Fractal Growth
Phenomena

Tamas Vicsek

Institute for Technical Physics
Budapest, Hungary

" s
i b

7o AR

f ‘ !

1 ?';AD,A‘gK
DA b <CGr)~Dr”
A ,. C(r)~ATF r- ,
e~ oL Moo, s viselreds, eidrs ot
i peetal s oridifes @K freseaie

vORLD SCIENTIFIC

Singapore



PART I.
FRACTALS
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Chapter 2.
FRACTAL GEOMETRY

Our present knowledge of fractals is a result of an increasing interest
in their behaviour. Some of the basic properties of objects with anomalous
dimension were noticed and investigated at the beginning of this century
mainly by Hausdorff (1919) and Besicovich (1935). The relevance of frac-
tals to physics and many other fields was pointed out by Mandelbrot, who
demonstrated the richness of fractal geometry and presented further impor-
tant results in his recent books on the subject (Mandelbrot 1975, 1977 and
1982). The purpose of this chapter is to give an introduction to the basic

concepts, properties and types of fractals.

2.1. FRACTALS AS MATHEMATICAL AND PHYSICAL OBJECTS

One of the common features of fractal objects is that they are self-similar
(scale invariant). This means that if we first cut out a part of them, and then
we blow this piece up, the resulting object (in a statistical sense) will look
the same as the original one. For example, if we took a picture of the shore
of England from an airplane we would get a curve with an overall appearance
rather similar to another picture which we would see when standing on the
ground and looking at a rocky part of the shore. Analogously, a bough

with lateral branches looks like the whole tree when looked at from a larger
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distance. Tor simpler shapes, self-similarity is not fullilled or it is satisfied
in a trivial way. A circle and ils parts (the arcs) do not look the same, but
naturally, a fiiled circle (a disc) and any smaller disc cut out of it are trivially

similar (can be obtained from each other by reduction or extension).

Another typical properly of fraclals is related to their volume with
respect to tieir lincar size. To demonstrate this we first need to introduce a
few notions. We call embedding dimension the Lucledian dimension d of the
space the fractal can be embedded in. In addition, d has to be the smallest
such dimension. Obviously, the volume of a fractal (or any object), V (I), can
be measured by covering it with d dimensional balls of radius I. Then the

expression
V() =N(@)® (2.1)

gives an estimate of the volume, where N () is the number of balls needed to
cover the object completely and [ is much smaller than the linear size I, of
the whole structure. The structure is regarded to be covered if the region
occupied by the balls includes it entirely. The phrase “number of balls needed
to cover” corresponds to the requirement that N(!) should be the smallest
number of balls with which the covering can be achieved. For ordinary objects
V(1) quickly attains a constant value, while for fractals typically V(1) — 0 as
! — 0. On the other hand, the surface of fractals may be anomalously large

with respect to L.

There is an alternative way to determine IV (1) which is equivalent to
the definition given above. Consider a d-dimensional hypercubic lattice of
lattice spacing / which occupies the same region of space where the object is
located. Then the number of boxes (mesh units) of volume /¢ which overlap
with ths structure can be used as a definition for N (1) as well. This approach

is called boz counting.

Returning to the example of the shore of England we can say that it
can be approximately embedded into a plane (d = 2). Measuring its total
length {corresponding to the surface in a two-dimensional space) we would

find that it tends to grow almost indefinitely with the decreasing length [ of
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the measuring sticks. At the same time, the measured “area” of the shore
(volume in d = 2) goes to zero if we determine it by using discs of decreasing
radius. The reason for this is rooted in the extremely complicated, self-
similar character of the shore. Therefore, such a curve seems to be definitely
much ”longer” than a line but having infinitely small area: it is neither a

one- nor a two dimensional object.

We have seen on the example of the shore that the volume of a finite
geometrical structure measured according to eq. (1) may go to zero with
the decreasing size of the covering balls while, simultaneously, its measured
surface diverges. In general, we call a physical object fractal, if measuring its
volume, surface or length with d, d — 1 etc. dimensional hyperballs it is not
possible to obtain a well converging finite measure for these quantities when

changing | over several orders of magnitude.

