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1 Introduction

This book is concerned with the various as o
mani festedmbyemostystems i n nature. From th m
present a selection of those that we think ar
di fferent directions onto our guente tgheen eersasle nst
contributions by the existing approaches as w
by traditional me tqghu@ad 4 alpyp t dpmelhy it rhg na trher € o mmo
are many books on qgquwalaidtdattiivwen itot eroprse tdatrii mmgs
made of similar kinds of wunits, we shall conc
relations or the pernoackdasnsg o fr oo Ivliaerd toiuvse vd eecwi psoii

pe
e

1.1 General considerations

Si nee amichy i s abundant in nature and society,
unexplored, the main goal we intend to achiev
documentation of new wunifying prinrcti pdspe atnd
hi erarchy (being perhaps the most widespread

shall discuss recent experiments and model s t
reproduce the observatiars amdedesvalnadp ngomdep
systems consisting of many organisms. We shal|
groups of peopl e.

The related research goes beyond being intet
mul tidi,scsiphndeairty i nvolves many Xindsgodf s@asit ¢
techniques and technologies typically wused in
topics we address might | ook too edirwesresag.c hHow
directions as facets of a single, to be explo

Al t hough we shall concentrate on hierarchi c:
t wo aspects of it which will pop up in the ma
changing partially directed networks (and the
possi ble exampl ed. alrre addiutailare,edwe ngiFMea .a br i e
relevant concepts which hierarchy is related

Organi snasg evnetrss,usent i ties or Aparticleso
Throughout of this book we shall consider sys
t housands) organi s ms, i . e., ' i vingl iemitng i esr. |
as well; statt@ryg pfaroemceéleemé hrough the sol ar
that i1 s a beauti ful and |l ong story which i1 s n



Application

Comprehension

Knowledge

Fi gaAxlon arborisation (the end part of acabajtoke

struct urbel hien wspamng. of a human brain. Hi erarchy
MRI1 i mages aircdiicatle fluineAn d ntaHi o pieg aad ipmssi bl e i
(thoughthse béihbeoend produdthe of saafliozati omi @
commonpl ace) idea eThea hfeamowwd uftiiromtard/;r ad wiereg abc

tree with the f@lfTthhisn kcoo mpdttdex ibtys elauvnd rneds of br
variants (associated with grlTehve paeadmtn p eaciags)hyo:
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by who is Iicking who (subordinates doethibsewiv
bet ween a dodPendapsrtbwnenly hierarchy named
AMasl ovds hieirVarsauhy icgfatn@emdod. the connections
C+ softwaraiany ntge ma(lngonthousands of entities an
coded andThandtedhgth of the directional corre
being denoted by AO, é, 9%.heT hdeo nai snyanmnte tprairct sotfr utchtel

symmetric components) i ndfialaltcewle rkffrheelcaptiigaris.es g
of the two pyramids of medieval relmomnadinseg atmo n:
right side correspondilfAgdt d itntad | ryel iwgi clho wo rag &
simple animals. Where is here the hierarchy? N
birdslssehofi sh) typically do not display the
hierarchically organized.) (AII pijavthircérs i &r & rfo

papers)

Hi erarchy instobd ctansbeevalleways. For examj
more I mportant than another type of quality.
many Aunitsodo which are related to each other
a nan ﬁsimplec‘) Perhaps the best way to demonst
The inter tions (relations) among them can b
being in ve with each ot hero)n.s,| naset eaasds uorfe ctoh
peopl e, | ar organlsation a
t hem ha (

t he [
of
of

us say, 1Iin a |
job of a | eader

I

e

a a group, a dep
a deinr etchtee dt woi nwkh ibceht

m

h

t

e
f

es pointing from
ng their i
e X

g
0
Wi
pany. When account. re
er, extremely compl feataeeks
he other person, etc.) wil!/l be
is is how fAparticleso can be defined
ractdiomng heeamgibr-eesometdektd be)very simple.
gent s0 amenpadilwiatt emot dhac pa i l es. Al thou
e also relatively simple, e units hayv
n be interpreted as optimiz axitmi zing s
pcal form this quantity is di fference
tness. Fitness can be defin r a whole g

To summar i zhe etrhae cahlyovMes: typically defined for
advantageous t.o @Qnevaofyitnhge dneagirre ememaiam erse a$ 0 10 U
for the hierarchical structure of the relatio
advanttawamua fully regul arngemeantr.andom or any

Coll ective behaviour

Coll ective behaviour applies to a great varie
extremely useful notion in many contexts. Ex a
insects or birds; soro fp hoerngoashei ngamswghoeorben egortosu ps y n ¢
t heir dgihgma&l sof fireflies flashing in unison o
applause. The main features of collective beh
domi nat ecdhfbhywemite 06 tihtes umeitglhledhaves di fferent
would behave on its own. On one hand such sys
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units simultaneously change their behaviour t
2010and on the other hand can form structures
complex functions than a single unit (conside
The world is made of many highwlyos@éaterconne
interactions result in a complex behaviour ne
reali zation forces us to appreciate that new
another, so it follows tkkaosehyg seilaned bf eca
foll owing a classificatsi eerx pleacseed am meajveral arnah
governing the ways by which these new propert
Over the past decades, one 0% hahe Mmae¢ortkec:
explanation of how certain patterns can arise
uni t s. I nterestingly, the units themselves ca
structure has l|litslehenwfpuedoeceeonl t hies pati¢ler m
that deterwmica¢e tbRdalvaoge of the system. It h
interacting spins or atoms, but also assembl
groups |lefx domp ogi cal structures (bacteria, an
physics models (Vicsek 2001) . 't has been de
has a number of features typicalofostmbnygtdcéa
these could be considered as fAduniversality cl
It is, however, very important to note that
interactions has beanllyafgel ¥y hregliectce @, d € ope
few network theory papers). Ourulaadiid ads syermhyt
interpreting the patterns of behaviour in hie
uni fiedfphcewvumechical collective behaviour, a
number of basic relations or Al awso describin
Coll ective motion
The actions of moving individual organisms ad
complexthép seem to have been choreographed f
di stinctive swiytlhe folfuibdeihtayviaonulr a seeming intel
abilities of their members. Vastl ec oonfgrteugantiinogn
sharply and suddenly en masse, always avoidin
over the two decades that computer models and
| arge number of ani malasblhiasvhei nbge ean sviegrnyi fuisceafnutll
understanding of such systems than before (Vi
Net wor ks
When fAgeneratingo |ife as we perceive it toda
menti oned hierar chiyc asle plaervaetlisn gb yt hsepno natsa nneool uescl u
cell s, organisms, species and societies. The
the ways el ements of a system organize themse
structur er otfy pbiechaalvifoour wi de c¢cl asses of systems
proposed, -onghbodrzagier| fsimultaneous existenc
adaptation, rugged energy/ fitness | awnti®capes



build relatively simple models producing comp
working on inherently very complex systems (b
ways how their infinitely dcoimpltiecranise do{s uibn teecrts
defined (i.e., simpler) wunits (such as protei
can be directed and weighted) and the units t
(Al bert and BarazbE6Bal2®RBHBsi Ne

Most of the networks in | ife and technology
structured. For example, a dynamically changi
coll ectively moving orgahusmsion pbpbboheseirnpes
1.2 Motivation
It is widely accepted that we do not wundersta
of rmuevteil hierarches. However, there must be a
of thenpeemahebroepspbntdhaegcsnposteemd fprcefeanr iviag
where is this advantage? Better adaptability?
spreading of relevant i nfor matiinkndfQr ,e.mer ham
On a more abstract | evel: What are the condit
there any general (valid for many systems) ne

emergence?

