusters indicate that the topological 

features of the ecological and gene networks are the resultant of functional constraints. 

 

 

2.2 Visualization techniques  

2.2.1 A general overview  

 

The aim of the various visualization techniques is the same: to illustrate the entire network as a 

single figure in an easily perceptible way, revealing as much information of its hierarchical 

nature / inner structure as possible. Since (real) hierarchical systems are often complex with 

many characteristics, the level to which a visualization technique reflects the main features of a 

network is limited. Different visualization tools highlight different characteristics and different 
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hierarchy types require different visualization tools. There exists no ñbest methodò, the 

appropriate technique depends on the specific characteristics we would like to highlight. 

The most simple ï and widespread ï visualization technique is the pyramid, in which each 

entity is represented by a layer and the higher an entity is in the hierarchy, the higher it is in the 

diagram. Often (for example in case of social pyramids), but not always (e.g., Maslowôs 

hierarchy), the width of the layer reflects the size of the represented layer. The drawback of this 

technique is that it can reflect only a linear order (a sequence) of the layers, and ï in some cases 

ï their approximate sizes. In other words, this technique reveals only an order hierarchy of the 

layers, without giving any description about the inner structure of the given system. 

In contrast, graphs are applicable to describe not only order hierarchy, but other hierarchy 

types as well, most importantly flow hierarchy, meanwhile allowing a much more detailed 

visualization of the inner structure of the system as well. Due to these reasons, visualization of 

flow hierarchy is the most commonly used technique to represent hierarchical systems.  

Because of the lack of loops and cycles, the representation of a ñpureò hierarchical system 

would be a tree. However, in real-life cases, such systems occur only very rarely. Accordingly, 

trees often correspond to the ideal and/or theoretical case, while graphs that are more complex 

(have cycles, undirected edges, etc.) are better suitable for representing real-life cases. 

This representation is closely connected to the concept of control (or flow) hierarchy, in 

which the entities (which are represented by nodes in the corresponding graph) are organized 

into a system of subordinate-superordinate relations, which correspond to the edges of the graph. 

Accordingly, orders or information flow on the edges (hence the name) from the superior unit(s) 

towards the inferior element(s), while requests and information flow in the opposite direction. 

Typical examples are the ranks in armies, various state and church organizations, corporations, 

etc. 

2.2.2 Techniques reflecting the overall hierarchy level 

 

Letô have a graph, representing a (real life or artificial) system. The graph can be large, having 

many communities and sub-communities, therefore difficult to be drawn in a way that is 

reasonably accessible to overview. However, we would like to know how hierarchical the 

original system is, preferably in a visual form. 

The most widely accepted method for visualizing the hierarchical nature of small networks 

is the one proposed by Sugiyama et al. (1981). For such graphs, this technique provides an 

informative and clear hierarchical layout by layering the vertices into horizontal rows in a way 

that the edges are directed downwards. This method is often referred to as ñLayered graph 

drawingò or ñhierarchical graph drawingò method. 

The main steps are the following (Fig. 2.10): 

(i) Cycle removal (a pre-processing step). If the directed input graph is not acyclic, a 

minimal set of ñreversal edgesò has to be identified and reversed in order to obtain an 

acyclic digraph. (Identifying such a minimal edge-set is an NP-complete problem.) 

(These reversed edges, as well as other changes within the graph will be restored in a 

later step into their original state.) 

(ii)  Layer assignment. Partitioning the vertex set of the graph into layers in a way that each 

edge is directed from a higher level towards a lower one, with the following properties: 

a. the number of layers is kept small 

b. as few edges span large number of layers as possible 
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c. the assignment of nodes into layers is balanced. 

(iii)  Insertion of ñdummy verticesò.  ñLongò edges (edges spanning multiple layers) are 

chopped up into a series of shorter ones by inserting so called ñdummy verticesò into the 

graph. After this step each edge will connect nodes on adjacent layers. 

(iv) Edge concentration (optional step): The aim of this step is to reduce the number of edge 

crossings and the edge density between adjacent levels. It might reduce the number of 

dummy vertices as well, but, as important drawbacks, it may increase the number of 

layers and it also modifies the graph.  

(v) Vertex ordering (or ñcrossing minimizationò or ñcrossing reductionò step). The nodes 

within the layers are permuted in a way that the numbers of edge-crossings are minimized 

between the adjacent layers. 

(vi) x-Coordinate assignment: The aim of this step is to position the nodes (that is, assigning 

them an x coordinate) within each layer in a way that the edges become as straight as 

possible, and the nodes are centred with respect to their neighbours. This positioning 

should be consistent with the permutation applied in the previous step.  

(vii)  Final step: Changes that have been introduced to the graph in previous steps are reversed 

so that the edges return into their original state:  

a. edges reversed in the ñcycle removalò (first) step are returned into their original 
direction 

b. dummy vertices that have been inserted in step (iii) are removed from the graph and 

the corresponding ñlongò edges are drawn back in a way that avoids intersections and 

crossings. This might be done by drawing the edges as polygonal chains or spline 

curves.  

 

For a detailed analysis and description of this method see also (Healy and Nikolov 2013). 

Although this method is very popular for small networks, it has some serious drawbacks as well, 

which become especially important for large graphs:  

 

Å for bigger networks (graphs with more than a few hundred nodes) the generated layout 

becomes difficult to overview/interpret;  

Å the steps are NP-complete or NP-hard, which makes the usage of several different 

heuristics necessary and thus the results become less well-defined. 

Å independently of the hierarchical nature of the given network, the method provides a 

hierarchical layout which is often misleading;  

Å the meaning of the levels is not defined; 
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Fig. 2.10 The main steps of the Sugiyama algorithm. It is hard to see the hierarchical structure of the input graph a, 

whereas it is clearly visible on the output graph e. This method is appropriate for relative small graphs (up to a few 

hundred nodes). Reproduced from Healy and Nikolov (2013) 

 

Next, we discuss a method proposed by Mones et al. (2012) that solves the above problems 

and is easily applicable even for complex large networks (See Fig. 2.11). 

The algorithm of the proposed method is as follows:  

 

1. Rank the nodes according to their local reaching centrality value, CR(i), where CR(i) is 

the ratio of nodes that can be reached from the focal node i, reflecting ñimpactò of i on 






































































































































