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Abstract:  In  this  paper  we  have  developed  a  neuromorphic  model  of  bottom-up  visual 
attentional selection.  The output of a recently developed neuromorphic multi-channel retina 
model  has  represented  the  input  of  our  model.  As  a  first  step,  a  saliency  map  has  been 
calculated for each retinal channel which, next, has been integrated into a master saliency map. 
Model parameters have been optimized based on human eye movement data measured during 
viewing dynamic  natural  scenes.  We have tested two different  strategies  for weighting the 
channel-specific saliency maps during integration into a master map. In the first case, channel 
weights have been kept constant throughout the verification measurements,  whereas,  in the 
other case, they have been updated on each frame, according to the specific properties of the 
visual input. Surprisingly, the constant channel weighting strategies have performed better then 
the continually updated ones. 
We have measured the model’s accuracy by defining the hit ratio (concurrence) between the 
first few predicted locations (the most salient locations) and the measured fixation locations. 
Constant weighting methods have achieved ~74% hit ratio on 4 predictions. For a comparison, 
the accidental chance for this case has been less than 20%. This pure bottom-up approach has 
performed  surprisingly  well  on  dynamic  natural  input.  Some  practical  applications  have 
already been made with task-dependent simplifications.

Keywords: visual attention, neuromorphic modeling, eye movements, retina channels, saliency, 
receptive fields.



1) Introduction

In everyday situations, a large part of the information appearing in the visual scene is 
redundant and/or uninformative; meanwhile, the processing capacity is limited. This stands for 
both living organisms and artificial visual systems, so a selection mechanism is required that 
focuses to the processing capacity onto the immediately important,  relevant or conspicuous 
information. From an engineering viewpoint, a system that is able to attend, can save enormous 
processing capacity. That is: increasing the quality meanwhile decreasing the time necessary 
for the process. 

In the mammals, selection processes involve two main components: eye movement and 
attentional selection.  Eye movement is the mechanism, which determines which part of the 
visual scene is going to be processed at high resolution by the central, foveal region of the 
visual system. However, eye movements are preceded by attentional selection processes, which 
determine the most salient, conspicuous part of the visual scene, where gaze is going to be 
directed.  There  are  two  different  types  of  attentional  selection:  volitional  (top-down)  and 
stimulus-driven (bottom up). Top-down attentional selection is determined by the current goals 
of the organisms and is mediated by the top-down modulator projections from the front-parietal 
areas to the visual cortex. For example, searching for a red pen in a crowded drawer will result 
in a top-down attentional facilitation of the visual cortical neurons coding the red color and 
suppressing those which are selective for other colors. On the other hand, bottom-up attentional 
selection is determined by the physical properties of the visual input. In case of abundant visual 
input - consisting of many different visual objects - there is a competition between the neural 
representations of different objects that are simultaneously present in the visual scene. Bottom-
up attentional selection refers to those mechanisms as a result of which, the most salient visual 
objects of the scene – according to its physical  properties - gain processing advantage and 
“capture our attention” evoking an eye movement towards it. 

Of  course,  an  unmitigated,  neuromorph  attentional  method,  which,  for  example, 
characterizes mammals, is not only very effective, but also very complex. As mentioned above, 
it consists not only of the bottom-up, but also, of the top-down method. At the same time, the 
top-down method builds upon the bottom-up, in the sense that, it biases certain weightings in 
the bottom-up process (see also section 2.3 and figure 4) Thus, creating an attentional method 
that approaches the mammalian system in efficiency would have a lot of benefits and could be 
applied in many areas. 

The main purpose of this work  has been the development of a model of a bottom-up 
attentional selection that is able to determine the most conspicuous, salient part of dynamic 
natural-scene input.  At the first  stage,  visual information has been processed by a recently 
developed neuromorphic retina model [1] and its output represented the input of our bottom-up 
selection model.

The  usage  of  CNN  (Cellular  Neural/Nonlinear  Network  [2])  based  algorithms  in 
handling different visual problems is common: from robot navigation [3] to motion analysis [4] 
the range is entire. The retina model we use is also CNN-based and has been developed by 
keeping the main structure of the retina in a manageably simple form [1]. In this model 10 
channels  are  realized  from which  7  operate  on  a  CNN simulator.  The  responses  of  these 
channels  depend not  only on the  instantaneous  input,  but  also,  on the  preceding  stimulus, 
effectively exhibiting a kind of ‘memory’. In contrast, the outputs of the other three channels 
(intensity, red-green- and blue-yellow opposites) depend only on the actual stimuli.

In the CNN simulator,  each CNN layer  corresponds for the retinal  cone, horizontal, 
bipolar,  amacrine  and  ganglion  layers,  respectively.  In  these  channel-models  there  are 
inhibitory connections between the cone-horizontal and the bipolar-amacrine pairs, as well as 



excitatory linking between the cone-bipolar and amacrine-ganglion layer-pairs. The differences 
lie in the spatial and temporal parameters, which determine the characteristics of the individual 
channels. For more details see section 2.1 and [1].

The first models of visual attention have been developed in the 1980’s, after Treisman 
and Gelade have proposed their feature integration theory [5], wherein, they have suggested 
that, only the basic visual dimensions (such as color and orientation), the so called ‘low level 
visual features’, are processed throughout the visual field in a parallel way. Afterwards, it is the 
visual attention which binds together the low-level features belonging to the same object into 
coherent object representation. This later, attention-based process, takes place in a serial way; 
attention is allocated to one or at most a few objects at a time. 

A detailed bottom-up, stimulus-driven visual attentional model has been proposed by 
Koch and Ullmann in  1985 [6].  In  this  model  feature-specific  “saliency maps”  have been 
calculated for the different visual features (color, orientation, etc.). Saliency maps are scalar, 
two-dimensional  topographic  maps,  representing  feature  contrasts,  rather  than,  a  given 
feature’s absolute value at each location of the visual field. As a next step, feature-specific 
saliency maps have been integrated into a so called “master” or “final” saliency map. In the 
master  map  the  saliency  representation  was  already  feature-independent.  Lastly,  due  to  a 
“winner-take-all” mechanism the most salient part of the master map (which has the highest 
salience value) gains processing advantage and captures attention, while, other salient parts of 
the map are suppressed. 

In  the  last  two  decades,  several  models  of  visual  attentional  selection  have  been 
developed [7], most of them sharing the main components of the original Koch and Ullmann 
model [8, 9]. There are some important characteristics of these models: 1. the choice of the 
low-level visual features was heuristic and depended primarily on the purpose of the given 
model [10]; 2. weighting of the individual feature-specific saliency maps during integration 
into a master map was based on top-down approximations, mixing biological findings with 
heuristic methods to achieve higher efficiency; 3. With a few recent exceptions [11, 12], the 
models have been tested on static, non-dynamic visual input.