These are chabhdngfinweqguastiaaoaswer them it ci
and producing much more efficient devices or
functioning industrial educational or many m

Moti vated by tnhet haibso vbeo orke awsiolnls ,bei centered a

related to questions | i ke:

What is our subject?
We shall consider primarily systems (structur
l' iving world. The rel atbeeé, theacbindalt i gmesuindue
emerges? What kinds of mathematical tools are
hi erarchy?

Why do we study?
We use a quantitative approach to ionft etrhper et i n
presently available experimental and theoret.
predominantly qualitative so a need arises 1in
hand, the interest i n tchkd yt.oplinad esedmsn dtin gb d eia
further aspects of hierarchy are expected to
economibated structures. On a | ess applied | ev

behaviour of gabupachiasgafijsowbegni nterest.

How do we study?



As mentioned above (and explored here in a bi
the various quantitative aisbpuetc tfsaro ff rhditreorbaeri cnhgy
degsn experiments for studyitHHmd |Ihoowera rheil earta romhsihc

from an originally disordered set of I|iving e
them either analytically or usangi tatmpuéeeappr
have been gambasbdomgdahdi agentn this book w
since the game theoretical works we know of a
actual, real | i f e oA srearrvea thiuotn si napnodr teaxnpte rei xnteenptt
book by Boix (2015) delivering an i mpressive
| arge scale (political) hierarchy. Our work,
groups iowvesoddreclie | ooked at as compl ementing

1.3 Hierarchical structures in space and in networks

There exist a few fields in sciences which ar
but fal./l beyond thepseosepeersiohihleas edvbp &c t( t dife yh ir ¢
mainly so because these areas represent a res
present book we consider hierarchy as a set o

connected entities is directed (one is, in way

superior/leading/ embedding etc considering t
upon the topic of spatiallyuhderaccadcastyomimee
relations) but stildl hierarchical net wor ks (c
similar aspects of hierarchy we suggest that
(Fal coner 2003, F-eadeoru t 1 & & 8a, &bt 866l css, 2 RaONQA9 9BRrerw ma n
Newman et al. 2006, D oR aog$oavirt osr enWa sapnadg dveemid e2z0 0270)
about networks and scale free networks).
Fracdrad sobjects for which the tompadleagi cal di
directions one can move into from a given poi
the Euclidean space they can ke merhmed ded mer tr o/
means that a small partabffaeatuaesat hhast hbew
expression fisame statistical featureso we typ
same. This is equivalent to saying that scal.i
a strwmctchhr @ swstatistically i denttirciavli atlo ftehaet ufr

involves the fact that t-ihret elg erenmsu mmerofad hep dc
objects havidgB di mensi ons 1,

Il nteresti ngrdge enmaruigent,y aofl | i ving systems i nv
or another. As one proceeds from simpler to m
encounter fractal bacteria colonies (Ma®@GBI)yam
or the network of blood vesse-lasnoing itdreer i onpad
feat-byetshe so called allometric scaling | aws
particular, i n mammal iearmmnmde tSeb)onoRuea mMR2PHeo n et Iy«
| argest scale built by organtlsinkse dreeattulree sciatsi

Batty and938dngl ey
The-cabdedllree neadamwoalksso be consider-sedmabamani
s tcrtuur e . Such a structure is not realized i n s
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a system are connected to each ot her Using t
(entity) is the number oéaddggst 6conseneighbd
net work. The degrees may follow all sorts of
then the degree distribution is invariant und
the same polweti bawadi she whole networ k.

The possible examples for systemd$rwkich can
net works are numerous. Most of these are not
to |l arger scale, examplpondimgl tdetmet wortls acad
cell, then, with a | arge jump, many human mad
the various networks of soci al i nteractions (

Thearee, however some spatial structures that
hierarchical net wor ks. Louf et al. (2013) int
net wor k based on abegreenfeirtal a ncalnycseipst.a oTihi ediers vnaordie
of hierarchical spatial st-depéndest (treeels mi:
wor kDabgyiengal. (2011) connects the fractal and
calculating the di mangsieamworkfs.spatially embed
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2 Definitions and Basic Concepts

As we indicated in the introduction, the notion of hierarchy applies to a great variety of topics

and contexts, let it be the social structure of animal groups, human virtues, psychological needs

or the structure of a amputer program. Accordingly, it does not have a compact, precise, widely
accepted definition that would be applicable for all cases. Available definitions usugihsby

the problem of clarification by using synonymous wdraghich are, unfortunately, miilarly

uncl ear . For example, according to the Cambri
people or things are arranged according to th
but importance is highly subjective: something that is irigm in a given context might not be

i mportant at all from another point of view.
people in the upper | evels of an or gcamra,z at i on
but according to tis definition, hierarchy is restricted to people in an organizétwhich is a

very narrow interpretation. Checking a very p

(from the Greek hierarchia, "rule of a high priest", from hierarches, "leadacce#d rites") is an
arrangement of items (objects, names, values, categories, etc.) in which the items are represented
as being "above," "below," or "at the same | e
does not inform us about the basic aspef the arrangement, which represent, on the other
hand, the heart of the problem.

As we shall see, it turns out from more strict investigations that usually we talk about
hierarchy ifentities of a system can be classified into levels in a way tlraéets of a higher
leveldetermine or constrain the behaviour and/or characteristafsentities in a lower level
That is, in the heart of hierarchy we find control of behaviour.

Definition: A system is hierarchical if it has elements (or subsystemsatban dominant
subordinate relation with each othArunit isdominantover another unit to the extent of its
ability to influence behaviour of the other. In this relation, the latter unit is caliddrdinate

Fig. 2.1An example for flow hierargh The
feedingqueuing hierarchical structure of a /En\ —
pigeon flock. Each square represents an 11 Em
individual. The edges point from the higher 0N A
ranked bird towards the subordinate one with B9
edge widths corresponding to the ability to N v R ’
influence the behaviour of thewer ranked vy *
individual. For the sake of better visibility,
higher ranked notes are depicted higher on tt W
picture.Reproducedrbm Nagy et al(2013). q
v L
B2
e W&
A
_
y ‘14
~EE‘
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A typical hierarchical structure can be seen in Fig. 2.1 depicting the ranks within a pigeon
flock. The inner structure of the group has been established by observing and measuring the
feedingqueuing behaviour of its members (Nagy et al. 2013)

Note that this definition does not tell how hierarchicalsystenis. Instead, it expresses
whether its elenm@s (or subsystems) are in hierarchical relation or not (manifesting itself in a
dominantsubordinate relation). Furthermore, it tells the origin (reason) and extent of the
dominantsubordinate relation. Consider for example the Rpaker scissors game. @&ording
to the rules,

T The rock blunts the scissors (and hence
1 The scissors cut the paper, and
1 The paper covers the stone.

Figure 2.2 shows how the elements overpower each other. Based on the above definition, the
hierarchical (dminantsubordinate) relation among the units is clear, but the hierarchical nature
of the whole system is not: is this network hierarchical at all?

Fig. 2.2The graph representation of the rock Scissors cut
paperscissors game. The dominabordinate paper
relationshipamong the elements is clear, but the
hierarchical nature of the entire system is not.

