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Gergő Somorjai1,2, Tamás Nepusz1,2 and Tamás Vicsek1,2

1 ELTE Department of Biological Physics, 1117 Budapest, Pázmány Péter Sétány 1/A, Hungary
2MTA-ELTE Statistical and Biological Physics Research Group, 1117 Budapest, Pázmány Péter Sétány
1/A, Hungary

E-mail: viraghcs@hal.elte.hu

Received 20 February 2014, revised 22 April 2014
Accepted for publication 23 April 2014
Published 22 May 2014

Abstract
Animal swarms displaying a variety of typical flocking patterns would not exist without the
underlying safe, optimal and stable dynamics of the individuals. The emergence of these
universal patterns can be efficiently reconstructed with agent-based models. If we want to
reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based
models can also be used in their control algorithms. However, finding the proper algorithms and
thus understanding the essential characteristics of the emergent collective behaviour requires
thorough and realistic modeling of the robot and also the environment. In this paper, we first
present an abstract mathematical model of an autonomous flying robot. The model takes into
account several realistic features, such as time delay and locality of communication, inaccuracy
of the on-board sensors and inertial effects. We present two decentralized control algorithms.
One is based on a simple self-propelled flocking model of animal collective motion, the other is a
collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which
aligns the velocities of neighbouring agents parallel to each other. We show that this term can be
essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We
discuss simulation results on the stability of the control algorithms, and perform real experiments
to show the applicability of the algorithms on a group of autonomous quadcopters. In our case,
bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control
a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour
as a group. On the other hand, by using a realistic simulation framework and studying the group
behaviour of autonomous robots we can learn about the major factors influencing the flight of
bird flocks.

S Online supplementary data available from stacks.iop.org/BB/9/025012/mmedia

Keywords: swarm robotics, flying robot flock, collective motion, distributed control,
autonomous navigation

(Some figures may appear in colour only in the online journal)

1. Introduction

Collective motion is an impressive phenomenon, that can be
observed in a wide range of biological systems, such as fish
schools, bird flocks, herds of mammals or migrating cells [1].
These systems produce the same universal feature: the velocity
vectors of neighbouring individuals tend to become parallel to

each other. This behaviour and the underlying control
mechanism seem to be a prerequisite of safe, stable and col-
lision-free motion. Therefore, it might be advantageous to
incorporate the mathematical models that reproduce group
flight patterns into the control of artificial systems, a group of
autonomous flying robots, for example. By autonomous we
mean that every agent uses on-board sensors to measure its
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state and performs all controlling calculations with an on-board
computer, i.e., the control system is decentralized. This defi-
nition prohibits central processing of the group dynamics by an
external computer, but allows the use of, e.g., on-board GPS
devices for external reference of position. Our study is valid for
any kind of object that is capable of moving in an arbitrary
direction independently of its orientation, within a reasonable
velocity range (including zero velocity hovering). Typical
flying robots that satisfy this criteria are the so-called quadro-,
hexa-, and octocopters, commonly named as multicopters.

According to Reynolds, collective motion of various
kinds of entities can be interpreted as a consequence of three
simple principles [2]: repulsion in short range to avoid col-
lisions, a local interaction called alignment rule to align the
velocity vectors of nearby units and preferably global posi-
tioning constraint to keep the flock together. These rules can
be interpreted in mathematical form as an agent-based model,
i.e., a (discrete or continuous) dynamical system that
describes the time-evolution of the velocity of each unit
individually.

The simplest agent-based models of flocking describe the
alignment rule as an explicit mathematical axiom: every unit
aligns its velocity vector towards the average velocity vector
of the units in its neighbourhood (including itself) [3]. It is
possible to generalize this term by adding coupling of
accelerations [4], preferred directions [5] and adaptive deci-
sion-making schemes to extend the stability for higher velo-
cities [6]. In other (more specific) models, the alignment rule
is a consequence of interaction forces [7] or velocity terms
based on over-damped dynamics [8].

An important feature of the alignment rule terms in
flocking models is their locality; units align their velocity
towards the average velocity of other units within a limited
range only. In flocks of autonomous robots, the commu-
nication between the robots usually has a finite range. In other
words, the units can send messages (e.g., their positions and
velocities) only to other nearby units. Another analogy
between nature based flocking models and autonomous
robotic systems is that both can be considered to be based on
agents, i.e., autonomous units subject to some system-specific
rules. In flocking models, the velocity vectors of the agents
evolve individually through a dynamical system. In a group of
autonomous flying robots, every robot has its own on-board
computer and on-board sensors, thus the control of the
dynamics is individual-based and decentralized.