It is also instructive to mention that, in a related paper [13] Osberger and Rohaly have 
identified some factors on complex scenes, which have strong influence on visual attention. 
Based on these, they have created a model, that is able to make predictions for human gaze 
directions. Most of these features were driving the bottom-up process (motion, contrast, etc.), 
some of these were related  with the top-down (people,  context),  meanwhile  some were in 
“between”  (shape,  foreground/background  distinguishment).  They  also  highlighted  the 
difficulty of the weighting of these features. 

In  comparison, in our model, we primarily focus on the elaboration of the bottom-up 
process, taking carefully into account all the features that might have any effect on the bottom-
up process. This is being achived by including all the retina channels, both these, whose, their 
function is well understood, and also, those, whose their function is not sufficiently illuminated 
up to present. Moreover, we manage to give a satisfactory approximation on the weightings of 
all these features. 

In our model, as an input we  have used the output of a multi-channel neuromorphic 
retina model, instead of using heuristic feature extraction. Furthermore, channel weights have 
been adjusted and the model has been validated based on data obtained from measurements of 
human eye movements, while viewing dynamic natural scenes. As visual input, we have used 
short movies containing mountains, birds, clouds, seas, fields and rivers taken from the film 
“Le Peuple migrateur”. 



2) The model

2.1) Overview of the model

To get the algorithm complete, first we have made a general bio-inspired framework, in which 
we have  inevitably  had some unknown parameters.  To define  these  values  we have  made 
human  gaze  direction  measurements  from which  we have  conjectured  the  missing  values, 
according  to  different  surmises.  Once  we’ve  had  this,  we  have  been  able  to  adjust  the 
framework and make predictions with it.  Having at our disposal these forecasts (where we 
think that a human observer would attend to) and other human gaze-direction measurements, 
we have been able to determine the accuracy of the gained model. The flow-diagram of the 
main steps is depicted on figure 1. 

Although the description is mathematical, the model itself is not a mathematical input-
output approach, but a biological one, which, is partly neuromorphic and partly biologically 
inspired. It is “neuromorphic” in the sense that, it applies a CNN-based retina simulator (to 
perform low-level visual feature extraction). Thus, in this step not only the approach, but also, 
the  structure is neuromorphic, since, the CNN architecture itself is similar to the individual 
retina layers [1,2]: it has several layers of processing units (‘neurons’) locally connected to 
each other (‘synapses’), and also, the adjacent layers exchange information between each other. 
[1]

From  then on we have used strategies snooped from biological systems: topographic 
saliency maps, which are frequent in living visual systems from low until high brain levels, 
receptive field (RF) structures for saliency detection and competition between neurons. 

As  it  will  be  explained  in  detail,  two  parameters  (the  weighting  of  the  individual 
channel-based saliency maps during the creation of the final map and the receptive field sizes) 
have been calculated from human gaze direction measurements, so that the question, whether 
they  are  subject-dependent  or  not,  arises  only  for  these  values.  The  curves  recording  the 
efficiency of the different receptive field sizes for the individual channels look similar between 
the individual subjects, in the sense that, they reach their maximum near to each other, and 
also, they have the same ‘shape’. (The averaged curves are depicted on figures 8, 9 and 10). 
Thus, this value can be treated as subject-independent.

For the channel-weight parameters the situation is not that clear. In order to estimate, 
the number of times that each channel-based saliency map is considered to take part in the 
generation  of  the  master  map,  we  have  used  the  consolidated  data  of  the  subjects.  The 
surprising result we have obtained (namely that, constant channel weighting strategies perform 
better then continually updated ones) might be a result of the differences between the subjects. 

(We have measured 21 naïve subjects in the first series from which we have retrieved 
the missing parameters, and 14 subjects in the second series of measurements, which has been 
used for the validation process.)
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Figure 1: The overview of the model’s creation and validation. 
Creation: A general bottom-up attentional architecture has been created with free parameters (channel weightings and 
receptive field (RF) sizes; step 1). Then, we have made human gaze direction measurements on a training-set video (step 
2) for approximating the missing data (step 3). 
Validation:  with  the adjusted model,  we made predictions  (step 5)  and  human gaze  direction  measurements  (on a 
different video, on the ‘test-set’  step 4). Finally we have compared the predicted and measured fixation locations (step 
5). 
Step 1 and 3 are detailed in the bottom boxes. For every step, we indicate where it can be found in the article.



2.2) The retina channels

Information processing in the mammalian visual system takes place simultaneously on 
several specialized channels. These spatio-temporal channels arise in the retina and persist to 
the high brain areas – while performing several processing steps. One of the biggest difficulties 
which, image processing algorithms nowadays face is that, the intensity (or color) values of the 
same object largely depend on the actual lighting conditions, reflections, and so on. From an 
engineering  viewpoint,  a  stimuli-decomposition  procedure  (like  the  mammalian  retina 
channels), can be an important step in resolving this classical problem, since, the outcome of 
most of these channels will not depend on the actual lighting conditions anymore (which is an 
outcome of the retina channel set-up, see below, and in particular, figure 3).

In the living  retina, between the photoreceptors (which intercept the photons) and the 
ganglion cells (the axons of which form the eyes’ “output”, the optic nerve) there are several 
layers and cell-types which already start to process the information here, in the retina. The 
retina  has  ten  histological  layers.  The  information  flows  through  the  vertical  pathway 
composed by the photoreceptors, bipolar cells and ganglion cells. Among these layers lie the 
two synaptic  strata:  the  Outer  Plexiform Layer  (OPL)  between the  photoreceptors  and the 
bipolar cells, and the Inner Plexiform Layer (IPL) between the bipolar cells and the ganglion 
cells. These strata primarily do not convey the information but they modify it. [14,15] 

Recently, it has been discovered that a mammalian retina has ten parallel channels, and 
also, the neuromorphic structure of these channels have been found [16]. These channels give 
qualitatively different answers to the same input. The main differences lay both in spatial and 
temporal properties. For more biological details we refer to [16]. 

By these measurements, that having been made on the rabbit retina, only a first and 
rough  approximation  has  reached  completion,  and  not,  the  detailed  circuitry.  Using  these 
findings, this is the first time that we have the possibility to consider this multi-channel pre-
processing  step.  Thus,  although  the  approximation  for  humans  can  only  be  ‘bio-inspired’ 
(instead of being ‘neuromorphic’),  still,  we have found the adaptation of this multi-channel 
pre-processing step in attention  modeling fundamental (even without the exact circuitry). As 
far as we know, this has been the first attempt to use this bio-inspired channel decomposition in 
attention-modeling. Moreover, using functional spatial temporal models instead of input-output 
models in the first part enhances the success of model identification.

On  the  above  basis,  using  a  neuromorphic  retina-channel  model,  via  Cellular 
Neural/Nonlinear Network (CNN) [2, 17], we intended to keep the basic processing principles 
of the retina in a simplified form. 

The circuit structure of the mammalian retina, and the multilayer spatial temporal retina 
model are the same [17]. The receptive filed organizations are represented by the feedback and 
feedforward templates. 