It is possible to construct mathematical objects which satisfy the cri-
terion of self-similarity exactly, and their measured volume depends on [ even
if [ or (I/L) becomes smaller than any finite value. Fig. 2.1 gives examples
how one can construct such fractals using an iteration procedure. Usually
one starts with a simple initial configuration of units (Fig. 2.1a) or with a
geometrical object (Fig. 2.1b). Then, in the growing case this simple seed
configuration (Fig. 2.1a, k = 2) is repeatedly added to itself in such a way
that the seed configuration is regarded as a unit and in the new structure
these units are arranged with respect to each other according to the same
symmetry as the original units in the seed configuration. In the next stage
the previous configuration is always looked at as the seed. The construction
of Fig. 2.1b is based on division of the original object and it can be well
followed how the subsequent replacement of the squares with five smaller

squares leads to a self-similar, scale invariant structure.

One can generate many possible patterns by this technique; the fractal
shown in Fig. 2.1 was chosen just because it has an open branching structure
analogous to many observed growing fractals (Vicsek 1983). Only the first
couple of steps (up to k = 3) of the construction are shown. Mathematical
fractals are produced after infinite number of such iterations. In this k — oo

limit the fractal displayed in Fig. 2.1a becomes infinitely large, while the
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IFigure 2.1. Example for the construction of a deterministic frac-
tal embedded into two dimensions. Fig. 2.1a demonstrates how one
can generate a growing fractal using an iteration procedure. In Fig.
2.1b an analogous structure is constructed by subsequent divisions
of the original square. Both procedures lead to fractals for k — oo
with the same dimension DD ~ 1.465,

details of Fig. 2.1b become so fine that the picture seems to “evaporate” and
can not be seen any more. For every finite k the structures in Fig. 2.1a can
be scaled into each other, but this can not be done exactly in the ¥ — oo
limit. Our example shows a connected construction, but disconnected objects

distributed in a nontrivial way in space can also form a fractal.

There are a few important things to be pointed out in connection
with Fig.2.1. and fractal growth phenomena. Obviously, it is Fig. 2.1a
which better approximates a real growth process. In a physical system there
is always a lower cutoff of the length scale; in our case this is represented by
the size of the particles. On the other hand a real object has a finite linear
size which inevitably introduces an upper cutoff of the scale on which fractal

scaling can be observed. This Jeads us to the conclusion that, in contrast
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to the mathematical fractals, for fractals observed in physical phenomena
the anomalous scaling of the volume can be observed only between two well
defined length scales. For growing fractals the volume is usually measured as

a function of increasing linear size of structure.

There is a widely studied phenomenon in which the second type of
fractals (Fig. 2.1b) play an essential role. It can be shown that in chaotic
dissipative systems the trajectories in the phase space approach a fractal
called strange attractor. In this case the fractal object is both finite and
mathematical; it has infinitely fine details. Itisa general belief that chaos and
fractal growth are closely related, but the two fields have not been included

into a unified picture yet.

2.2. DEFINITIONS

Since measuring the volume of fractals embedded into a d dimensional Eu-
cledian space leads to the conclusion that they are objects having no integer
dimension, we assume that the dimensionality of fractals is usually given by
a noninteger number D that will be called fractal dimension. Because of the
two main types of fractals demonstrated in Fig. 2.1, to define and determine

D one typically uses two related approaches.

In the case of growing fractals, where there exists a smallest typical
size a, one cuts out d-dimensional regions of linear size L from the object
and the volume, V(L), of the fractal within these regions is considered as
a function of the linear size L of the object. When determining V (L), the
structure is covered by balls or boxes of unit volume (I = a = 1 is usually
assumed), therefore V(L) = N(L), where N(L) is the number of such balls.
In some cases this definition has to be modified to obtain consistent results
(Tél and Vicsek 1987). According to the modification one requires that the
size of the covering balls has to diverge as well, i.e., a/l — 0 and /L — 0

should be satisfied when L — oo (see Section 3.4.)