Because of these similarities, some of the principles of
animal flocking models can be integrated into the control
dynamics of autonomous robots [9]. For example, Turgut
et al presented a dynamical system based on the simplest
flocking model and used it to control the motion of so-called
Kobots in two dimensions on the ground [10]. In three
dimensions, Hauert et al presented experiments with fixed-
wing agents, as a simple application of two of the three rules
postulated by Reynolds (note that there was no true repulsion
between the units; they flew at different altitudes) [11].

Thus the principles of flocking models presented above
are useful for creating control algorithms for autonomous
robots. However, we should not underestimate the ability of

animals to maintain highly coherent motion. The prerequisites
of smooth collective motion include robustness against reac-
tion times and possible delay in communication, noisy sen-
sory inputs or unpredictable environmental disturbances, such
as wind. Animals seem to overcome these difficulties effi-
ciently. However, in robotic systems, these effects can cause
unpredictable effects on stability. It is well known, for
example that if time delay is present in the communication
between swarming agents, instabilities can emerge [12].

One of the main goals of this paper is to provide a model
of a general autonomous flying robot integrated into a realistic
simulation framework. This model can be used to study the
stability of flocking algorithms from the perspective of the
deficiencies of realistic systems. The model should contain as
many system-specific features as we can take into account,
but also should be applicable for many kinds of robots. Due to
this ‘duality’ we define the axioms of the robot model with
several independent parameters, corresponding to each source
of deficiency in the realistic framework. Specific experimental
situations can be realized with a fine-tuned set of these
parameters.

Another goal of this paper is to demonstrate that some
features of animal flocking models can be useful in collective
robotics only if some specific extra aspects of the robots are
taken into account. We show that the principles of flocking
behaviour can be transformed into unique components of the
dynamical system implemented as the control framework of
robots. A short-range repulsion is needed to avoid collisions
and an implicit viscous friction-like alignment rule term is
efficiently used for damping the amplitude of oscillations
caused by the imperfections of the system. With simulations
and experiments on autonomous quadcopters, we study the
stability of two realistic bio-inspired situations: (i) a general
self-propelled flocking scenario inside a bounded area and (ii)
a collective target tracking setup to reach and smoothly stop at
a predefined position.

2. Realistic model of a flying robot

In this section, we present a model of a flying robot based on
some features that are general in many realistic robotic sys-
tems. In such systems, the motion of the robots is controlled
by a low-level algorithm, e.g., a velocity-based PID controller
(see appendix A). This low-level control algorithm typically
has an input, the desired velocity vector of the actual robot.
During flock flights, the time-dependence of the desired
velocity of the ith unit can be a function of the positions (xi)
and velocities (vi) of the other units:

=
= =( ){ } { }v f x vt t t( ) ( ) , ( )i i j

j

N

j
j

Nd

1 1

where N is the number of agents and the f
i
function contains

the arbitrary features of the controlling dynamics. In an ideal
case, the velocity of the ith robot changes to v t( )i

d at time t
immediately. However, a robotic system is never ideal; some
of its deficiencies will need to be modelled.
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1. Inertia. The robots cannot change their attitude or
velocity immediately. In general, the desired velocity is
an input of a low-level controller algorithm. We assume
that in an optimal setup, the system can reach the desired
velocity with exponential convergence, with a character-
istic time τCTRL. A simple controller algorithm satisfying
this behaviour is the PID controller (see appendix A).
The magnitude of acceleration is also limited to amax.

2. Inner noise. We have to take into account the inaccuracy
of the sensors that provide relative position and velocity
information. For example, the uncertainty of the position
and velocity measured by a GPS device can be modelled
as a stochastic function η t( )

i
s (see appendix B). This

function can be characterized by a standard deviation σs.
Note that the term ‘inner noise’ can refer to the
inaccuracy of any kind of sensor used in the actual robot
system.

3. Refresh rate of the sensors. The refresh rate of the
sensory inputs fundamentally defines the reaction time
and agility of the robots. We consider a limited refresh
rate of the sensors: every unit updates sensory data with

frequency −ts
1. In our current model, −ts

1 is constant.
4. Locality of the communication. The communication

between the units has a finite range, rc, thus if the
distance between two units is greater than rc, they cannot
interact with each other. In other words, the f

i
function

depends on xj only if − <x x rj i c.

5. Time delay. By the time a unit receives and processes
position and velocity data from another unit, the data will
be old due to data processing and transmission delays. In
the simplest approach, time delay can be considered as a
constant value, tdel.

6. General noise. A delta-correlated (Gaussian) outer noise
term η t( )

i
with standard deviation σ is added to the

acceleration of the units. This term is a model of
unpredictable environmental effects such as fluctuations
in the wind compensation of the low-level control
algorithm.