Once a template (or templates: feedback, feedforward, etc.) is defined for a CNN-layer, 
every cell in this layer operates in the same way, in the sense of their spatial and temporal 
behaviour. This is also true for the retina layers: each layer consists of the same type of cells 
(photoreceptors,  bipolar  cells,  horizontal  cells,  etc.),  which  have  similar  behaviour.  These 
layers are then connected (both in the retina and the simulator), serially, or create diffusion-
layer pairs, which, can also be simulated with CNN (e.g. cone-horizontal layer-pair on figure 
2). Due to the above mentioned similarity between the CNN structure and the living retina 
layers, the CNN simulator seemed to be a proper choice. 



Three  channels  out  of  the  ten  (Intensity,  Red-green  opponency  and  Blue-yellow 
opponency) use only the actual data for producing the output. Namely, if “R” is the actual ‘red’ 
value in a given pixel-position (from the ‘RGB’ triplet), “G” is the green and “B” is the blue, 
then [15]

- Intensity has been calculated as: 0.812*G + 0.177*R + 0.1*B, 
- Red-green opponency as :  R-G
- Blue-yellow opponency as: B – (R+G)/2

These channels do not require simulations as complex as the remaining seven channels, 
the  functioning  of  which  can  be  described  as  follows.  More concretely,  in  contrast  to  the 
previous three channels, those seven other channels perform spatio-temporal filtering (namely 
the 1: Transient, 2: Local Edge Detector, 3: Bistratified, 4: Alpha, 5: Beta, 6: Delta, 7: Polar), 
so the output of them can be simulated on a CNN-based retina simulator. The name of this 
simulator  is  ‘RefineC’,  and its’  functioning  has  been described in  full  detail  in  paper  [1]. 
Briefly, the functioning of these channels is summarized below:

Figure 2: The scheme of a general retina channel b) roughly and a) with CNN layers. In our model we have seven 
of these, one for each ganglion-output. The interacting diffusion layers are numbered. The dashed lines show the 
inhibitory connections while the continual ones nominate the excitatory ones. Figure a) is cited from [1].

The sketch of a (general) spatio-temporal channel is depicted on figure 2 a). Each horizontal 
line on the right hand side is a CNN layer witch corresponds to a retina-layer (depicted on the 
left hand side of the picture). The outer retina, which is the same for all the channels, consists 
of the cone and the horizontal layer. The horizontal layer feeds back to the cone layer through 
an inhibitory connection, thus, the output of the cone layer includes the effect of the horizontal 
cells as well. 

The bipolar cells connect the inner- and the outer retina. From an engineering viewpoint the 
inner retina can be divided into an On- and an Off-pathway.  (Fig 2 b) “On” cells  respond 
during illumination,  “Off” cells  respond when the light disappears, whereas “On-Off” cells 
react on both cases.

Each channel consists of three layer-pairs, which are serially connected. The first one is the 
cone-horizontal,  which composes  the outer  retina.  The second one is  the amacrine-bipolar, 
where, the connection is also inhibitory similar to the previous one. The third connection is 
excitatory between the amacrine and the ganglion layers. The output of the retina is the output 
of  the  ganglion  layer.  Ganglion  cells  typically  have  two  qualitatively  different  inputs:  an 
excitatory and an inhibitory one. Excitation comes from the amacrine layer while inhibition 
derives from the bipolar cells.

We  have  prepared  all  the  ten,  biologically  measured  [16]  and  artificially  modeled  [1] 
channels. These include two colors-opponency, and one intensity channel, as well as, seven 



other spatio-temporal channels. The seven parallel pathways (figure 2) have the same design as 
described  above,  and  furthermore,  they  only  differ  in  the  parameters  that  determine  their 
spatio-temporal characteristics.

Figure 3: An example for the function of the retina. The input image (first picture) is processed by ten different 
pathways resulting in 10 ganglion-cell types which form the ten retina channels. [16] The second picture in the 
first row (next to the input image) is the output of the ‘transient’ channel which filters out the mobile parts of the 
visual scene and removes all the steady sections: at this moment the birds flight triggers the biggest response. 
Normally this is one of the strongest channels. The last image in the first row depicts the output of the ‘intensity’ 
channel. In the second row we can see the blue-yellow- and the red-green contrast channels (these are the color 
channels), the LED (local edge detector) and the ‘bistratified’ channels. The functions of the channels depicted in 
the third row (alpha-, beta-, delta- and polar) are unknown for the present, as well as the bistratified channel’s 
task.

Firstly, we have performed the temporal processing. For this purpose we have used a 
buffer for the images,  which preserved the recently processed sceneries -  in the biological 
equivalent this corresponds to the information which is still under processing in deeper layers 
of the retina. Practically, this is a fixed-sized buffer, where, the certain positions indicate the 
time elapsed since the input reached the sensor. Each of these positions has different weights. 
(It  is  important  to  note  that  working  with  image  frames  is  a  corollary  of  working  with 
simulators that run on PCs; this is because of the fact that, the retina has no frame-rate or any 
similar category: it works on a totally analog way, in the sense that the input image flow is 
continuous in time and value, and there is no time discretization, the only discretization is in 
space). 

Once a new frame is  being read, it gets diffused with the former images: that is, the 
signals  which  reach  the  retina  beforehand,  subsequently  reside  on  different  levels  of  the 
vertical  pathway.  The different  layers  of  the retina  have different  diffusion  characteristics: 
accordingly,  the  individual  positions  of  the  circular  buffer  have  different  weights  that 
characterize the diffusion being made on the image restored there. For proper values please 
refer to [1]. Once this process has been completed, the result overwrites the oldest image. This 
is the outcome of the specific retina-channel.



Spatial  processing is the effect  of the diffusions that occur inside the certain layers. 
From an engineering viewpoint this is the outcome of the subtraction being made between two 
different diffusions engaged on the last (temporally already processed) frame. 

Although some basics are known [15], the precise method explaining how the colors 
are processed is mostly undiscovered. We have used two color-opposition channels and one 
intensity. Figure 3 shows a snapshot of the ten retina channels for a natural scene. For detailed 
description of these channels please refer to [1, 16, 18].

2.3) The bottom-up mechanism

Selective visual attention consists of two different, but nevertheless closely related parallel-
working processes: top-down (TD) and bottom-up (BU). TD is voluntary,  originates in the 
higher areas, and testifies complex functions, such as, finding a key on a crowded table [10, 
19].  This  is  strongly  influenced  by  the  observer's  expectations,  memory  and  purpose.  It 
modifies the BU method via changing the weightings of the different saliency maps (see figure 
4). In contrast,  BU is fast, unconscious, and comes before getting aware of the scene. This 
happens, for example, when a flickering point is present in front of an idle background. 