For fractals having fixed L and details on very small length scale D

is defined through the scaling of N(I) as a function of decreasing !, where
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- N(l) is the number of d dimensional balls of diameter I needed to cover the
structure. The fact that an object is a mathematical fractal then means that
N (1) diverges as L — oo and [ — 0, respectively, according to a non-integer

exponent. Correspondingly,
N(L) ~ LP (2.2)

and

D= lim InN(L)

L—oo ]n(L) (2-3)

for the growing case, where ! = 1. Here, as well as in the following expressions
the symbol ~ means that the proportionality factor, not written out in (2.2),
is independent of €. For fractals having a finite size and infinitely small

ramifications we have
N() ~17P (2.4)

with

D = lim In N (1)

S (/) (2:3)

Obviously, the above definitions for non-fractal objects give a trivial value
for D coinciding with the embedding Eucledian dimension d. For example,
the area (corresponding to the volume V(L) in d = 2) of a circle grows as
its squared radius which according to (2.3) results in D = 2. Similarly, the
number of circles needed to cover a square diverges as the inverse of the
squared radius of these circles leading again to D = d — 2 on the basis of
(2.5)

Now we are in the position to calculate the dimension of the objects

shown in Fig. 2.1. It is evident from the figure that for the growing case
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N(L)=5%  with [ =3k (2.6)

where k is the number of iterations completed. From here using (2.3) we get
the value D = In5/In3 = 1.465... which is a number between d = 1 and
d = 2 just as we expected. Analogously, for the fractal shown in Fig. 2.1b
N(l) = 5% with | = 37*, leading to the same D.

Non-trivial self-similarity and the fractal value for the dimensionality
of the objects are closely related. This can be seen from the fact that D < ¢
results in a negligible volume in the d dimensional embedding space. For
growing fractals V(L)/L? — 0 as L —+ oo means that the structure must
possess large empty regions (holes) with diameters comparable to its actual
linear size L. It is the presence of holes on every length scale which is the

origin of non-trivial scale invariance.

In the previous paragraph we made use of the fact that the object
we considered had a lower (the size of the particles) and an upper cutoff
length scale (the size of the whole structure). This is, however, a property
we can assume for all objects arising as a result of any physical process. The
finite size (L < oo) of physical fractals makes it possible to treat all of the

physically relevant cases using a dimensionless quantity

€ =

/
7 (2.7)
which is the size of covering balls normalized by the linear size of the struc-
ture. In the case of growing fractals when the fractal dimension is investi-
gated ! (the size of the particles) is kept constant and L is increasing, while for
fractals generated by subsequent divisions L is constant and { is decreasing.

Therefore, (2.2) and (2.4) in terms of € are recast into the same form
N(e) ~ e P, (2.8)

where € < 1, N(¢) is the number of d dimensional balls of radius eL needed

to cover the fractal, and D is the same fractal dimension as in (2.2) and (2.4).
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In the following when discussing properties of fractals in general, we shall use
(2.8), while in the case of describing various particular growth processes it
is more convenient to apply expression (2.2). A definition analogous to (2.8)
was first used to determine a non-integer dimension for geometrically very
complex objects by Hausdor(f (1919) and later put into a more systematic
framework by Besicovitch (1935). In fact, the definitions given by them are
more general than the above expression and contain (2.8) as a special case.
Eq. (2.8) is more directly related to the Kolmogorov capacity (Kolmogorov
and Tihomirov 1959).

The original intention of Hausdorff was to define a measure being
independent of the resolution of the measurement, €. We have seen that for
non-trivially self-similar objects measuring the volume with balls of integer
dimension, it goes either to zero or to infinity. This problem was avoided by
Hausdorff who suggested that the volume should be measured covering the
structure with ordinary balls, but assuming that the volume or measure of a

ball is €”. Then the so called Hausdorff measure is calculated according to
F =Ne)e?, (2.9)

It can be seen easily from (2.8) that F is independent of € then, and only
then if D, the assumed dimension of the balls, coincides with the fractal

dimension D of the object studied.

To conclude this section ordinary fractals are defined as objects for
which D determined from (2.8) is smaller than the embedding dimension
d. This definition, however, should be completed by a few remarks. For
physical fractals (2.8) holds only within a few magnitudes of changing e.
In addition, as we shall see later, there are objects (called fat fractals) for
which D = d, but share some of the properties of ordinary fractals. Namely,
when measuring their finite volume one obtains a correction converging to
zero very slowly (according to a power law, just as the total volume of an

ordinary fractal).
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USEFUL RULES

Before reviewing some of the most typical types of the rich botanic garden of fractals we
mention a few rules which can be useful in predicting various properties related to the fractal
structure of an object. Of course, because of the great variety of self-similar geometries the
number of possible exceptions is not small and the rules listed below should be regarded, at
least in part, as starting points for more accurate conclusions.