Considering all the points above, our definition of a
realistic system is the equivalent of defining the set

η ητ
=

⎧⎨⎩
⎫⎬⎭{ }a r t t t t, , , , , ( ), ( )

j j
j

N

CTRL max c del s
s

1
. Time delay and

communication range are hard to measure, can change ran-
domly and have the most dangerous effects on stability.
Therefore any kind of f

i
has to be investigated with various

tdel and rc values.
The final form of the model is an equation that defines

the acceleration (a t( )i ) of each unit:

η

τ
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where x t( )i
s and v t( )i

s give a measure of the integrated posi-

tion and velocity noise for a random variable η t( )
i
s , which

results from solving the second-order stochastic differential
equation ¨ η= =x vt t t( ) ( ) ( )i i i

s s s . In the expression of f
i
,

≠{...} j i denotes a set with iterator ≠j i. The function f
i

depends on the actual position and velocity of the ith agent
and the delayed position and velocity of the other agents and
only changes with −ts

1 frequency. The equations above can be
solved using the Euler and Euler–Maruyama methods.

In the rest of the paper, we choose specific f
i
functions

with two main features:

(a) f
i
depends only on relative coordinates of the interacting

units, i.e., no global positioning information is needed in
the system:

=
− − + − −

− + − +
≠
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⎝
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del
s

del
s

del
s

del
s

(a) interaction terms in f
i
can be expressed as a sum of local

pairwise interactions ( f
ij
) with other units:

∑ ˜ ˜ ˜ ˜ ˜ ˜θ= − − −
=

( )( )f f x x v v x xr, , ,
i

j

N

ij j i i j i j

1

c

where θ x( ) defines the communication range explicitly; it
equals 0 if <x 0 and equals 1 if ⩾x 0. x̃i and ṽi are the
measured position and velocity values including the modelled
inner noise term: ˜ = +x x xi i i

s and ˜ = +v v vi i i
s.

We also choose fixed values for some of the parameters:

=t 0.2ss , τ = 1 sCTRL , = −a 6 m smax
2, σ = −0.005 m ss

2 2.
These values represent our state-of-the-art experimental setup
with quadcopters. For practical reasons, we saturate the
magnitude of desired velocities expressed by the f

i
functions

at = −v 4 m smax
1.

In table 1, we summarize the parameters of the model
defined by (1).

3. Self-propelled flocking model

In this section, we present a minimal algorithm that is
capable of driving collective robotic systems towards a
stable, collision-less, self-organized correlated flocking
state. This algorithm is based on the early models of animal
swarms [2, 3]. By ‘self-organized’ we mean that the indi-
viduals arrive at a well-defined collective state based on the
units’ own decisions only [13]. The desired velocity of the
agents is now a sum of interaction terms and some extra
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terms that define the self-propelling behaviour and inter-
actions with a bounded arena. Each term is described below
in detail.

We define the agents as self-propelled particles with
preferred velocity vflock:

=v
v

v
v . (2)i

i

i

SPP
flock

3.1. Short-range repulsion

To avoid collisions, we define a local linear repulsion
between the units:

θ=
−

−
( ) ( )v

d

d
d d

D r
r , (3)ij

ij

ij

ij ij
rep 0

0

where = −d x xij j i , D is the strength of the repulsion and r0 is

the interaction range. We consider that the amplitude of
fluctuations in the measured position caused by inner noise
can be in the same range as r0. In such a noisy system, the
simple linear repulsion is superior to higher-order terms,
because errors in the measured position do not cause sudden
changes or singularities in the output. If the robots were able
to measure their positions more accurately, higher-order
terms, like the Lennard-Jones potential, could be used [14].

3.2. Velocity alignment of neighbours

Any kind of velocity alignment rule term in realistic control
algorithms should satisfy three assumptions: it should (i) relax
the velocity difference of units close to each other, (ii) be
local and (iii) have an upper threshold value even when the
distances between the units are close-to-zero (similar to the
repulsion term). In light of these, we implement the alignment
rule with a viscous friction-like interaction term, similarly to
[15] and [16]:

=
−

( ){ }
v

v v

d
C

rmax ,
(4)ij

j i

ij

frict
frict

min

2

where Cfrict is the strength of the alignment and rmin defines a
threshold to avoid division by close-to-zero distances.

This term is a specific, practical choice for taking into
account the tendency of the particles/robots to align their
direction of motion. In some sense it is a discrete counterpart
of the viscous friction term which would be present in a
continuum description such as, e.g., the one considered first
by Toner and Tu [17].

The locality of the viscous friction term in practice is
guaranteed by the inverse-square decay of the term as a
function of distance. However, the maximal velocity vmax and
the value of Cfrict also has to be bounded. The interaction

becomes local if the magnitude of vij
frict becomes negligible

compared to vi
SPP at large distances, i.e., when

≪ dC v v2ijfrict flock

2

max for large values of dij . The optimal

ratio of vflock and Cfrict is thus defined by the limit of the
velocities and the desired interaction range.