The “bottom-up” process is also called “image-based” or “stimulus-driven”, indicating the 
fact that, the corresponding mechanism is based on the saliency values that the different points 
of the outside world, in their internal representations, reach. Most of the models that work out 
the BU mechanism use more or less the same principles [10]. Firstly, that a point’s saliency is 
composed  of  several  conspicuous-values  –  each  of  which belonging  to  different  low level 
visual feature-channels.  Secondly,  that  a location’s  saliency-value basically depends on the 
surroundings. This means that, a point’s conspicuous-value is not equal with its garishness as 
an  ‘absolute  value’,  but,  it  is  proportional  to  the  contrast that  it  forms  with  respect  to  its 
surrounding. Thirdly, the final saliency map aggregates the conspicuous-values that belong to 
the different low-level visual features with different weights. Fourthly,  scene understanding 
and object recognition tightly interplay in gaze-direction. (Nevertheless, numerous data in the 
literature suggest that human gaze direction on natural scene closely follows the bottom-up 
mechanism if  the  subject  has  no specific  task to  perform [20]  –  a  finding  which  we will 
exploit.) 

To sum up, the main steps of the bottom-up method are the followings [10, 19] (Fig 4.):

• Dissolve the incoming picture according to low level visual features:  Instead of the 
mostly  heuristic  ones  (color  oppositions,  intensity,  orientations,  junctions,  etc),  we 
build our model on real retina channels, see previous section [1, 16]. In half of the 
channels  we  can  denominate  their  function  (such  as:  Local  Edge  Detector  (LED) 
detects edges, or Transient channel detects motion), whereas, the other five channel’s 
function  is  still  unknown – at  least  we can not  phrase it.  Therefore these channels 
(Polar-,  Alpha-,  Beta-,  Delta-  and the  Bistratified  channels,  see  Fig.  3)  have  never 
appeared in heuristic artificial models.

• Create the saliency maps referring to each channel. There are several strategies in order 
to achieve this; the relevant precept is the measurement of the contrast between a point 
and its surroundings. For the purpose of defining these values, we have used different 
sized,  circle-shaped receptive  fields  (RF),  on and off  (section  2.3).  (Since  different 
receptive field sizes generate different saliency maps on the same input, and also, the 



extent  of  these  RFs  are  unknown  for  the  certain  channels,  we  have  made  an 
optimization step.)

• Feature combination:. Unify the feature-based saliency maps into one final one, which 
is thus already feature independent. In other words, the final (or “master”) saliency map 
is a  combination of the feature (or channel-) based maps, thus, it does not depend on 
only one or a few features, but on all of them. The weighting of the different channels 
are not equal. We have used different approaches to estimate these weights: “constant” 
and “continually updated”:

• Continually  updated channels  weighting strategies:  for every frame we have 
approximated the average and the maximal  saliency values appearing on the 
individual  channels,  and  we  supposed  that  only  the  first  few  most  salient 
channels participate in the generation of the master map with weightings that are 
proportional  to  their  approximated  saliency  values.  The  effect  of  the  other 
channels – on this specific stimulus – is negligible.

• On the contrary, by  constant channel weighting strategies, we have presumed 
that the different channels participate in the formation of the master map with a 
pre-defined, invariant ratio.

• Determine the most salient point (find the location that has the highest saliency value). 
This  is  a  winner-tale-all  mechanism,  which  means  that,  the  whole  process  aims  at 
locating this single point, which will be the attendant location.

• Particularly for still images: create a mechanism, called “inhibition of return”, which 
aims at preventing attention to get stuck into a point. This forbids the attended locations 
for a while, thus, attention can move to the next most salient point, then to the third one, 
and  so on.  Since  we are  working  with  moving  pictures,  the  saliency maps  change 
permanently, so that, this mechanism comes to fruition spontaneously.



Figure 4: The diagram of the bottom-up mechanism. In the first step the input image (top of the picture, left 
hand-side) is decomposed into ten different retina channels (-topographical maps in different brain areas: the 
higher  activity  a  neuron  shows,  the  darker/lighter  colour  on  the  monitor  appears.  This  is  because  we 
visualized the ON channels- and OFF channels response on the same picture.) In living beings this is a pre-
attentive feature extraction mechanism which operates over the entire visual scene in a highly parallel way. 
Ones the input vision is decomposed, each retina-channel creates its own saliency map. For defining the 
individual point’s saliency value, we used different sized, circle-shaped receptive fields (RF), on and off. 
The next step is the aggregation. The final (or master) saliency map is practically a weighted sum of the 
feature-based  saliency  maps.  The  weighting  of  these  feature-dependent  maps  are  under  top-down 
modulation, if it is present. (Bottom of the picture) Then the winner-take-all mechanism chooses the final 
saliency map’s most salient point: this point wins the attention, the others are suppressed. The corresponding 
picture-portion ‘appears in the fovea’, this is the small part of the visual scene that is processed in detail and 
the rest is processed only roughly.

2.4) Saliency calculation

For the saliency calculation we have used receptive fields (RFs). Their main structure can 
be seen on figure 5, which we have approximated according to figure 6. The calculation of the 
proper values has taken place as follows: (“x” is a simple index which corresponds to the size. 
The index x takes values from 1 to 40.) 

Dt ( = dx) = 4x-3, the length of the outer square-side in pixels, see fig. 6 
Db = 2x-1, the length of the inner square-side in pixels, that is the central parts square-side
Dk = x-1, the width of the surrounding’s ring in pixels
Sb = [Dd/6] the length of the square-side that was cut off from the outer square in pixels
Sk = [Dt/6] the length of the square-side that was cut off from the inner square in pixels
Nb = Db

2-4Sb
2 the number of the pixels in the central part

Nk = Dt
2-4Sk

2-Nb the number of the pixels in the surrounding region
Wk = -A/(255*Nk) the weight of the surrounding part; this is necessary for the saliency calculation
Wb = A/(255*Nb) the weight of the inner part; also necessary for the saliency calculation



‘A’ is an arbitrarily chosen value; corresponding to the maximum saliency value that an RF can 
return if it receives its optimal stimulus. We call a stimulus ‘optimal’ if both the central- and 
the surrounding part of the RF get the stimuli,  they respond with the higher intensity.  For 
example, light appears in the central part and disappears in the surrounding area. 

For the sake of accuracy,  we note that the value  x=1 is an exception from the prior 
formulas. It corresponds to a one pixel centered, eight pixels surrounding receptive field.

Figure 5:  The simplified structure of a saliency 
receptive field (RF). Neurons are organized into 
concentric circles: a central- and a peripheral part 
which respond antagonistically. If the central part 
of  an  ON-center  -  OFF  surrounding  RF  is 
stimulated  with  light,  then,  it  will  increase  the 
RF’s  response,  while,  if  the light  falls  onto the 
surrounding part, then the reply will decrease. If 
both part is exposed, then there will be no change 
in the ganglion cells response.

Figure  6: .The structure  of  a  general  RF approximation. 
Circles  have  been  approximated  with  squares  chopped 
down on their corners. The main principles have been: 1) to 
keep  the  neuromorphic  ratios:  In  degree:  half  of  the  RF 
should  belong  to  the  central  part  and  half  to  the 
surroundings. 2) different RF sizes should return the same 
saliency value if  they receive  their  optimal  stimulus.  For 
precise values see text.