Stone

© @

scissors

Paper
covers

@ stone

In other words, from a grapgheoretical point of view, the above definition gives a lead
regarding tharrows (where they should be and what is their deeper mephutgt does not tell
us how hierarchical the entire system is. At this point, we choose to keep it this way, mainly
because the extent of hierarchy within a system has subjective aspects: for some;pghpepck
Scissors game i sncditbelemenys are dlearly m hierarchicakrelation. Faeri
others it is not, because no source (leader) can be determined.

Many approaches have been proposed to measure the hierarchy of a network, but none of
them i s Auniversal or atl acaseptedSbkbygtever fodein
h i e r agiveshay averview of these measures and algorithms.

A few comments related to the definition:

1 During different group activities the influence of the members might vary. In other
words,hierarchy is context/task sensitiveven in the same group! For example, as we

13



shall see It in Sect. 3.1. 3, ALeadership
pigeon flock arrange themselves into different hierarchies according to the actual activity:
when ttey feed, the ranks are entirely different from the ones that can be observed during
flight. This phenomenon is even more expressed in human groups.

1 Hierarchy might vary over time. As certain characteristics of the group members change
over time (for examle the physical strength of the individuals in a pack of wolves) so do
their ranks.

1 This definition implies that the uniteehavesomehow, or have some observable
characteristics. In other words, entities without observable behaviour or characteristics
cannot form a hierarchical structure.

1 The influence can be either forced by the higher ranked individual (e.g., when a higher
ranked pigeon does not let a lower ranked one near to the food source), or it can be
voluntary (for example leaddollower relatonships during flight).

1 A higher ranked unit, by influencing the behaviour of other units more extensively, has a
larger effect on the collective (emergent) group behaviour as well.

Hierarchical systems can by classified into the following subtypes:

1. Order hierarchy is basically an ordered set, in which a value is assigned to each element
characterizing one of its arbitrarily chosen features. This assigned value defines the rank
of the entity within the hierarchy. An example for this can be the ranKiagists, e.g.
painters or sculptors, based on the average price of their artworks. In this example the

\Y

Aset o i s composed by the artists, and the

Another example can be a hierarchy of firms, ordered bytlsayyumber of employees.
In this type, the network behind the system is neglected or it does not exist. More
formally, this type of hierarchy is fnequ

Y}

variable defined on some set of el ement s o

2. Nested(or embedded, containment, inclusivehierarchy is a structure in which entities
are embedded into each other. Higher level entities consist of and contain lower level
entities, or, as Wi mberley (2009) ensas f o
consist of and are dependent upon simpler systems and essential@ysigoment

rm

entitieso. ( Accor di mestedierarchyocanecontaia onygner i z at i

entity at each lower level, atlike in case of the Russiand#tyoshka dolls, whd a
generalizechested hierarchy allows multiple objects.) Uncovering nested hierarchy
structure within a system is closely related to community detection in graphs.
Containment hierarchy has two sub types:
1 A subsumptivecontainment hierarchy (a.k.aaxonomic hierarchy) is a structure

in which items are classified from specific to general. For example domestic cats,

|l ions, tigers and cheetahs ( gkelpasy.ds)

dogs, foxes and wolfs belong to the family of carnivorans k Caaida® i

14
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CanidaeandFelidaeboth belong to the order @farnivora, etc (See Fig. 2.8).
Entities are containers, containing other containers.

Mathematically this arrangement can be formulated as:

Foxes Canidae Carnivora (and Carnivora Mammals Animals, to go

further on). Each entity in a | ower | ev
ao Canidae, a Canidae fAis ao Carnivor a,
that entities on a loweeVel are proper (or strict) subsets of the entities on a

higher level.

1 Compositionalcontainmenthierarchy (a.k.devel hierarchy describes how a
system is composed of subsystems, which are also composed of subsystems, etc.
The #dAhi er ar clestexaniple foii tHisestouctures desciibimg how
organisms are composed of organ systems, which are composed of organs, which
are composed of tissues, which are composed of cellsse¢cFig. 2.®. Two
important features often (but not always) appedhis type of hierarchy: firstly,
there is a fAscalar qualityo, meaning th
than entities on lower levels (a cell is bigger than a molecule). Secondly,
emergent propertigsproperties that are not present on éouwevels, but due to
interactions among the units, appear on higher lévalso often accompany this
structure. For example consciousness appears on the level of the brain (which is
an organ), but it originates from the interactions of the neuron Eetisrgent
properties are of prime importance, since they are a fundamental characteristic of
Acompl ex systemso.

3. Flow(orcontrol) hi erarchy: Aintuitivelyo it is an
layered into levels in a way that nodes on higheglkeinfluence nodes on lower levels,
and the influence is represented by edges. Layers refer to power, that is, an entity on a
higher level gives ordeim passes on informatido entities on lower levels. This is
where the name is coming from: suchraciure represents the flow of orders, or,
equivalently, how entities control other entities. Armies, churches, schools, political
parties and institutions are typically organizedhis way. Downwards orders flow on the
edges, upwardsointing edges coespond to requests or sending information
Technological systems are also often organiaetis way. In this case a central unit
controls devices which control lower level devices, etc. At the betast level sensors
do not control anything directlyuibthey send information upwards, which are used to
refine the decision making process done by devices on higher levels. (See Fig. 2.1)
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Fig.23The two types of containment hi amnham@orimigns : At
subsumpve) containment hierarchy entities are containers, containing other contaiecampositional
containment (oleve) hierarchy describes how a system is composed of subsystems, which are also compos
subsystems, etc. The best known example fartht y pe of hi er ar c h pis Reprodudededmii
Mader(2010).

Importantly, these hierarchy types are not independent of each other. On the one hand, many
systems can be described by more than one type. For example, membersmyf fammarcontrol
hierarchy in a way that people having higher rank give orders tod@m&rsoldiers, but, at the
same time, the very same army forms a compositional containment hierarchy as well. This is so
since an army is composed of various divisibngantry divisions, motorized divisions, airborne
divisions, etc.) which are also composed of smaller contingents, all the way down to the soldiers,
who are the Aunitso in this structure.

On the other hand, both order and nested hierarchies can betedriedtow hierarchy.
In an order hierarchy, a directed edge can be assigned to each pair of adjacent members in the
hierarchy and this produces a chain of directed edges. In a nested hierarchy, a virtual node is
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assigned to every stdraph, and if a sulgraph contains another, then the two corresponding
virtual nodes are connected with a directed link, which produces a flow hierarchy on the network
of virtual nodes.

Thus, flow hierarchy is the most important variant and we shall mainly concentrate on its
manifestations.

2.1 Describing hierarchical structures

In this chapter we shall briefly summarize the basic concepts relageaios the mathematical
object most often used in relation to hierarchy. It is important to highlight that graphs and
netwaks are only thenodelsof the reallife systems, not the systems themselves. Itis a
mathematical representation of the system under investigation, used because they, using graph
theoretical methods and algorithms described in subsequent chapters gehmigw important
characteristics. An important further comment is thas it is done in the literaturewe shall

use the term graphs for abstract mathematical constructions, while the term networks will be
associated with the underlying interactionthim a reallife structure. Readers familiar with

graphs may skip this chapter.