3.3. Boundaries and shill agents

An important principle of flocking behaviour is a kind of
global positioning constraint that contributes to the integrity
of the flock. In simulation, this feature of the positioning
constraint can be well substituted by using periodic boundary
conditions. This is an effective method for examining the
large-scale statistical properties of the system. In real
experiments, periodic boundary conditions can be imitated by
closing the units into a quasi-low-dimensional space, e.g., into
a ring-shaped arena [18, 19], but in three dimensions these
restrictions are not practical at all.

To study the flocking model with simulations, we placed
the units into a square-shaped arena with repulsive walls. We
defined the repulsion of the wall as virtual ‘shill’ agents [20].
If the units are outside the wall, those shill agents try to align
the velocities of the units towards the centre of the arena:

= ⋅ − ˜

×
−
−

−
⎛
⎝⎜

⎞
⎠⎟

( )( )v x x x x

x x

x x
v

C s R R d

v

, , , ,

, (5)

i a i i a

a i

a i
i

shill
shill

flock

Bioinspir. Biomim. 9 (2014) 025012 Cs Virágh et al

4

Table 1. Parameters of the flying robot model. The column ‘Valid range’ shows values that are valid for our experimental setup with
quadcopters. For further details, see appendices A and B.

Parameter Unit Definition Valid range / value

τCTRL s Relaxation time of low-level controller (e.g., PID controller) τ ≈ 1 sCTRL

amax
−m s 2 Maximum magnitude of acceleration = −a 6 m smax

2

σs
−m s2 2 Measure of inner noise fluctuation σ = −0.005 m ss

2 2

−ts
1 −s 1 Frequency of receiving sensory data =− −t 5 ss

1 1

rc m Communication range = −( )r 30 140 mc

tdel s Time delay of communication = −( )t 0 2 sdel

σ −m s2 3 Measure of outer noise fluctuation σ = − −( )0 0.2 m s2 3



where Cshill is the strength of the ‘shill-repulsion’, xa is the

position of the centre of the arena and ( )s x, R, d is a sigmoid

curve which smoothly reduces the strength of the repulsion
inside the arena:

π π=

∈

− − + ∈ +

> +

⎜ ⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

⎫
⎬
⎪⎪

⎭
⎪⎪

[ ]

[ ]( ) ( )s x R d

x R

d
x R x R R d

x R d

, ,

0 if 0,

sin
2

1 if ,

1 if

. (6)

R̃ is a function that defines the shape of the arena (in this
case, a square with side length R).

Note that the walls of the arena are pre-defined globally
in the simulation, but the repulsive term only depends on the
relative coordinates −x xi a, thus in real robotic systems the
arena can be sensed locally, the same way as neighbouring
units are.

The sum of the three terms defined above are the minimal
prerequisites of flocking behaviour, in other words, with these
terms we could guarantee stable and collision-free collective
motion in our simulations and experiments:

∑ θ

= +

+ + −
≠

( )( )
v v v

v v dr . (7)

i i i

j i

ij ij ij

d SPP shill

rep frict
c

In table 2, we summarize the parameters of the self-
propelled flocking algorithm.

4. Collective target tracking

In this section, we demonstrate that the interaction terms vij
rep

and vij
frict can be included in other, task-specific control algo-

rithms. We have created a collective target tracking algorithm
using an a priori defined fixed target point. The algorithm
allows the units to perform a smooth transition between two
stable states: the flocking state (far from the target) and the
collective hovering state (around the target). During this
transition near the target point, the preferred magnitude of the
velocity has to approach zero smoothly and the coherence and
robustness of the flock should be maintained without signs of
jamming or oscillations.

Imagine the flock as a ‘meta-agent’ at the centre of mass
moving towards the target position with desired velocity v0.
Each unit must accomplish two tasks without collisions: (i)
approach this meta-agent close enough to join the flock and
(ii) move parallel with the meta-agent to reach the target
collectively.

According to our definition, communication between the
robots is local. Therefore, calculating the global centre of
mass is physically not possible. Nevertheless, robots can
calculate a local centre of mass (CoM), based on the infor-
mation available from within their communication range (in a
sphere-shaped environment with radius rc). Attraction towards
the target point is thus defined as:

=
−

−
−

+ −
−
−

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

( )

( )
v

x x
x x

x x

x x
x x

x x

v

s r d

s r d

, ,

, ,

, (8)i

i i
i i

i i

i
i

i

trg
0

CoM
CoM

CoM

CoM

trg CoM
trg

trg CoM

trg CoM

where v0 is the magnitude of the preferred velocity, xtrg is the

position of the target, xi
CoM is the position of the local centre

of mass from the viewpoint of the ith agent, rtrg is the radius of

the target area and rCoM is the radius of the sphere-shaped

meta-agent. ( )s x, R, d is the sigmoid function defined in (6).