We have  prepared  receptive  fields  in  40  different  sizes,  in  order  to  measure  their 
effectiveness, estimated in terms of the appropriate size providing the maximal saliency value 
at the attendant location. The smallest was one pixel for the central part surrounded by a one-
pixel-width belt. This matched for 0.5°. The largest (the 40th) has had a 79 pixel caliber central 
region  surrounded by a  39  pixel  belt.  In  the  measurements  this  corresponded to  26°.  The 
largest RFs in the human retina are about 10° which corresponds approximately to the 20th RF. 
The receptive field sizes increase linearly with respect to the index ‘x’. (See fig. 7)



Figure 7: The investigated RF sizes compared to a frame of the stimulus. (The depicted numbers are the ‘x’ 
indices in the above equations.) 1 is the smallest and 40 is the biggest RF. 
x = 1 corresponds to ~ 0.5° viewing angle and x = 40 corresponds to ~ 26°.

From an engineering viewpoint, receptive fields (RF) correspond to filters applied on the 
different retina channels. The RFr receptive field is determined by a [dr by dr] matrix and the 
images  are  defined  as  IMk,c,  [M by  N] sized  matrixes  (these  are  the  outputs  of  the  retina 
channels) for every frame of the input video. The notations we have used are the following:

R the number of the receptive field types (sizes), R=40
r (actual) receptive field type, r∈{1, 2, ..., R}
dr the size of the ‘r’ receptive field, d=4*r-3.
(x, y) the coordinate of the measured gaze direction

(every coordinate-pair belongs to a k frame on which it was measured, where the 
saccade ended)

M,N the size of the input video; M: width, N: height; M=273, N=201
C the number of the channels, C=10
c (actual) channel number, c∈{1, 2, ..., C}
K the number of the frames, K=267
k (actual) frame number, k∈{1, 2, ..., K}

The IM image matrices contain values between -127 and +128. -127 is black, 128 is white 
and 0 is middle-grey. This shifting (compared to the conventional bitmap valuing) is due to the 
antagonistic behavior of the receptive field weights: the outer part of the receptive fields has 
negative  weight,  whereas,  the  inner  part  has  positive.  Thus  a  stimulus,  which  “fits”  to  a 
receptive field, gives a maximal (absolute) value: a big positive, if it fits an ON-centered OFF-
surrounded RF, and a big negative (“big” in absolute value) in the other case.

Before the measurements, we have calculated the SM saliency matrices for all the IM image 
matrices by all the R=40 receptive fields: this means, K*C*R saliency matrixes, namely 400 for 
every input frame. 



Thus the saliency matrix is different for every frame, every channel and RF type: 

SM=SM(k, c, r)= IMk,c.* RFr,  (1)

where * denotes convolution. With CNN terminology the RFs are the ‘A’ templates.
We have defined the SM saliency map as an M by N matrix, so we cut down the outer ‘ring’ of 
the matrix that has come into existence because of the convolution.

Let us define the (i,j) coordinates of the (x, y) centered, d sized region in an arbitrary matrix as 
follows (these are simply those matrix-indices that  belong to the  d  sized region of the  x-y 
point):

} d/2 |}y-j| |,x-i{| | j) {(i, maxS
1
1
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≤=
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Nj
Mi (2)

During the measurements we have recorded the (x, y) coordinate pairs (the fixation locations) 
and the corresponding k frame-number for each (x, y) fixation location.
Then, we have allocated the proper SVM saliency matrix-segments for all these data-triplets:

SVM rck

yx

,,

),( is the [dr by dr] sized, (x,y) centered segment of the SM rck ,,  saliency matrix. 

(This means C*R=10*40 =400 matrix segments for every measured [(x,y), k] triplet.)
In order to define the final saliency value in a given location, we’ve put a discrete Gauss-filter 
with the same size and position with the receptive field. The next step has been the creation of 
these filters in all the  R=40 sizes, the discrete form of (3), where  t is the radius and σ is the 
standard deviation.
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E.g. the 3 by 3 G discrete Gauss filter is:    16/
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(We note that the bigger ones can be obtained, for example, with repeated convolution from 
G1.)
In CNN terminology these filters also act as ‘A’ templates.
With these arrangements we can assign a scalar value for every measured [(x,y), k] data-triplets 
as follows:

SM

GSVM
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where  SM rck ,,  is the average value of the  SM rck ,, matrix and  Gr is the discrete Gaussian 
matrix whose size is also dr., like as, in the rth receptive fields. 



‘*’ can be interpreted as a filter or convolution. In the latter case, again, we “cut down” the 
outer ring of the result matrix, which happens to be there because of the convolution.

So the normalized saliency value of the cth channel, rth receptive field size, belonging to the kth 

frame, where, the measured fixation location was (x,y), is defined by equation 5. For adjusting 
the model’s free parameters these values were essential.

Let  P denote the number of  all the measured (and used) fixations. (Some of the measured 
fixation locations “fell out” from the processing, for example because they followed a saccade 
less then 1 degree.)  With these,  the average saliency value arising on channel  c by the  rth 

receptive field is: 

P
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To find those r* RF sizes (the “optimal” receptive fields) for every c channel where the relative 
saliency values reach their maximum we have defined: 

{ }SalValr rc
r

c ,

* maxarg= (7)

These are the x-values (which are receptive field indices) on figure 8, 9 and 10, where, these 
curves reach their maximums.

3) The measurements

3.1) Stimuli

We have used two video sets. One of them has been used for the basic measurements, 
the final  purpose of  which is  to  find the unknown parameters,  namely,  the most  effective 
receptive field sizes for the different strategies and the channels weights. The second video has 
been used for the validation and assessment of the model. 
Both  video-sets  have  contained  moving  natural  scenes,  each,  without  any  humans  or  any 
artificial environment: birds, horses, rivers flowers, sees, mountains, etc... Our goal with this 
restriction has been to keep the top-down attentional influence as low as possible. 

The stimulus was 8 frame/second video, 512x298 pixel/frame, 96 dpi each. No audio 
was added. The first (“basic”) video-set included 4 clippets,  267 frames, ~33 seconds. The 
validation set contained 9 clippets with a sum of 447 frames, ~56 seconds. 

Participants have been asked to watch both videos 4 times in the following order: 2 for 
the “basic” video, then, 2 for the validation video,  then 2 for the “basic” video again,  and 
finally 2 for the validation one.



3.2) Participants

21  naïve  human  observers  have  participated  in  the  first  “basic-”  video-set 
measurements (and 2 non-naïve) and 14 naïve (plus 1 non-naïve) in the second series. Non-
naïve participant’s data has not been included in the evaluation. Each subject has had normal or 
corrected-to-normal vision.