2.1.1 Graphs and networks

As mentioned above, the most commonly used mathematical tool for describing hierarchical
systems are graphs. Primarily, but not exclusively, #reyconnected to systems embodying
flow (or control) hierarchy. Such systems and their graph representations go so much hand in
hand, that when trying to assign a fAhierarchy
the given structure is), usuallyis the hierarchy level of thgraph (representing the system) that
iS measured.
The concept behind this representation is rather straightforward: the entities of the systems
are the nodes of the graph, and if a pair of entities is in a subordmraieance relation, then
there is a directed edge between them.
In the followings, we give a short overview of the basic graph theoretical concepts.

1 A graphis a mathematical tool which is appropriate to handle a s#jettswith
connection@mong them. Té objects are representedrndesand the connections
between them bgdges Formally,G ={V, B with afunctionf : E YThev 1 V
elements oV are the nodes (~vertices or pointg, and the elements & are theedgesof
the graph. The nodes are ally denoted by small Latin letters (eigj, k) or by Arabic
numbers (1, 2, ..N). Formally,f sends edges to pairs of vertices (which are the
Aendpointsd of the edge), but i handossimplg t i c e
think of E (theset of edges) as a subseWok V. Accordingly, edges are usually given
by the starting and nodes, sucleas(i, j), for anye € E. The wordnetworkis often
used as synonym for graph in the case it stands for actually observed data.
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A graph can be eithelirectedor undirected In case of a directed graph @igraph) the

relation has a special direction as well. For examplease of a hierarchy network, the

direction can show which element dominates which other. In contrast, in an undirected

graph the connections do not have special directions, like in the network representing the
flight connections among cities. Informallgesaking, in case of an undirected graph the
edges are just Alinesodo, and in case of dig

A simpleloopis an edge that connects a node to itself. (An edgsevtarting and
endpoint is the same vertex.)

A pathin a graph is a segace of connected vertices. (Most definitions specify that the
nodes within a path have to be distinct from each other.)

A cycleis a closed path, that is, a path whose beginning and endpoint is the same vertex.
Many times cycles are also referred toapk.

A treeis a graph in which there are no loops, cycles or multiple edges. In other words, it
is a graph in which any two nodes are connected by exactly one path. There are two
special kinds of vertices: (i) the root node, which does not have pardtthe leaves

(or endnodes), which do not have children. Accordingly, in a tree, nodes can be layered
into levels.

A cluster(a.k.a.module communityor cohesive groupis a part of the graph in which the
units are more densely connected to each oliaer to the rest of the graph. We will use

this elastic description, since the concept does not have-aefged, widely accepted
definition. Importantly, in realife networks, the presence of such modules is a signature
of the hierarchical nature die structure (see, e.g., Vicsek 2002, Ravasz et al. 2002, Palla
et al. 2005).

A directedcommunity is simply a community in a directed graph. Here the nodes can be
related to each other based on the number of their incoming and outgoing links
connectinghem to other nodes within the same module. A node having more outgoing
edges towards other member s -node, wheneasamodul e
node with mostly incoming |Iinks from these
2007)

Vertices can be characterised by the number of
they are connected to other nodes. Accordinglyddgreeof a node in an undirected

graph is simply the number of its edges. In a directed graph vertices can be abathcter

by theirin-degreeandout-degreevalues: then-degreevalue refers to the number of

links pointingtowardsthe given node, whereas thet-degreevalue refers the number of

links going outwards from the vertex.
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2.1.2 Measuring the level of hierarchy

In this section we shall focus on measuredléow hierarchies. More precisely, we consider
measuresor graphs representing flow hierarchye have two main reasons to do so: (i)
observations and experiments, as well as results of computer simsilate likely to return flow
hierarchy, (ii) all other hierarchy types can be transformed into flow hierarchy in a rather straight
forward way. For example, considering a containment hierarchy, its clusters can be identified
with the nodes of a graph which the directed edges will indicate the containment relation. That
is, in the graph there will be an edge pointing from natie nodeB, if clusterB fully contains
clusterAin the original structure (Nepusz 2013).

Most of the proposed measures takiies on the [0, 1] interval, returning nearly O for a
completely hierarchyess structure, like a full graph or a circle, and returning a value close to 1

for o0completely hierarchical o structures, 1|1k
uptoii ntuiti onso, and intuitions differ from per
why there is no fimost appropriated measure se

present book have values on the [0, 1] interval, with higher vadpessenting higher degree of
hierarchy.

This section of the book is relatively extensive for two reasons: (i) it is about an obviously
central quantitative characteristic of a hierarchical structure, (ii) in spite of its essential
importance there is naique definition of the level of hierarchy of a system.

This latter situation is analogous to that of the definition of a community in a network. The
notion itself is so complex that, depending on the aspect that we are interested in, a suitable
definition should be chosen. For example, a community (cluster) in a network can be defined as a
subnetwork of nodes that have relatively more connections among them than with the other
nodes. However, we can require tdweghtédarel at i ve
connections specified according to further criteria make the problem of defining clusters in a
network an open problem even more .

To introduce this aspect of the problem of finding the best measure of hierarchy, the reader
is asked to assider the following question: please decide which structure is more hierarchical. A
set of nodes arranged into layers connected by directed edges all directing from an upper to a
|l ower | ayer or a fistaro consi s tdirentededpéslead cent r
to the other nodes of the network? To us, the right answer is: it depends on the context, on the
function, etc. Next we account for a number of relevant possible angles from which such a
guestion can be approached.

Global Reaching Cerdlity

The centr al idea of this approach is to give
other nodes. Impact is defined by the ratio of vertices that can be reached from the focal node
Local reaching centrality, gki) defines exactly thiswpntity: in a directed, uweighted graph,

Cg(i) is the maximum number of vertices that can be reached from pdideled byN 1.

Then, the level of hierarchy is inferred from the distribution of the local reaching centralities: the
more heterogeneotise distribution is, the more hierarchical the corresponding graph/network

is. In order to demonstrate this statement (namely, that the distributions of the local reaching
centralities reveal the hierarchical nature of a network), three different gragshasgompared

in Fig. 2Rényi: (ranalam) deaphd(\Whech is not hierarchical), a tree (which is highly
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hi erarchical), and a scale free graph (which
homogeneou€r(i)di st ri but i on BRédyiER@EM: theCk(i) Jalees &e d Rs
either O or close to 1, marked by the two narrow spikes at these values with a solid black line. In
contrast, we find all kinds dZg(i) values in a tree, as it is indicated by the red line in Fig. 2.4

(note the logog scale).

This distribution follows a power law that is distorted due to the random branching numbers.
The blue dashed | ine belongs to the fAmoder ate
Amoderately heterogeneouso distribution.

These curves represent distributiowsile for a measure we expect a number. The
definition proposed by Mones et al. (2012) grasps the heterogeneity@f(thdistribution as
follows: LetCR"™ denote the highest local reaching centrality in a g@aph(V,E). Then, the
Global Reaching éntrality, GRC is defined as:

B. & 5 Q 2.1)

"0Y o6 z
0 o

whereV is the set of nodes, amdlis the number of nodes B. TheGRCvalues for our three
example graphs (Tree, Scdler e e  a 1Rényi)Earedhe following:

Tree: 0.997 £ 0.001, which ib& highest.
Scalefree: 0.127 + 0.008, that is, SF networks are slightly hierarchical,
E r dR®syi: 0.058 + 0.005, that is, these are not hierarchical at all.