Note that the locality of the viscous friction term defined in
(4) depends on the values of v0 and Cfrict in this algorithm.
Also note that different weights for the target and CoM
tracking terms could also be introduced, but we keep these
weights at 1 now to keep the algorithm as simple as possible.

The magnitude of the target tracking term saturates at v0:

˜ = { }v
v

v
vvmin , . (9)i

i

i
i

trg
trg

trg 0
trg

The final desired velocity calculated by the algorithm is:

∑˜ θ= + + −
≠

( )( )v v v v dr . (10)i i

j i

ij ij ij
d trg rep frict

c

In table 3, we summarize the parameters of the target
tracking algorithm.
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Table 2. Parameters of the self-propelled flocking algorithm.

Parameter Unit Definition

vflock
−m s 1 Preferred ‘flocking’ velocity

D −1 s 1 Strength of repulsion

r0 m Interaction range of repulsion
Cfrict m2 Strength of viscous friction

rmin m This parameter defines a threshold to
avoid division by zero

R m Side length of the square-shaped arena
Cshill Maximum strength of shill-repulsion

near walls
d m Characteristic ‘width’ of the wall

Table 3. Parameters of the target tracking algorithm.

Parameter Unit Definition

v0 −m s 1 Preferred velocity far from the target
position

rCoM m Radius of expected flock size (char-
acteristic size of the meta-agent)

rtrg m Characteristic size of the target area

d m Charascteristic size of the ‘transition’
area—velocity of the meta-agent
approach to zero near the target point
with this ‘relaxation length’.



5. Results and discussion

In this section, we present realistic simulation and robotic
experiment results.

5.1. Simulation of the flocking algorithm

First of all, we demonstrate that typical flocking patterns can
emerge even with large delays in the communication and with
the presence of inner and outer noise. The coherence of the
flocking state can be indicated with the order parameter

∑ ∑ψ =
−

⋅

= ≠( )
v v

v v
t

N N

t t

t t
( )

1

1

( ) ( )

( ) ( )
, (11)

i

N

j i

i j

i j
scal

1

where N is the number of agents and ⋅v vt t( ) ( )i j is the scalar

product of two velocity vectors. In and ideal flocking state,
ψ ≈ 1

scal
, while in a disordered state, ψ ≈ 0

scal
. According to

figure 1, with lowerCfrict values, correlated flocking behaviour
with high ψ

scal
cannot be observed. HigherCfrict guarantees that

the emerged flocking states are stable even in the presence of
noise and large time delay.

5.2. Simulation of the target tracking algorithm

The goal of this subsection is to show that the stability of the
target tracking algorithm can be guaranteed with our selection
of interaction terms used in the flocking algorithm. To study
the stability, we analyze two possible quasi-stable states of the
system: the flocking state (large velocity, far from the target
position) and the hovering state (zero velocity, near the target
position). Note that our goal is to show the effects of the
interaction terms on the stability, therefore the other para-
meters (v0, rCoM, rtrg and d) were set to fixed default values.

Parameter choice was optimized to guarantee the stable
completion of the target tracking task with smooth transition
between the flocking and hovering states in an ideal case.

To initialize the flocking state, the units are placed within
a 35 m wide square-shaped area 100 m away from the target
point. After starting the simulated experiment, in an ideal
case, the velocity vectors of the units should become parallel
and should have the same magnitude, i.e., stable, ordered
flocking behaviour should be observed with ψ ≈ 1

scal
. We

define the end of the flocking state when all units are at most
r2 CoM far from the target point. After this point, ψ

scal
shall not

be used as an order parameter due to the decreased velocities
around the target.

Time delay can reduce the stability of the flocking state
(see figure 2), and increasing Cfrict reduces the strength of
instabilities (see the right side of figure 3).

To initialize the hovering state, units are placed around
the target point inside a circle with radius rtrg and with zero

initial velocity. Due to the interaction forces and the attraction
towards the target point, in an ideal case, the units will
arrange themselves into a lattice-like structure, where the
distance between neighbours is approximately r0. However, if
time delay is present in the system, dangerous oscillations can
emerge. Since that kind of instability can lead to collisions, it
has to be eliminated. The strength of the instability in the
hovering state can be described by the average velocity-
magnitude:

∑ψ =
=

vt
N

t( )
1

( ) . (12)
j

N

ivel
1

An increase of ψ t( )
vel

represents the growing amplitude

and/or frequency of the oscillations.
In the hovering state, the strength of the delay-induced

oscillations can be reduced with higher Cfrict and smaller D
values either with or without inner and outer noises (see the
left side of figure 3). It is important to note that the instabil-
ities can be reduced by an optimal setup of the interaction
parameters only if the sphere around the local centre of mass
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Figure 1. Order parameter of the flocking state ψ( )tscal
as a function of Cfrict with 10 and 20 agents. Increasing Cfrict yields more stably

ordered flocks even with relatively large delay and inner and outer noises. Noise parameters are σ = −0.2 m s2 3 and σ = −0.005 m ss
2 2 in the

simulated experiments labelled with ‘with noise’. Other parameters are: = −D 1 s 1, =r 8 m0 , =d 2 m, =r 1 mmin , =R 100 m, =C 2lshil ,
=r 50 mc . Every data point is averaged over 10 simulated experiments with 10 min length and different random initial conditions. Error bars

show standard deviation.



with radius rCoM is large enough to contain all units with at
least the repulsive interaction range (r0) apart from each other.
With giving the units enough space around the target, we can
reduce all superfluous excitations caused by the repulsive
interactions.

According to figure 3, the additive Gaussian noise term
can also reduce the instabilities caused by the time delay in
the hovering state. This is a general feature of coupled
delayed dynamical systems, since random noise usually acts
against synchrony and resonance.
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Figure 2. Trajectories of 10 agents with and without viscous friction, without noise, and with =t 1 sdel . The arrows represent the actual
velocity vectors of units. The insets show the order parameter ψ

scal
vs time. The square represents the starting area; the circle is the

environment around the target point with radius =r 15.15 mCoM . Without the friction-like term, oscillations can emerge during the flocking

behaviour, which causes severe quasi-stochastic fluctuations in ψ t( )
scal

. Other parameters are: = −D 1 s 1, =r 8 m0 , =r 6.5 mtrg , =d 2 m,

= −v 2 m s0
1, =r 100 mc .

Figure 3. Stability of the two possible states with different D, Cfrict and tdel values. Increasing Cfrict yields more stable behaviour in all cases.

Other parameters are: =N 10, =r 100 mc , = −v 2 m s0
1, =d 2 m, =r 6.5 mtrg , =r 8 m0 . rCoM is 12.3 m in noiseless setups, and 13.3 m in

setups with non-zero noise level. All data points are averaged over 10 simulated experiments with different random initial conditions.



One limitation of increasing Cfrict is that it increases the
overall time needed to reach the target point, especially when
time delay is present in the system (see the right side of
figure 4). With extremely highCfrict values, the units with zero
initial velocity can practically get stuck at their initial
positions.

The effects of the local communication also have to be
examined. With small rc values, the units update their velocity
vectors independently, thus each unit aligns its velocity
towards the target point. That leads to correlated motion, but
collisions can occur due to the lack of communication
between the units. When rc increases close to the range of r0,
units can avoid collisions but they cannot organize themselves
into a stable flocking state with high ψ

scal
. With ≫r rc 0, a

correlated collective flocking state can be achieved (see the
left side of figure 4).

5.3. Experiments

We have checked the validity of the predictions of our models
by implementing the algorithms presented in subsections 3.1
and 3.2 on a flying robotic flock made of 9 quadcopters. Our
primary goal was to test the stability of the algorithms under
realistic environmental conditions, including, for example,
wind of a moderate level and randomly changing direction.

Our robots were based on a quadcopter (Mikrokopter L4,
ME) with an on-board Gumstix Overo Water computer.
Positions and velocities were measured with U-blox Lea 6-T
GPS receivers, and were sent between the robots via XBee
Pro modules in broadcast mode (without establishing one-to-
one connections or a mesh network). Note that we used GPS
for simplicity. GPS is in general not necessary for imple-
menting the described algorithms on real robotic systems. The

terms in the control algorithm depend only on the relative
positions and absolute velocities. Relative coordinates were
calculated using the differences between absolute positions
received from GPS devices. Thus, for the time being, we
avoided the otherwise difficult issue of the robots sensing the
position, heading and velocity of each other with local sensors
[21]. The experiments were carried out outdoors, over a large
plain field close to Budapest. To analyze the trajectories of the
robots, we used data from GPS tracklogs. For further
description of our hardware, see [22].

To test the flocking algorithm, we defined a repulsive
arena as a square with 120 m sidelength around a global
reference point. We performed a 20 m measurement with 9
quadcopters moving freely inside the arena with =v 3.5flock

m s−1. A two minute segment of the successful measurement
is presented on the left side of figure 5. Robots performed a
correlated motion while crossing the arena and changed to a
new direction when they hit the wall. Some minor oscillations
emerged near the walls but they always decayed quickly due
to the over-damped dynamics introduced with the viscous
friction term.

