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Preface

Even bearing in mind that we live in an era of explosive advances in
various areas of science, the investigation of phenomena involving fractals
has gone through a spectacular development in the last decade. Many phys-
ical, technological and biological processes have been shown to be related to
and described by objects with non-integer dimensions — an idea which was
originally proposed and beautifully demonstrated by Benoit B. Mandelbrot
in his classic books on fractals.

The physics of far-from-equilibrium growth phenomena represents one
of the main fields in which fractal geometry is widely applied. During the
past couple of years considerable experimental, numerical and theoretical
information has accumulated about such processes, and it seemed reasonable
to bring together most of this knowledge into a separate book, in addition
to the numerous conference proceedings and reviews devoted to irreversible
growth.

My intention was to provide a book which would summarize the basic
concepts born in the studies of fractal growth as well as to present some of the
most important new results for more specialized readers. Thus, it is hoped
that the book will be able to serve as a textbook on the geometrical aspects
of fractal growth and will also treat this area in sufficient depth to make it
useful as a reference book. It follows from the nature of this approach that
the emphasis is on presenting results in a reproducable manner rather than
on briefly reviewing a large number of contributions. Obviously, the field
of fractal growth phenomena is too broad to enable all of the related topics
to be included. Among the important aspects not treated are, for example,
cellular automata or the physical properties (elasticity, conductivity, etc.) of
growing fractals.

Collaboration with many colleagues has greatly helped me in gaining
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an insight into the processes discussed in this book. For the last ten years
my closest colleague and friend Jdnos Kertész and I have worked together
at the Institute for Technical Physics of the Hungarian Academy of Sciences
on a number of problems related to fractals. We have had many stimulating
discussions in the past and we have a welth of interesting new ideas to study
together in the future. A considerable amount of my activity in the field of
aggregation was realized during my visit to Emory University, Atlanta, where
I was working with Fereydoon Family. With him, and with Paul Meakin of
du Pont, Wilmington, or fruitful cooperation has become regular and now
spans the ocean. I am also grateful to A. Buka, D. Grier, V. Horvéth, L.
J. Montag, II. Nakanishi, D. Platt, Z. Récz, G. Radnéczy, L. M. Sander, A.
Szalay, B. Taggett, T. Tél and Y. Zhang for their kind collaboration.

I should also like to thank a number of colleagues who greatly stim-
ulated my work by showing interest in my investigations. Discussions with
Gene Stanley and Dietrich Stauffer have helped me to be involved in the
most interesting current problems of the physics of fractals. I have learned
much about fractals from long conversations with Benoit Mandelbrot. At
the suggestion of Gydérgy Marx and Péter Szépfalusy became involved into
the teaching of growth phenomena. I thank Tamds Geszti and Tivadar Siklés

for their numerous helpful suggestions.

It was Len Sander who encouraged me to write this book. Jdnos
Kertész and Tamas Tél read parts of the preliminary version and I am grate-
ful for their useful comments and suggestions. My thanks to Harvey Shenker
for a number of last-minute linguistic corrections. Many of the figures were
reproduced from works by other authors and here I thank these colleagues for
granting me the necessary permissions and for providing the corresponding
originals. The rest of the illustrations were made and reproduced by Mihdly
Hubai and Sdra Téth.

Finally, this Preface provides me with a good opportunity to express
my gratitude to my wife, Mdria Strehé. She, a specialist in numerical anal-
ysis, has helped me in many ways in the writing of this book.

Tamds Vicsek
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Chapter 1.
INTRODUCTION

During the last decade it has widely been recognized by physicists
working in diverse areas that many of the structures common in their exper-
iments possess a rather special kind of geometrical complexity. This aware-
ness is largely due to the activity of Benoit Mandelbrot (1977, 1979, 1982,
1988), who called attention to the particular geometrical properties of such
objects as the shore of continents, the branches of trees, or the surface of
clouds. He coined the name fractal for these complex shapes to express that
they can be characterized by a non-integer (fractal) dimensionality. With
the development of rescarch in this direction the list of examples of fractals
has become very long, and includes structures from microscopic aggregates

to the clusters of galaxies.

An important field where fractals are observed is that of far-from-
equilibrium growth phenomena which are common in many fields of science
and technology. Examples for such processes include dendritic solidification
in an undercooled medium, viscous fingering which is observed when a viscous
fluid is injected into a more viscous one, and electrodeposition of ions onto an
electrode. Fig. 1. demonstrates the complexity of possible patterns growing
under a wide variety of experimental conditions. In the experiments leading
to the structures shown in Fig. 1. quasi two-dimensional samples were used

and the motion of the interfaces was determined by the spatial distribution
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Figure 1. Examples for complex geometrical structures observed
in various experiments on growth of unstable interfaces. The three
major types of patterns found in the experiments on i) crystalliza-
tion (a, b and c), ii) viscous fingering (d, e and f), and iii) elec-
trodeposition of zinc (g, h and i) are grouped in separate columns.
The fractal dimension of the structures shown in the middle column
is close to 1.7. (This set of pictures is reproduced from Vicsek and
Kertész (1987). The individual pictures are from: (a) Ben-Jacob
et al (1986), (b) Radndczy et al (1987), (c) Bentley and Humpreys
(1962), (d) Buka et al (1986), (e) Daccord et al (1986), (f) Ben-
Jacob et al (1985), (g and i) Sawada et al (1986) and (h) Matsushita
et al (1984); For details see References to Part II1.)

of a quantity which satisfies the Laplace equation with moving boundary

conditions.