These values, the means and variances, are calculated for an ensemble of 1000 graphs, and
theydemonstrate that the returned values are cl
directed, uAweighted graphs. Its generalized version is suitable for analysing weighted and/or
undirected graphs by an appropriate modified definition of the leeahing centrality (Mones
et al. 2012).
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Random Walk Measure

The main motivation of this approach is the claim thiat contrast to the assumptions behind
most of the proposed methoidd is not correct to treat atlirected acyclic graphs as already

maximally hierarchical, independently thfeir inner structure. This observation is based on

the common intuition that a hierarchical structure often corresponds to aleveltipyramid

in which the levels become more and more wide as one descends from the higher levels

towards the lower ones.

The measure proposed bydlel and Pall§2015) is based on properties of random walks
within the graph, and, in accordance to the above mentioned claim, directed trees

corresponding to muHievel pyramidal structures obtain higher hierarchy values tivactdd

stars or chains.

Intuitively, the method is based on the assumption that there is information flow coming
from the highranking nodes towards to ones at the bottom, similarly as in the case of an army

or company, where the leaders send instrustdownwards the links. In order to track the

sources of the instructions/information, etc., random walkers are dropped onto the nodes who
then movebackwardson the links. Once a steady state is reached, the density of such random
walkers (the number of @m visiting a given node) can be interpreted as being proportional to
the rank of this node: high random walker density indicates that the vertex is a source of

i nformati on,

ow densi

ty

i ndi

cates

t he

vertex

that is, low in rank. The hierarchical nature of the network is then estimated based on the
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distribution of these random walker densities: if the distribution is homogeneous, the source
of information/order cannot be pinpointed, thus, the network ih\ewarchical. In contrast,
inhomogeneous distribution indicates clear information sources: the network is hierarchical.
This homogeneity/inhomogeneity is measured with a value chlljedth higher values

reflecting more hierarchical structures (biggerantogeneity), and lower values less
hierarchical networks.
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Fig. 2.5Hierarchy scores as a function of the network size. The different symbols correspond to differ
networks. Thec axis marks the size of the netwoik, (number of nodes) on a loganitiic scale, whereas the
y coordinate shows the hierarchy vali® of the graphReproducedrbm Czgel and Pall§2015)

The largesH values belong to regulatory networks, electric circuits and food webs, whereas
the lowest ones belong to the informatworks ofacquaintances in different organizations
(Fig. 2.5) Moderately hierarchical are the Internet, various citatioretabolie language and
trust networks, which results are in good accordance to our intuitive expectations.

An even clearer pictuneegarding the hierarchical nature of a network can be obtained by

Anor mal i zi ngo t Hagaihstteehiararechyhnyeasore & thaisange network, but
under the assumption of zsandem,cdepheoatedonas: T
& O (0) (2.2)
Y " "O

whereH is the hierarchy scoresH> is the expecte#i value of the randomized graph, and
G(H) is the standard deviation bffin the randomized ensemble.

An overview of further useful measures
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In the rest of the section weadhgive an overview of some further measures, focusing on the
main ideas behind them. Here our aim is not to give detailed description of the techniques but
rather to flip through the type of concepts that have been proposed so far regarding the problem
of measuring the hierarchy level of a graph.

A measure for undirected networks

The measure proposed by Trusina et al. (2004) quantifies the flow hierarchy of undirected
networks. It is based on the assumption that every vertex already has a rankeassaitiat by

denoting its place in the global hierarchy. This estimate for the rank can be the degree of the
node (originally proposed by the authors) but can be other conceivable measures as well, such as
betweenness centrality or eigenvector centralifith these assumption$d hierarchy measure

is given by the fraction of directed shortest paths going strictly upwards in the hierarchy.

More precisely, this method assumes that the shortest paths in the network consist of a part
going upward the hierahy (towards more important nodes), followed by a part going downward
the hierarchy (towards less important nodes). Either part may be empty of course, but one should
not turn back upwards after the downward part again. Paths of this type are said to be
hierarchical, and the measure simply calculates the fraction of vertex pairs that are connected by
a hierarchical shortest path.

Determining the levels of organizations

One of the first methods was proposed by Krackhardt (1994), whose main motivatiem was
measure the levels of hierarchy of organizationsdefened four measures that can be used
together as an estimate to the extent of flow hierarchy in networks. These measures are:

1 Hierarchy. The fraction of unordered vertex pafrs)) such that vedxi is reachable from
vertexj but vertex is notreachable from verteix or vice versa. It works on directed graphs
only.

1 Connectednesd he fraction of unordered vertex pafrsj) such that vertexis reachable
from vertexi via a directed patbr vertexi is reachable from vertgx

9 Efficiency One minus the proportion of possible
maintain connectedness of the components. It is assumed that each component should be an
out-tree (as an archetype of perfect hiehy) and thus a component of sidenust have at
mostN-1 links; any more than that is a violation of efficiency. This measure obviously
penalizes cases when there are two separate paths leading upwards the hierarchy from a node
Ato its superioB; one d the paths is not required to maintain connectedness, hence the
structure is inefficient.

1 LUBnessFor each unordered pair of vertideg), the lowest upper bound (LUB) is a vertex
k such that botihandj are reachable frok LUBnNess is the fractioaf pairs having a LUB.
This definition can be explained by Krackhardt's assumption of aimemibeing the perfect
hierarchy one can achieve.

Each of these metrics may take values from zero to one, and each metric measures some
kind of a rtheperfeet hieraochyKratkinaodt assumed, i.e., a directeideeut(lt
also applies for ittrees if we reverse the edge directions in the definition of LUBnesSs).
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However, these measures (with the exception of efficiency) can be calculated onlydi@ddire
networks.

Concept for containment hierarchies

Unlike the measures presented so far, the concept of Ravasz and Barabasi (2003) addresses the
notion of containment hierarchies. They observed that byl logC are correlated in many
realworld netwaks (wherek is the vertex degree atlis the local clustering coefficient).

They argue that this is due to a containment hierarchy in the network (although they have
not used the word fAcontainmento). | recusiveder t o
generation process that creates graphs with a pewedegree distribution, a linear dependence
between log and logC and multiple levels of hierarchies contained within each other. The
bottom line of their argument is that hierarchy in untted networks can be quantified by
looking at the lock vs. logC plot and fitting a straight line to the data; the larger the slope of the
line is, the more hierarchical the network is.

Layoutmotivated measure

Carmel et al. (2002) proposed a laybased metric for measuring the amount of hierarchy in a
directed graph. They have conceived a layout algorithm that places the nodes of the graph in 2D
space such that a set of constrains related to the target level differences are taken into account as
muchas possible. More formally, this means the following. For éq@uge, we assign a

measure that describes the desired difference betwegrtdoedinates of vertexand vertey.

The graph is then laid out using their algorithm, and the differenceebptthe maximahfaxy)

and minimaly coordinatesrqinY) is compared to the diameter of the graph. A strictly

hierarchical graph with no cycles can be laid out in a way that the distance between levels is 1,
thus the difference betweemaxYandminYis equato the diameter, while a cycle (i.e. a

perfectly unhierarchical graph) would be laid out with equabordinates, yielding a hierarchy
measure of zero.