3.3) Experimental design

The distance between the subject’s eyes and the monitor was 50 cm; the inner part of 
the monitor was 40 cm x 30 cm. We have recorded saccade-end locations and in the first series 
we have processed the data belonging to saccades bigger then 1 degree, in order to find out the 
most BU-modified fixations. During 66 (naive) trials in the first case we have recorded 3995 
fixations, from which, 2560 saccades were bigger then 1 degree. 
The  second  run,  for  validation,  has  included  54  trials  with  6430  saccade  end-location 
recordings.

4) Results

4.1) Estimating the most effective receptive field sizes and channel 
weights

There are two “key-parameters” in the model: the  size of the receptive fields (which 
might differ on each channel) and the weights of the feature-dependent saliency maps during 
the creation  of the master  saliency map.  In the same time,  when we measure  human eye-
movements, our usable information is the position and the saliency of the saccade-end location. 

To estimate these parameters, our first step was to determine the effectiveness of the 
different receptive field (RF) sizes from ~0.5° up to ~26° with a step of ~0.6° (40 different 
sizes), for all the ten channels. (fig. 7, results on fig. 8-10). We have defined ‘effectiveness’ as 
the saliency value that the given RF provides at the attendant locations – attendant by humans 
on the first video set (see section 3.1).

Since it is very likely that the evoking a saccade is not a result of the ten channel’s 
equal contribution, firstly, we have made assumptions regarding which channel, when, and, in 
what measure, participate in the determination of the new fixation location, thus, evoking a 
saccade.

Essentially we have used two approaches in order to filter out the saccade-triggering 
channels. Figures 8 and 9 belong to the first approach, whereas, figure 10 to the second one. In 
more detail, it is instructive to describe them as follows:

I. The first approach is based on the phenomenon that characterizes attentional mechanism in 
almost all levels, namely that stimuli compete with each other for attention. To realize this, 
we  have  treated  those  channels  as  saccade-generators,  which  have  created  the  highest 
saliency at the attendant location by  any RF size. In other words, just one outstandingly 
high saliency value being created on a given channel by a given RF size, is enough for the 



characterization of this  channel as a saccade-triggering one. Figures 8 and 9 depict  the 
results for the two strategies based on this phenomenon. The corresponding curves look 
very similar, according to the expectations. With the same object, and for the purpose of 
comparison among channels, on figure 8, we have applied the same range on the y axis for 
all the channels, while, figures 9 and 10 have different scale for the certain channels for the 
purpose of showing the fine details among the curves. In one of these approaches (figure 
8), we have set a threshold for channel filtering. The threshold was a given percent of the 
maximum saliency value that has come into existence on the given frame: 95% on fig 8. a) 
and 70% on b). In the other strategy (fig 9) we have graded the channels according to their 
highest saliency value and have taken out the first few channels (1 and 3 on figure 9 a) and 
b), respectively). 

II. In the context of the second approach, we have assumed that those channels take part in the 
provocation of a saccade, being salient, in  average, on the actual stimuli. The biological 
background  of  this  approach  is  that  every  channel  has  a  big  range  of  different  sized 
receptive fields, but their distribution could differ strongly. To define the mean saliency, 
we have determined the saliency values according to all the receptive field sizes (40) at the 
measured attendant  location and have averaged it.  Figure 10 shows our results  for this 
approach; a) if we regard only one channel as effector for the certain saccades and b) if we 
take the first 3 channels. The bottom-most diagram on these figures shows the channel-
distribution in percent, that is: for each channel how often it has been interpreted as the 
triggering one. These values have been used to approximate constant channel weights. For 
results see figure 11: In comparison, the second approach has proved to be more efficient. 

These  values depicted  on  the  next  figures  have  been  determined  on  the  frame  where  the 
saccade presumably evoked in the position where the given saccade ended. Accordingly, we 
have used the preceding frame compared to the one that we have measured the saccade end-
location on. Since we have applied 8 fps video, meaning 125 ms retrace in time, which we 
interpret as the period between the saccade initialization and the fixation on the saccade end-
location.

The  bottom most  graphs  on  each  ensemble  show  the  occurrences  of  the  different 
channels (in percent) for the different strategies and parameters. Nicely appears the important 
role of the Transient channel - which filters out changes [16, 18] - on the second bar of each 
graph.  We have  also  used  these  frequency  distributions  as  an  approximation  for  constant 
channel weights (section 4.2). 



Figure 8: Average saliency values in the attendant locations in the function of the receptive field sizes. For 
each frame we calculated the saliency values for each channel, each RF size and defined the maximum among 
all the channels, all the RFs. Here the surmise was that those channels generate the saccade, which has at least 
one RF which by the saliency value reaches a) 95%, b) 70% of the maximum.
This approach gives very similar outcome then the previous one (see also fig 9.) For better comparison between 
channels here we applied the same scale on the y axis for each channel.



Figure 9: Average saliency values in the attendant locations in the function of the receptive field sizes. For 
each  frame we calculated  the saliency values  for  each  channel,  each  RF size,  and assumed,  that  those 
channels evoke the saccade, that have at least one RF that gives prominently high saliency value: biggest, 
than other channels can create with any receptive field size. Figure a) shows the results if we defined only 
one channel as ‘saccade-triggering channel’, while the lower one (b) indicate the outcome when we counted 
the first 3 most salient channels for each saccade.



Figure 10: Average saliency values in the attendant locations in the function of the receptive field sizes. For 
each frame we defined the average saliency value for each channel (between all the 40 RF sizes) and assumed 
that those channels evoke the saccade, which gives the biggest  average saliency on that particular stimulus 
(frame). The left picture (a) shows the result if we define the one most salient channel as saccade triggering, 
while figure b) shows the outcome if we treat the first three most salient channels as effectors.



4.2) Verification results on constant channel weights

To test how close the models predictions are to human fixations, we have made the following: 

• First  we  have calculated the master  saliency maps using the channel-distributions yield 
from  the  above  strategies  as  channel  weights.  More  precisely,  the  individual  channel 
weights  were  the  percentage  of  how  many  times  could  the  given  channel  appear  as 
saccade-triggering…

o …according to any receptive field size, (“aRf” on the figures). For rough values see 
figure 9 a, bottom-most picture, for exact numbers please refer to the appendix 6.2, 
Table I, W1.

o …according  to  its  optimal receptive  field,  where,  “optimal”  is  where the above 
curves reach their maximum. (Nominated with “OptRf” on the figures.) The exact 
saliency-map weights for this strategy can be found in appendix 6.2, as “W2” in 
Table I, and appendix 6.3 contains the indexes of the optimal receptive fields in 
Table II.

o …and which channel how often has given the biggest average saliency. (“Avg” on 
the  figures)  For  rough  values  see  figure  10  a,  bottom-most  picture,  for  exact 
numbers see appendix 6.2, W3.