In addition to interfacial growth, aggregation of similar particles repre-
sents another important class of growth phenomena producing complicated

geometrical objects. Aggregation may take place particle by particle, while
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in other cases (for example during the formation of aerogels) the aggregates
themselves are also mobile and are joined together to form larger clusters

during their motion.

A broad class of growing patterns is characterized by an open branch-
ing structure as is illustrated by the middle column of Fig. 1. Such objects
can be described in terms of fractal geometry. In the present case this means
that the growing structures are self-stmilar in a statistical sense and the vol-
ume V(1) of the region bounded by the interface scales with the increasing

linear size R of the object in a non-trivial way
V(R) ~ RP. (1)

Here D < d is typically a non-integer number called the fractal dimension
and d is the Euclidian dimension of the space the fractal is embedded in.
Naturally, for a real object the above scaling holds only for length scales

between a lower and an upper cutoff.

There are a number of reasons for the recent rapid development in the
research of fractal growth. The interest is greatly motivated by the fact that
fractal growth phenomena are closely related to many processes of practical
importance. Here we shall mention only two examples. The internal texture
of alloys due to the dendritic structures developing during their solidification
is largely responsible for most of their mechanical properties. Another area
of application is secondary oil recovery, where water pumped into the ground
through one well is used to force the oil to flow to the neighbouring wells. The
effectiveness of this method is influenced by the fractal structure of viscous

fingers corresponding to the water-oil interface.

The internal evolution of physics as a discipline has also given rise
to an increased interest in the investigation of structures growing under far-
from-equilibrium conditions. In the 1970’s most of the researchers working in
the field of statistical mechanics were involved in problems related to phase
transitions in equilibrium systems. These studies led to many important
theories and methods including renormalization based on the scale invariance

of thermodynamical systems at their critical point.
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Since growing fractals are also scale-invariant objects (this property
is equivalent to their self-similarity), the knowledge which had accumulated
during the investigations of second order phase transitions was particularly
useful in making a step forward and investigating scaling in growth processes.
Thus the fields involving fractals were developing fast and it has become
evident that multifractal scaling, which is the generalization of simple scaling,

represents an important characteristic of many growth phenomena.

Most of the already large amount of new results on fractal growth
(and fractals in general) can be found in conference and school proceedings
(Family and Landau 1984, Shlesinger 1984, Stanley and Ostrowsky 1985,
Pynn and Skjeltorp 1985, Boccara and Daoud 1985, Pietronero and Tosatti
1986, Engelman and Jaeger 1986). Some aspects of growth phenomena are
discussed in the recent books by Jullien and Botet (1987) on aggregation, and
by Feder (1988) on fractals. Finally, a number of review papers have been
published recently about processes related to fractal growth (e.g., Herrmann
1986, Sander 1986, Witten and Cates 1986, Meakin 1987a, Meakin 1987b,
Jullien 1987).

Here, I concentrate on the geometrical aspects of fractal growth. My
intenton was to give a balanced account of the most important results in a
pedagogical style. The material is divided into three parts, viz. I: Fractals,
II: Cluster Growth Models; III: Fractal Pattern Formation. References are

provided at the end of each part.

Part I. introduces the basic definitions and concepts related to fractal
geometry in general. The major types of fractals are discussed and a few use-
ful rules for the estimation of fractal dimensions are given. Fractal measures
are treated in a separate chapter since many recent results demonstrate their
important role in physical processes. The last chapter of the first part con-
tains a collection of methods which are commonly used to determine fractal
dimensions of various objects including experimental samples and computer
generated clusters. Throughout this part examples are given to illustrate the

principles introduced in the text.

Computer models based on growing clusters made of identical par-
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ticles have proven to be a particularly useful tool in the investigation of
fractal growth. The main advantage of such models is that they provide a
possibility to determine the most relevant factors affecting the geometrical
properties of objects developing in a given kind of growth phenomenon. Ac-
cordingly, in Part IL. important results concerning a wide variety of it cluster
growth models are discussed. First those models (called local) are examined
in which the probability of adding a particle to the growing cluster depends
only on the immediate environment of the given position. In the models of
diffusion-limited growth (Chapter 6.) the probability of adding a particle to
the cluster is determined by the structure of the whole cluster; consequently,
these processes are truly non-local. In some cases both local and non-local
models may lead to compact structures with self-affine surfaces which are
treated in Chapter 7. The last chapter of Part II. discusses results obtained
in the numerical and experimental studies of cluster-cluster aggregation. An
important aspect of the aggregation of clusters is that the time is well defined
in such processes. This fact allows for the development of a dynamic scaling

theory for the cluster size distribution.

Part III. deals with fractal pattern formation, where the term pattern
formation is used for interfacial growth phenomena in which the motion of
the unstable interfaces is dominated by the surface tension. Diffusion-limited
growth processes may lead to a variety of structures (see Fig. 1.), and in a
number of cases it is still not known which are the conditions for the develop-
ment of a given type of the possible interfaces. The answer to the questions
about the relevance of the factors affecting the growth of complicated pat-
terns could unambiguously be provided if it were possible to solve directly the
corresponding non-linear equations. However, this approach does not seem
to be feasible at present, because of the instability and the extreme complex-
ity of the solutions. Thus, fractal pattern formation has mainly been studied
by numerical simulations and model experiments which are reviewed in the

two chapters of this part.

The field of fractal growth phenomena is still growing quickly, and
there are many new results which could not be included into this book.

Those readers who are interested in the developments not treated here are
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advised to consult the already mentioned literature or to look for the numer-
ous conlerence proceedings and reviews which are currently in a preparatory

stage.