The disadvantages of this method are twofold:

1 Inthe general case, it is not possible to assigirelktarget level differences to the
edges. We could simply say that the desired difference is 1 for all the edges, but this
would work only if none of the edges span more than one layer. Edges skipping layers
but otherwise pointing to the right directismould skew the layout and decrease the
hierarchy measure

1 This measure is not applicable to undirected graphs.

Measures for structures Afrom down to topo
Next in contrast to the way we assumed above, we shall consider the edges of directed networks

to be orientedupwards(i.e. from lower to higher levels), like onngho-reportsto-whom
organization diagram. We do so in order to follow the terminology of the related literature. It is
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usually straightforward to apply the definitions to directed netwibrksuse the opposite
convention.

Sometimes we will talk about layers or levels (sets of nodes with the same rank). Layers are
indexed from 1 upwards, and a lower layer index corresponds to a higher rank.

Some of these measures will work on networks wtrexeanks of individual nodes are not
known in advance; others are defined for a network and a corresponding ranking of nodes, and
therefore must be optimized by some optimization procedure when the ranks are unknown.

Fraction of edges participating in cles

Here the main idea is to reveal somehow the possible asymmetry between nodes by assuming
some sort of flow on the links, and then check if these flows exhibit any kind of overall
directionality or not. One way to do so is to find all of the elemgrgeles in the network,
count the edges patrticipating in them, and divide this number by the total number of edges. This
approach works for undirected and directed graphs as well; in directed graphs, only directed
cycles matter. (A cycle is elementarnid vertex appears in it twice).
All the el ementary cycles in a directed gr aj
(Johnson 1975), which B((N+E)(c+1)) whereN is the number of nodeE,is the number of
edges and is the number of elementaryatgs. The case of undirected graphs is a bit more
tricky as the union of two elementary cycles with at least one shared edge is also an elementary
cycle (after removing the shared edges from the union), thus we can expect a lot more cycles
than for directd graphs where this condition does not hold. It is therefore common to search for
acycle basenstead, i.e., a set of cycles such that every other cycle can be reproduced from
selected base cycles by taking their disjoint unions. Since every edge titbatas in a cycle
must also participate in one of the base cycles, finding a cycle base is enough for our purposes.
Luo and Magee (2011) proposed the opposite of this measure (i.e., the fraction of edges not
participating in cycles) as a hierarchy meador directed networks. A big advantage of this
approach is its simplicity.

Minimum fraction of edges to be removed to make the graphftgele

This approach is slightly different from the
For instance, consider a graph consisting of two interlocking directed links sharing an edge. In

this graph, all the edges participate in cycles (hence the previous measure would be 1.0), but
removing the shared edge would make the graph entirely-frpeleWecall a set of edges

whose removal makes the graph cyfteefeedback arc set
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edges to be removed to make the graph efycte eSailfigure a shows a graph where all the edges participate
cycles. Howeveras it can be seen Iy it is enough to remove a single edge (frdto A) to break both cycles
and obtain a perfect hierarchy

Note that although Fig. 2.6 shows a directed gripb measure works just as well for
undirected graplisbut the number of edges to be removed may be different! For instance, the
graph with the two rings on the left of Fig. 2.6 becomes efyele by removing one single edge
if the edges are directed, barte has to remov&o edges to make it cyclieee in the undirected
case.

This measure is very easy to calculate for connected undirected simple graphs. Since the
graph is connected, the minimum number of edges required to cohwertices isN-1. Adding
any extra edge on top of theNel edges necessarily creates a cycle, thus the number of edges
one has to remove from an undirected simple connected grapN wathices and edges iM-
N+1, and the fraction of such edges is therefe(H-1)/M.

For drected graphs, finding a minimum feedback arc set is ahaMé problem (Healy and
Nikolov 2013), but heuristic procedures exist to find an approximation. One such procedure is
the greedy cycle removal algorithm by Eades et al. (1993) Namely:

1. Createanemt vy fide quendedquedi®.u bl e

2. If the graph is empty, we are done.

3. While there are sink vertices in the graph, remove them one by one and add them to the
beginningof the deque.

4. While there are source vertices in the graph, remove them one by cappamd them to
the deque (add them to teedof the deque).

5. If no sinks and sources remain, find a vertex where the difference between-tieg me
and the irdegree is as large as possible, remove it from the graph, append it to the deque
and returna step 2.

At the end of the algorithm, the deque contains a possible ordering of vertices where
ordinary edges point fAforwardo in the orderi
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cardinality of the feedback arc set found by this heuristic is at M@sN/6 whereM is the
number of edges ardlis the number of vertices.

Another heuristic is as follows. Scan each edge of the graph one by one and maintain two
sets,SandT. In each step, check whether edgderms a cycle with the edges alread\sirif not,
addeto S otherwise ad@to T. In the end, botlsandT are acyclic and the smaller of the two
sets gives a feedback arc set with at most half of all the edges. More sophisticated
approximations are to be found in (Even et al. 1995) and (Saal. 2001

For graphs up to a couple of hundred nodes, one can use the following strategy as well:

1. If the graph is undirected, break it down into components, and calculate the BuhHdf
for each component, whek&is the number of edges in the componentldmsithe number
of vertices. This is the total number of edges to be removed to make the grapinesydiee
fraction follows by a straightforward division.

2. If the graph is directed, break it down into weakly connected components and estimate the
numberof edges to be removed from each of the components as follows:

1 If the component is acyclic (i.e., it has a topological ordering), no edges have to be removed
at all.

1 If the component has less than 20 edges, use aforagtesearch to find the minimum
number of edges to be removed to make it cycte.

1 Otherwise, find a minimum cut of the component, add the edges of the cut to the feedback
edge set and proceed recursively with each side of the cut.

Fraction of hierarchyviolating edges

A hierarchyviolating edge is one that originates in a higher level and terminates in a lower level,
meaning that someone up in the hierarchy firep
clear violation. Naturally, this measure requires the ranks to be known incadasit is
otherwise impossible to decide which edges violate the hierarchy.

Another, more strict definition of a hierarchiplating edge is that it is an edge where
subtracting the rank of the origin from the rank of the target yields a result tlodtzisra and
not one. This definition penalizes not only t
also the edges that skip levels.

In the absence of ranks, one has to find the ranking that minimizes the fraction of hierarchy
violating edges, with leads to a problem that may be familiar from community detection. A
trivial way to minimize the number of hierarchnplating edges is to use the same rank for every
node, assuming that edges between peers (i.e. nodes with the same rank) are ajjossid]ed
solution is to disallow edges between peers, which effectively reproduces the feedback arc set
problem, since a directed graph minus a minimum feedback arc set is a directed acyclic graph
which can then be decomposed into layers. Each feedbaiskthen a hierarchyiolating edge.

Average expected downstream path length

This measure is based on random walks. More precisely, the expected length of a path a random
walker is allowed to take on the graph with the following constraints:
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1. The walkeris only allowed to step downstream in the graph, i.e. towards lower layers. A
path that goes downward in a layered hierarchy is caltehastream patf-hence the
name of the measure).

2. The transition matrix of the random walk is a usual rgfbthast matrix derived from
the weighted adjacency matrix of the graph (loop edges are not allowed).

3. The random walk terminates as soon as the walker ends up in a sink node or in a node
that has neighbours in higher layers only.

The measure also requiresapriori layer assignment, and it is an open problem to find the
optimal assignment given the graph only. When the layers are known, the measure can be
calculated very easily: one has to proceed recursively from the lowermost layer towards the
uppermost lagr and make use of the following two equations:

1. If a vertexvis a sink, then the expected length of downstream pathsvfreero.

2. If vis not a sink, the expected length is one more than the expected length of downstream
paths from its lowelevel neghbours, weighted by the probabilities of reaching those
neighbours fronvin a single step. Note that only the expected length of downstream
paths for vertices in layers lower thahas to be known, therefore, a single sweep from
lower layers to the ugggmost layer is enough.