During the test of the target tracking algorithm, the
position of the actual target point was broadcasted to the
flying robots from a hand-held device in real time. We placed
the target point in a car far away from the flock. After take-
off, the robots approached the target together and stopped
above it with a smooth transition from a tracking to hovering
state. After some time of hovering, we drove the car over a
straight trajectory and the flock followed it dynamically, still
maintaining the stable, grid-like structure. Our results are
presented on the right side of figure 5.

We found that our flocking and target tracking algorithm
remained stable and safe even in the presence of realistic
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Figure 4. Left: time-average of ψ
scal

as a function of rc in the flocking state without noise. IncreasingCfrict increases the stability of the flocking
state even with mid-range (approx. r2 0) rc values. Right: overall time needed to reach target point with various tdel and Cfrict values with

=r 100 mc and = −D 1 s 1 without noise. Increasing Cfrict ‘slows down’ the flock. Other parameters are: =N 10, = −v 2 m s0
1, =d 2 m,

=r 6.5 mtrg , =r 8 m0 . rCoM is approx. 12.3 m. All data points are averaged over 10 simulated experiments with different random initial
conditions. Error bars show standard deviation.



unpredictable environmental noises. For a demonstration
video about some experiments, see the supplementary movie,
available at stacks.iop.org/BB/9/025012/mmedia.

5.4. Discussion

In this paper, we presented a realistic simulation frame-
work for developing decentralized control algorithms for
swarms of autonomous robots. This framework takes into
account several realistic, but not robot-specific features,
such as time delay, locality of the communication, inac-
curacy and refresh rate of the sensors and inertial effects.
Some of these are also present in natural swarming sys-
tems, such as bird flocks. We demonstrated the applic-
ability of this framework through the implementation of
two algorithms of collective motion: a self-propelled, bio-
inspired flocking algorithm and a target tracking setup.
Both algorithms contain the same, carefully selected
interaction terms inherited from natural flocking models: a
repulsive term to avoid collisions and a viscous friction-
like velocity alignment rule term for relaxing the velocities
of nearby units parallel to each other.

Deficiencies of realistic systems often cause unpredict-
able instabilities, oscillations and collisions. With simula-
tions, we analyzed the stability of the two algorithms, and

found that the instabilities can be reduced with optimal
strength of the viscous friction-like term. We implemented the
optimized algorithms on a group of real autonomous robots
(quadcopters with on-board computers, GPS devices and
XBee communication modules). Successful experiments
represent a direct proof of the applicability of the model and
the algorithms and also show the stability of the algorithms
when the system is exposed to unpredictable environmental
noises.

Our realistic model can be enhanced in many ways.
One major issue is synchronism vs asynchronism in the
model and in reality, which appears on many levels: in the
update of the simulation iterations, in the modelled delay or
in the communication. We have not yet tackled these

issues explicitly. However, we always tested the simulation
framework with larger delays compared to what was
expected in our real system to overestimate the unwanted
effects of the delay. Moreover, general random noise terms
were introduced in order to compensate for the artificial
synchrony of the used delay model. In the future we will
certainly enhance our delayed communication model with
asynchronous updates. In the real experiments synchrony is
not present at any level due to the decentralized control
scheme; nevertheless, the simulation results and experi-
mental results are quite similar in general. This indicates
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Figure 5. Left: target tracking experiment with autonomous quadcopters. The boxes on the left side show the GPS trajectories of 9 robots and
a target point carried by a car (thick black arrows). At the start of the measurement, the target was at a fixed position, and the robots
approached it with a smooth transition from flocking state to hovering state (at t a) b)). The inset in box b) shows the grid-like pattern which
emerged (with the robots remaining static in the hovering state). At tstart, the car started to move on a straight trajectory. Next to the
trajectories, three of the order parameters are shown. (Δrmin is the average distance of the closest neighbours averaged over all the robots).

Parameters of the algorithm are: =C 10 mfrict
2, = −D 1 s 1, =r 7 m0 , =d 2 m, = −v 3.5 m s0

1. Right: experiment of the self-propelled flocking
model. At the bottom of the page, the trajectories of eight agents are presented. The grey rectangles represent the arena with repulsive walls.
At =t 1.4 min, the flock collided with the wall, and after that, it reorganized itself into an ordered state with ψ ≈ 1

scal
. Parameters of the

algorithm are: =C 20 mfrict
2, = −D 1 s 1, = −v 3.5 m sflock

1, =r 10 m0 .

http://stacks.iop.org/BB/9/025012/mmedia


that although synchrony is an important element in the
simulation framework, its effects are limited in the noisy
environment.