• Then  we  have  made  “predictions”  for  the  gaze  directions.  These  were  locations (x-y 
coordinate pairs) which, the model has calculated as the most probable fixation locations. 
This means that, if the model and the used assumptions are correct, a human will attend 
these locations with a higher probability than to other points. There were  more of these 
predicted locations to every frame, ordered by decreasing probability: the first location has 
been calculated as the most likely fixation location,  the second one as the second most 
probable,  and so on.  (Figures 11-14 depict  the first  four.)  Practically,  these probability 
values were  saliency values calculated according to the different approaches (- different 
approaches mean different saliency map weighting strategies, explained above).

• After  this  we  have  made  human  gaze  direction  measurements,  with  the  purpose  of 
comparing the predicted locations with the ‘real’, human gaze directions.

• We have defined “hit”,  as  if  the distance between the predicted and measured fixation 
location was less than 5 degrees. (Accordingly,  accidental chance was the product of an 
area of a 5 degrees-radius circle and the number of predictions (1, 2, 3 or 4), divided by the 
area of the monitor.)

Mathematically: Accidental chance (Ca) has been calculated as follows:
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where, Trh denotes the area of a (in this case) 5 degree-radius circle, Npred is the number of the 
predictions (from 1 to 4) and Tm indicates the sphere of the monitor.

Figure 11 shows the results for the above strategies. 



Figure 11: The validation results of the different  constant strategies.  The left-most  bars in each quaternary 
indicated the outcome when only the ‘Transient’ channel is adverted and all the others are neglected. The next 
three bars show the results of the ‘Avg’, ‘aRf’ and ‘OprRf’ strategies, in this order. In these cases the master 
saliency maps apply all the channel-dependent maps, the differences lie in their weights. (For proper values see 
Appendix)

It is remarkable that, the transient channel’s saliency map alone is almost as effective as 
the other strategies. This highlights the channel’s important role on dynamic stimuli, which has 
been detected by other  models  as well  [11].  On the whole,  these approximations  are quite 
effective:  the  first  four  predictions  contain  the  measured  fixation  location  with  ~70%,  for 
arbitrary subject. 

This shows, that on moving stimuli, in the involuntary attentional method (bottom-up), 
the  commanding  role  of  the  Transient  channel  seems  to  be  undoubted.  Nevertheless,  in  a 
general attention model, probably all the channels have their own role; it is enough to think of 
motionless stimulus, where, the Transient channel does not give any response, thus, the whole 
attentional method has to be under the control of other channels as well. Moreover, under top-
down conditions, during which, search being based on complex visual features, comes to the 
front, probably these channels do have their important role as well. 

4.3) Verification results on dynamic (continually updated) channel 
weights

Dynamic (continually updated) strategies presume that the triggering channels and their 
weights depend on the stimuli as well. This is not trivial, since channel weighting is primarily 
under top-down effects, which we have tried to minimize with our stimuli type. Still, we had 
expected  higher  efficiency from the continually  updated channel  weighting  strategies,  than 
from the constant ones. Still, the investigated approaches were efficient, with 3 predictions we 



could yield a hit rate around 50%, and the first 4 prediction overlaps with the measured fixation 
location with ~60% chance. The results are depicted on figure 12, 13 and 14. In contrast with 
our expectations the constant strategies turned out to be more effective than the continually 
updated ones – this is not anticipated even if the differences are quite small. (see fig. 11, 14)

Each picture contains bar-quintuplets for every prediction-number and a sixth bar for 
comparison, which indicates the accidental chance. For the sake of a better contrast, we have 
elongated their height towards the quintuplet they belong to. The first bar always indicates the 
results for the case when, only the first most salient channel has been regarded as saccade-
triggering;  the second one,  when the first  two most  salient  channels  have been taken into 
account, etc. Accordingly, the fifth bar shows the accuracy of the prediction, which is based on 
the five most salient channels. Although we have calculated all the ten cases, for the sake of 
simplicity, we have only depicted half of them – which already show the tendencies. 

The two  investigated strategies have been the same then before: In the first one, for 
which the results can be seen on figure 12, the surmise was that the channels that trigger the 
saccades are those which are salient on the given stimuli in average. To estimate this average 
saliency value for the certain channels we have calculated their saliency maps with the “r” 
receptive field size, with which, they proved to be the most effective in average – that is, where 
the curves on figure 10 reach their maximum. For the proper RF sizes see Appendix 6.3. As it 
can be seen, while on constant channel weighting cases this approximation has proved to be the 
most effective, on the continually updated ones this one lags behind the others. (See figure 11, 
12 and 14, where 14 is a summary for the continually updated results.) Once we’ve had the 
channel-dependent saliency maps, we have defined their mean values. As next step, we have 
taken out the first i saliency maps to which the highest mean value belonged to (for all i∈{1, 2,
…,10},  one  after  the  other),  and  have  created  the  master  saliency  map  with  proportional 
weighting to the average saliency values. (See equation 2) The model’s predictions were the 
locations  with  the  highest  saliency  values  in  the  master  saliency  map,  with  at  least  4.2° 
(viewing angle) distance between them. We have defined “hit”, if  the distance between the 
predicted and the measured location was less then 5 degree.

The other approach (results on fig. 13) differed from the above one, on the one hand, in 
the definition of “the most salient channel”, and on the other hand, in the “r” receptive field 
sizes with which the channels-based saliency maps have been created. (See equation 3) For 
RFs we have used those ones, where the curves on figure 8 and 9 reach their maximum. (They 
represent similar approaches, where by similar RF sizes proved to be the most effective ones; 
for  proper  values  see Appendix.)  According to  this  approach,  “channel-saliency”  has been 
defined as the  maximum channel-dependent saliency value – instead of the average. In other 
words,  we have determined the biggest  values  in  all  the channel-based saliency maps and 
created the master map with the first  i saliency maps containing the highest values, for all 
i∈{1, 2,   ,  10},  one after  the other.  The weighting was proportional  with these maximum 
values. 

That is, for the first “Avg” approach the final saliency map was calculated as follows:
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,,, SMGRFIMSM ckrrckck mean= , the normalized saliency matrix.

where “*” denotes convolution, and the inner brackets contain the saliency map before Gauss-
filtering.

k is the frame number
c is the channel identifier, c∈{1, 2,   ,10}, 1: Intensity, 2: Transient, etc.
i is the number of channels we regard as saccade-triggering
wc the weight of the cth channel in the final saliency map
SMk,c saliency map, belonging to the channel c on frame k.
IMk,c the activation map of channel c on frame k.
RFr Receptive field with the r size-index.
Gr Discrete Gauss-filter with the r size-index.

The “r” indexes for the two approaches (“Avg” and “Mrf”) differ; for proper values see 
Appendix.