To make graphs with different numbers of layers comparable, it is advised to normalize this
measure as follows.

Suppose that vertexis at layel(v) and there ark layers. The maximal value of the
expected downstream path I&émg@riginating fromv (denoted byn(v)) is thenk - I(v). The
normalized variant of the measure takes the averalg@)k - 1(v)) for all nonsink vertices,
assuming that 0/0 is 0.

The above overview of the Afur tdtreworkinger ar c h
paper by T. Nepusz (2013).

2.1.3 Classification of hierarchical networks

The methods overviewed in the previous Sect. (2.1.2) assign a value for each graph, reflecting
the extent to which the input network is hierarchical. Now we shadrsevthe direction, and
show an algorithm that creates a graph based on an input parprfiakéng values on the [0, 1]
interval) indicating how hierarchical the output graph shoulghb@.refers to nothierarchical
andp close to 1 refers to stronglygnarchical structures. The method was proposed by Mones et
al. (2012).

The construction of the graph with tunable levels of hierarchy goes as follows (Fagr. 2.7

1 A levelvalue @) is assigned to every node in a directed tree in the following way:
o Therodes at 4 lkReefibof{tdmt | s, he | eaves)
o0 The levelvalue of the root node is equal to the number of hierarchical levels in
the tree. (for exampla=5 in Fig 2.3 of the root nodg
o All children of a node with levelalueawill have &1 as levelvalue.
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1 Next a given number of randodirected edges are added to the tree according to the
following rules:

o0 1-pproportion of these edges are added completely randomly by choosing their
starting point ) and enehode B) with probability 1N (N is the number of nodes
in the graph). In case there is no directed edge pointingArtn, such an edge
is added to the graph.

0 Regarding the rest of the edges (accounting fopthe o por ti on of t he
edges) they are added onhaip &s.

Figure 2.7b depicts tha&GRCvalues (see Sect. 2.1.2) for hierarchical graphs created with the
above algorithm, fop=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0.

TTTTOTO
~ooo0o0
o®mpANNO

0.1 ™

©
o

Frequency

0.001 | %%

0.0001

0.01 0.1 1
Reaching centrality

Fig. 2.7a The different types of edges while constructing a hierarchical graph based on ararapugtep.
Solid blue edges belong to the original tree used as the backbone of the output graph. Edges pointing dc¢
(green) conserve the hierarchy, horizontal edges (orange) have a slight influence and finally the ones dir
upwards (marked withed) make strong change in the structure.

b Distribution of the local reaching centrality (see Sect. 2.1.2) values for adjustable hierarchical networks
variousp values. Each curve is an average of 1000 networksNwi#900 nodes for k>=3. Note thafrom the
highly random §=0) to the highly hierarchicapgl) state the distribution changes continuously and
monotonously witlp. Reproducedrbm Mones et al. (2012).

Similarly to the problem aofneasurinchierarchy, the problem afassification of
hierarchical structuress not trivial either. Next we shall overview a method proposed by
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CorominasMurtra et al. (2013) which is based on three expectations towards hierarchical
systems. These are (i) treeness (ii) femavardness, and (iii) orderabilitySee later in more
details.)
Using the above three feataupaecseo)a BDn moe pdhef:
which the three axes are the tree quantifiable features. Placifddeda¢rarchical and random
null-models into such a coordinate systéamdamental characteristics can be revealed. As it
turns out, networks do not occupy the entire morphospace, instead they accumulate in four major
clusters within the large voids, which most probably results from the constraints under which
they evolve.
Let s define the piGQEpenthinphe mdarphaspace. of a net wo'
First, G(V,BE)=G is transformed into its correspondingdeweighted condensed graph
Gc(Ve, Ec)=G¢ which is an acyclic feetbrward structure where the cyclic modules (strongly
connected components) Gfare replaced by single nodes. Accordingly, in a nedighted
condensed grapBc, each node has a weidhtindicating the number of nodes it includes from
G, the original graph. For example, in Fig. 2.8, subfigudepicts the nde-weighted condensed
graphGc corresponding t&, the one depicted on subfigudeln this, nodes; includes 3 nodes
from G and$S; includes 2. (This method, the localization of strongly connected components, is an
often used approach to identify subsystemithin a graph.)
Then we calculate the three values using l#ndGe.

1. ATr e e h taking vaJuesonthel, 1] i nterval, captures ho:
of ¢ omma n d&. Inihigrarehical retwarks, like the one in Fig. 2.8nd on its
corresponding nodeeighted graph depicted @enthe chairof-command is unequivocal,
characterized by positivEvalues. In case the chain of command is ambiguous, the
structure is said to benti-hierarchical marked by negativé values (Fig. 2.& andf).

Intuitively, this feature is calculated by comparing the diversity of choices one can make
top-down vs. the uncertainty on the way bottapy captured by the conceftsward
and backward entropies.

2. i Fefear wa r 6 Biece thedpaths within cyclmodules (like5, andS; in Fig. 2.8
h) violate the downstream order within the graph, they are penalized according to their
sizeandposition larger modules closer to the top®@influence more the overall
structure ofG than smaller ones close to thettom. Accordingly, they introduce larger
penalty.F is defined on the [0, 1] interval.

3. A 0r der Ohbsidefineg as the fraction of nodes that do not belong to any cycle.

These nodes are orderable, accordingly, bigger ratio results higher ortevaitie.O
takes values from [0, 1].
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T'=1F=10=1 T'=-1,F=10=1 T= 0F ,0=1 T=1,F=06,0=05

Fig. 2.8A Visualization of the tree concepts characterizing hierarchical networks: tre@hefege@¢forwardness
(F) and orderability ©). Based on these tree features, a morphospace can be defined in whintil#nities

and differences (resulting from evolutionary constraints) can be anady8eokerfectly hierarchical graph is
treelike (or pyramidal,T=1) with feedforward edgesK=1) and orderable node®£1). b In antihierarchical
networks (characterd by negativd values and head downwards pyramidal structures) the chain of comn
is ambiguousc is northierarchical T=0) andd is a graph with cyclic modules, violating the orderability of the
nodes. é-h): the corresponding nodeeighted condensegraphs of the networks in the first row, with paths tc
down and bottorup. (-1) : the icon representation of the graphs in the first row, along withTR€rvalues.
Reproducedrbm CorominasMurtra et al.(2013)

Figure 2.9 depicts the location of dom null models (white circles) and 125 real networks
within the morphospace. Since random networks are being built without any selection pressure,
they are neither hierarchical nor ahterarchical, accordingly, they occupy &0 segment.

The main obsrvation is that the vast majority of real networks fall into four clusters:

I.  Gene regulatory networks (plus a protein kinase NW) occupy the first cluster at the top of
the coordinate system (Fig. 2.9), marked a
very high orderabiliy value<Q) with variableF values. The broad range Ef(feed
forwardness) is caused by various sized modules near to the top of the networks,
corresponding to a small fraction of genes, (transcription factors) participating in.cycles

ii. Electronic circuits and software graphs are strictly fieediard (Fa1) with orderable
nodes Qal), biased slightly towards negatiVes al ues. This cluster (n
in Fig. 2.9) is located on the top right edge of the morphospace.

iii. (ECO)Thethid cl uster is defined by the ecologic
Fig. 2.9. Their positions within the morphospace reveal a certain degree of pyramidal
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structure combined with the important role played by loops. This special, separated
position isconsistent with the trophic pyramid mingled with recycling.

iv.  And finally, the fourth cluster is composed of metabolic, neural, linguistic, and some
soci al net wor ks (ALANG, MET, NEUO), embedd
These networks display ar¢ge central cycle, much larger than their randomized
counterparts, which feature is most probably due to the advantage of reusing/recycling
molecules.