In the current setup we used the generally available
global positioning system as the most straightforward way
of measuring position, velocity and heading. This way, we
could concentrate on the development of a functional
control framework in a real setup and did not have to deal
with any form of ‘artificial vision’ that is as yet beyond our
current knowledge. However, GPS outages could occur at
any time due to several independent reasons. In the current
model, GPS outages are not modelled explicitly, only
through the finite sensor update rates and with the delay in
communication. In case of long periods without sensory
inputs the system cannot function per se. On the other
hand, any real application requires robust behaviour. It will
be an essential improvement to circumvent this problem
when future systems become able to rely on truly local
sensory information. In three dimensions this is as yet an
unsolved issue; however, we already designed our algo-
rithms to be based only on local data to provide a frame-
work for further, fully autonomous development.

Bio-inspiration was one of the main motivations of our
work. Studying the analogies and differences between the
behaviour of swarming robotic systems and flocking phe-
nomena in nature reveals many important messages, some of
which serve as reverse-bio-inspiration for biological research.
For example, we are now inspired to search for additional
factors which allow the very highly coherent motion of
pigeon flocks, since our experiments suggests that a very
short reaction time itself cannot account for the perfectly
synchronized flight of many kinds of birds.
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Appendix A

PID Controller

To model the specific features of a velocity-based PID con-
troller, we performed measurements with real autonomous
flying robots (Mikrokopter L4—ME R/C-controllable quad-
copters with a self-developed autopilot board based on a
Gumstix Overo Water minicomputer). The low-level con-
troller algorithm implemented on the on-board computer has
two inputs: desired (or ‘target’) velocity and measured velo-
city. The output of that controller is a control signal value fed
to the standard main board of the quadrocopter. The PID loop

for controlling velocity is based on the following equation:

∫

φ

φ

= +

+ ′ ′ +( )

t K e t K
t

t

K e t t

( ) ( )
de( )

d

d , (13)

p

i

t

out d

0
bias

where e t( ) is the error signal, the difference of the desired

and the measured velocity: = −e t v t v t( ) ( ) ( )d m (v can be

the north-south or the east-west component of the velocity
vector), the Kp, Ki, Kd values are the parameters of the pro-

portional, integral and differential terms and φ ζ= vd
bias

is a

feed-forward bias term determined by the linear approxima-
tion of the measured velocity as a function of the control
signal. We have analyzed the logged data of our robot
experiments for finding the proper parameters. The real
velocity of the robot is a function of φ t( )

out
(see the right side

of figure A1).
The time-evolution of the real velocity depends on the

K ,p Ki and Kd parameters. In an ideal case, an exponential

convergence can be observed with characteristic time τCTRL. In
a non-ideal case, the behaviour is either over-damped with
larger settling time or under-damped with oscillations.

Appendix B

GPS device—an example for modelling inner noise

By ‘inner noise’ we mean the uncertainty of the positions and
velocities measured by sensors on the robots. In the case of
our quadcopters, the position data is provided by U-blox Lea
6-T GPS receivers. We have made a model to reproduce two
main features of the inaccuracy of this device: (i) distribution
of the velocity measurement error is close to Gaussian, and
(ii) the measured position accuracy is 2.5 m (50% CEP).

We reproduced this fluctuating behaviour of the GPS
signal in an empirical model as a particle with Brownian
motion in a parabolic potential centred to the real
position. The Langevin equation of this situation can
be expressed as the second-order stochastic differential
equation ¨ η ξλ= =− − +x x xt t D t t t( ) ( ) ( ) ( ) ( )s s s

s s s , where

ξ t( ) is a delta-correlated Gaussian noise term: ξ ξ ′ =( )t t( )i j

λ σδ δ− ′( )t t2 ijs s . To fit the parameters Ds and λs, we have

analyzed the fluctuating positional data of a static GPS
receiver placed on the ground (for results, see the left side of
figure A1). We found that with an optimal setup and the use
of the Euler–Maruyama method, the simulated GPS position
error signal has the same characteristics as the measured data.
Note that the fluctuations of position error measured with
receivers placed on the ground usually have larger amplitude
and frequency than those on a flying quadcopter, thus with
this model we over-estimated the real inner noise.
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Figure A1. (a) Red (continuous) line: East–West position versus time (right) and velocity distribution (left) measured with a GPS device. The
measurements were 20 min long. Green and blue (dotted/dashed) lines: positions as functions of time and velocity distribution modelled with

different parameter settings. The parameters of the ‘blue/dotted’ case are: σ = −0.005 m ss
2 2, λ = −0.1 ss

1, σ= −( )D 0.2 3 ms s

1
.

(b) Comparison of the desired (‘target’) velocity and the real, measured velocity of a real quadrocopter (an extract from a longer measurement
is shown). The inset shows the cross-correlation function of the two curves. The relaxation time of the PID controller is at the maximum of
this function. In that case, τ ≈ −( )1 2 sCTRL .
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