Figure 12: Verification data with dynamic channel choice, showing the approach denoted with ‘Avg’. Here we 
assumed that a channel participates in triggering a saccade, if it is salient on the given stimuli (frame) in average. 
The first bar in every quintuplets shows the results for the case when only one channel creates the final saliency 
map, the second bar if two channels, etc. For the sake of simplicity we only depict the first 5 bar instead of the 10. 
(This already shows tendencies.) The horizontal bars indicate the accidental chance for making a ‘hit’.
Once the saliency maps were ready, we made our predictions as the locations with the highest saliency values in 
the master map, with at least 4.2° distance between them. We defined ‘hit’, if the distance between the predicted 
and the measured location was less then 5 degree. We defined two predictions ‘different’, if their distance was at 
least 2.9 degree (agrees with the receptive field size index: 5) 



Similarly, for the “Mrf” approach the final saliency map was calculated as:
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“*” denotes convolution again.

For the same strategy, if we choose the wc saliency-map weights for the normalized saliency 
map instead if the un-normalized SMk,c map, we get a more effective method, for which the 
results can be seen on figure 13 b. 

Figure 13: Verification data with dynamic channel choice, showing the approaches denoted with ‘Mrf’. Here we surmised that a 
channel participates in triggering a saccade, if it is ‘very’ salient anywhere on the given stimuli (frame) by its ‘optimal’ receptive 
field. The first bar in every quintuplets shows the results for the case when only one channel creates the final saliency map, the 
second bar if two channels, etc. For the sake of simplicity we only depict the first 5 bar instead of the 10. (This already shows 
tendencies.) The horizontal bars indicate the accidental chance for making a ‘hit’. 
Once the saliency maps were ready, we made our predictions as the locations with the highest saliency values in the master map, 
with at least 4.2° distance between them. We defined ‘hit’, if the distance between the predicted and the measured location was 
less then 5 degree. We defined two predictions ‘different’, if their distance was at least 2.9 degree (agrees with the receptive field 
size index: 5)
a) shows the results if we yield the channel- weights from the un-normalized channel-dependent saliency map, and b) depicts the 
case, when these are from the normalized map.

For a comparison of the three strategies see figure 14.



Figure 14: Comparison of the efficiency of the three continually updated strategies. For details of these 
approaches see text.

5) Conclusions

The goal of the present study  has been the development of a bio-inspired model of 
stimulus-driven, bottom up attentional selection, whose performance will match as closely as 
possible human attentional selection - as reflected in their eye movements –under free-viewing 
conditions in case of dynamic natural  scenes. To this end, as an input we have used short 
movies of dynamic natural scenes, which – according to recent studies - under free-viewing 
conditions evoke primarily bottom-up attentional selection mechanisms [20]. The important 
novel properties of our model are: firstly, that it is built on real retina channels instead of a few 
heuristic  ones,  and  secondly,  that  the  parameters  (receptive  field  sizes for  the  individual 
channels and the channel weights during the creation of the master saliency map) are set after 
human measurements. 

We  have  used  two  different  channel  weighting  strategies.  In  the  case  of  constant 
weights, during the verification experiment, we have used the same channel weights, whereas, 
in the case of the dynamic, continuously updated channel weights were updated on each frame, 
according to the specific properties of the visual input. The constant weights approach proved 
to be the more efficient. The probability that the first 4 predicted locations will include the 
location of the first human fixations measured on the same input reached 74% in the case of 
constant  weights  approach.  For  comparison,  the  probability  of  a  match  between  human 
fixations and arbitrary predicted locations is less then 20% under the very same conditions. 
However, in the case of continuously updated channel weights, the hit ratio was around 65% 



on  4  predictions  (see  figures  11-14).  These  results  –  although  unexpected  –  from  an 
engineering point of view turn out to be advantageous, since constant weights approach, as 
compared to the continuously updated approach, requires less processing resources, it is easier 
to implement and faster. 

The developed model might have a broad range of application by adapting the channel 
weights and receptive field shapes to the specific task-requirements, as well as, by using only 
the  task-relevant  channels.  With  these  modifications,  there  are  already  some  practical 
applications,  primarily,  in  the  so  called  “Bionic  Eyeglass  Project”,  an  on-going  project 
meaning to help the everyday-life of blind or visually impaired people. In this, we have three 
main “scenes”: home, workplace and the way between them, with sub-tasks to be solved. By 
modifying the shape of the receptive fields we get an effective algorithm to define the direction 
of an escalator – a sub-task on the street. If the receptive field is horizontal bar–shaped (in the 
brain hierarchy, from V1 such RFs can also be found), then the edges of the escalator will be 
salient.  From here, the task is to define whether their vertical  coordinates lessen (the steps 
move away) or grow (the steps draw near). Or, as another modification, by combining different 
channel  information,  primary  beaming  (lamps  indoor,  sky  outdoor)  can  be  detected.  For 
performing this task in the same project, the data from two channels has proved to be enough. 
Thus, the proposed algorithm is general, in the sense that, it is capable of receiving any kind of 
input  (not  only  natural  scenes)  and,  with  task-dependent  simplifications,  localize  different 
objects or features.

6) Appendix

6.1) Channel order

The order of the channels:
1) Intensity
2) Transient
3) LED (Local Edge Detector)
4) Red-green opposition.
5) Blue-yellow opposition
6) Alpha
7) Beta
8) Delta
9) Bistratified
10) Polar

6.2) Constant channel weights

The  constant  channel-based  saliency  map  weights  for  the  three  strategies  investigated  in 
section 4.2:



TABLE I
THE STIMULUS-INDPENDENT CHANNEL WEIGHTS DURING THE CREATION OF THE FINAL SALIENCY MAP. THE DIFFERENT ROWS BELONG TO 

DIFFERENT STRATEGIES.
Intensity Transient LED Red-

Green 
opp.

Blue-
Yellow 
opp.

Alpha Beta Delta Bistratified Polar

W1
“aRf”

9.75 36.55 9.52 6.18 9.86 4.6 2.91 4.87 7.33 8.4

W2
“OptRf”

7.83 26.33 10.32 7.83 10.36 5.52 4.95 3.99 6.79 16.05

W3
“Avg”

7.25 40.07 5.87 9.21 9.52 6.67 4.33 4.10 6.71 6.21

That is, for all w1, w2 and w3 weight-vectors, the final saliency map is weighted sum of the 
channel-dependent saliency matrices:
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E.g. for the kth frame, according to the w2 weights-vector, the master saliency map is: 
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6.3) Optimal receptive field sizes

TABLE II
THE ‘OPTIMAL’ RECEPTIVE FIELD SIZES USED IN THE DIFFERENT STIMULUS-INDPENDENT CHANNEL WEIGHTING STRATEGIES

Intensity Transient LED Red-
Green 
opp.

Blue-
Yellow 

opp.

Alpha Beta Delta Bistratified Polar

“aRf” 3 9 2 12 3 12 4 4 4 15
“Avg

”
20 9 21 20 31 22 19 4 15 15

The second row depicts the receptive field indexes courted in section 4.1, figure 8 and 9, and 
used in section 4.2. The third row contains the receptive field indexes used to approximate the 
average saliency values in section 4.3.

The index i means α view-angle as next:

147.0
100

34
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where the 4i-3 defines the diameter of the receptive field in pixels.
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