—___TECH

| —GRN_— e _
/
I Cellula
0.8 / B Metabolsms (MET)

B Neuronal (NEU)
[C)Electronic circuits (TECH)
0.8 M Social

O [ Citations

e [_|Software (TECH)
I GRNs (GRN)

W Word Corpora (LANG)

ECO o B Kinase network
B Food Webs (ECO)
e@ ¥ B Ownership
pre B Genealogy

0.4

Q

0.2

1
0.8
0.6

‘Lo/ 52 F

Fig 2.9The position of 125 real networks and various random null models within the morphospaed bgfi
the coordinated (treeness)i- (feedforwardness) an® (Orderabiliy). The random networks are white, while
the real networks are colour coded according to their types listed in the key. The size of the circles is
proportional to number of nodeseticorresponding graph includé&eproducedrbm CorominagMurtra et al.
(2013)

Two of these clusters (LANG/MET/NEU and TECH) overlap with random networks with
similar connectivity, suggesting that radaptive factors shape the topological nature «ethe
graphs. In contrast, the position of the ECO and GRN clusters indicate that the topological
features of the ecological and gene networks are the resultant of functional constraints.

2.2 Visualization techniques

2.2.1 A general overview

The aim of he various visualization techniques is the same: to illustrate the entire network as a
single figure in an easily perceptible way, revealing as much information of its hierarchical
nature / inner structure as possible. Since (real) hierarchical systeafteareomplex with

many characteristics, the level to which a visualization technique reflects the main features of a
network is limited. Different visualization tools highlight different characteristics and different
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hierarchy types require differentuia | i zati on tools. There exists
appropriate technique depends on the specific characteristics we would like to highlight.

The most simplé and widespread visualization technique is th@yramid in which each
entity is represented lgylayer and the higher an entity is in the hierarchy, the higher it is in the
di agram. Often (for example in case of soci al
hierarchy), the width of the layer reflects the size of the represented layer. Thedkaivtias
technique is that it can reflect only a linear order (a sequence) of the layeirsnamne cases
T their approximate sizes. In other words, this technique reveals only an order hierarchy of the
layers, without giving any description aboug thner structure of the given system.

In contrast, graphs are applicable to describe not only order hierarchy, but other hierarchy
types as well, most importantly flow hierarchy, meanwhile allowing a much more detailed
visualization of the inner structuod the system as well. Due to these reasons, visualization of
flow hierarchy is the most commonly used technique to represent hierarchical systems.

Because of the |l ack of | oops and cycles, the
would be a tre. However, in redife cases, such systems occur only very rarely. Accordingly,
trees often correspond to the ideal and/or theoretical case, while graphs that are more complex
(have cycles, undirected edges, etc.) are better suitable for represertliig cases.

This representation is closely connected to the concept of control (or flow) hierarchy, in
which the entities (which are represented by nodes in the corresponding graph) are organized
into a system of subordinaseiperordinate relations, wihicorrespond to the edges of the graph.
Accordingly, orders or information flow on the edges (hence the name) from the superior unit(s)
towards the inferior element(s), while requests and information flow in the opposite direction.
Typical examples are thranks in armies, various state and church organizations, corporations,
etc.

2.2.2 Techniques reflecting the overall hierarchy level

Letdé have a graph, representing a (real i fe
many communities and Bicommunities, therefore difficult to be drawn in a way that is
reasonably accessible to overview. However, we would like to krmewhierarchicalthe
original system is, preferably in a visual form.
The most widely accepted method for visualizing theanadical nature o$mall networks
is the one proposed I8ugiyama et al. (1981). For such graphs, this technique pramdes
informative and clear hierarchical layout by layering the vertices into horizontal rows in a way
that the edges are directeddownwhs . Thi s met hod Layswedgraphen r ef er
drawingd  dierardhical graph drawing met hod.
The main steps are the following (Fig. 2.10):
0] Cycle remova(a pre-processing stgplf the directed input graph is not acyclic, a
mi ni mal gsestalofedijreresvwe has t o be iobtanab i fi ed a
acyclic digraph. (Identifying such a minimal eelggt is an NRromplete problem.)
(These reversed edges, as well as other changes within the graph will be restored in a
later step into theoriginal state.)
(i) Layer assignmenfartitioning the vertex set of the graph into layers in a way tet e
edge is directed from a higher level towards a lower one, with the following properties:
a. the number of layers is kept small
b. as few edges span largumber of layers as possible
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c. the assignment of nodes into layers is balanced.
(i) Insertion of .Aduirmmy gweretdigessd edges spannin
chopped up into a series of shorter ones b
graph. After this step each edge will connect nodes on adjacent layers.
(iv)  Edge concentratiofoptional step): The aim of this step is to reduce the number of edge
crossings and the edge density between adjacent levels. It might reduce the number of
dummy vertice as well, but, as important drawbacks, it may increase the number of
layers and it also modifies the graph.
(V) Vertex orderin or fAcrossing minimizationo or AcCr oOSs
within the layers are permuted in a way that the numberdg#eossings are minimized
between the adjacent layers.
(vi)  x-Coordinate assignmenthe aim of this step is to position the nodes (that is, assigning
them anx coordinate) within each layer in a way that the edges become as straight as
possible, and the nosl@are centred with respect to their neighbours. This positioning
should be consistent with the permutation applied in the previous step.
(vii)  Final step:Changes that have been introduced to the graph in previous steps are reversed
so that the edges returnartheir original state:
a.edges reversed in the Acycle removal o (fi
direction

b. dummy vertices that have been inserted in step (iii) are removed from the graph and
the corresponding Al on gthata&vdids aterseationsand r a wn
crossings. This might be done by drawing the edges as polygonal chains or spline
curves.

For a detailed analysis and description of this method see also (Healy and Nikolov 2013).
Although this method is very popular for almetworks, it has some serious drawbacks as well,
which become especially important for large graphs:

A for bigger networks (graphs with more than a few hundred nodes) the generated layout
becomes difficult to overview/interpret;

A the steps are NEomplete or NFhard, which makes the usage of several different
heuristics necessary and thus the results become lesdefiatd.

A independently of the hierarchical nature of the given network, the method provides a
hierarchical layout which is often nhéading;

A the meaning of the levels is not defined,;
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Fig. 2.10The main steps of the Sugiyama algorithm. It is hard to see the hierarchical structure of the inpyt |
whereas it is clearly visible on the output gr&pfihis method is appropriafer relative small graphs (up to a fev
hundred nodesReproducedrbm Healy and Nikoloy2013)

Next, we discuss a method proposed by Mones et al. (2012) that solves the above problems
and is easily applicable even fmymplex large networkSee Fig. 211).
The algorithm of the proposed method is as follows:

1. Rank the nodes according to thieical reaching centralityalue,Cg(i), whereCg(i) is
theratio of nodes that can be reached from the focal hodélectingfi i mp aicon 6 o f
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