a) Many times it is the projection of a fractal which is of interest or can
be experimentally studied (e.g., a picture of a fractal embedded into

d =3). In general, projecting a D < d —m dimensional fractal onto a
d — m dimensional surface results in a structure with the same fractal dimension Dp

= D. For D 2: d - m the projection fills the surface, Dp =d —m.

b) It follows from a) that for D < d -m the density correlations e(r) (see
the next section) within the projected image decay as a power law
with an exponent d — m — D instead of d — D which is the exponent
characterizing the algebraic decay of c(r) in d.

e) Cutting out a d -m dimensional slice ( cross section) of a D dimensional fractal embedded
into a d dimensional space usually leads to a D — m dimensional object. This seems to
be true for self-affine fractals as well, with D being their local dimension (see
Section 2.3.2).

d) Consider two sets A and B having fractal dimensions DA and DB , respectively.
Multiplying them together results in a fractal with D = DA + DB . As a simple
example, imagine a fractal which is made of parallel sticks arranged in such a way
that its cross section is the fractal shown in Fig. 2.Ib. The dimension of this object is
D=1+In5/In3.

e) The union of two fractal sets A and B with DA > DB has the dimen- sion D = DA.

f The fractal dimension of the intersection of two fractals with DA and
DB isgiven by DAnB =DA +DB —d. Tosee this, consider a box of
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linear size L within the overlapping region of two growing stochastic
fractals. The density of A and B particles is respectively proportional
to LD /Ld and LP» /Ld. The number of overlapping sites N ~ ,Pans
is proportional to these densities and to the volume of the box which
leads to the above given relation. The rule concerning intersections of

fractals with smooth hypersurfaces is a special case of the present one,

The distribution of empty regions (holes) in a fractal of dimension
D scales as a function of their linear size with an exponent —D — 1,
The following heuristic argument supporting the above result is here
applied to the one-dimensional case. The statement is essentially the

following
n(e, Ae) ~ e P71 Ag,

where n(e, Ae) is the number of gaps (empty regions) of length between
e and € — Ae. This can be seen by noting that the total length covered

with intervals € is
L(e) ~ ¢~ P*1,

The increase of the uncovered part when ¢ is decreased to € — Ae is

dL(e)

Ae~ e PAe.
7 €~ €

This comes from the gaps of length between € and € — Ae, because

they will not be covered any more. Thus,
e P Ae ~ n(e, Ae)eAc

which is equivalent to the statement.
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2.3. TYPES OF FRACTALS

One of the most fascinating aspects of fractals is the extremely rich variety of
possible realizations of such geometrical objects. This fact raises the question
of classification, and in the book of Mandelbrot (1982) and in the following
publications many kinds of fractal structures have been described. Below we
shall discuss a few important classes with some emphasis on their relevance

to growth phenomena.

2.3.1. Deterministic and random fractals

Since fluctuations are always present in physical processes, they never lead to
structures with perfect symmetry. Instead, physical fractals are more or less
random with no high level of symmetry. Yet it is of interest to investigate
simple, idealized fractal constructions, because the main features of fractal

geometry can be effectively demonstrated using them as examples.

Fig. 2.1a shows a typical fractal generated by a deterministic rule.
In general when constructing such growing mathematical fractals one starts
with an object (particle) of linear size a. In the first step (k=1 n-1
copies of this seced object are added to the original one so that the linear
size of the resulting configuration become ra, where r > 1. Next (k = 2)
each particle in the first confliguration is substituted by the whole £k = 1
configuration itself. In this way the number of particles and the linear size of
the structure becomes n? and r?a, respectively. In the kth step the same rule
is applied: each particle is replaced by the k = 1 configuration. Similarly, the
kth configuration is made of n units being identical to the k — 1th cluster.
In other words, when making the k + 1th step the n subunits of the kth
configuration corresponding to the structure obtained in the k — 1th step
are replaced by the structure generated in the kth stage of this iteration
procedure. The k — co limit results in a deterministic mathematical fractal.
At the end of this section a few examples are given for the types of fractals

described above and in the following.

The fractal dimension for such objects can readily be obtained from
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(2.3). Taking into account that for I = r*a the volume (the number of

particles) of the structure is N(L) = n¥, we get

1
| (2.10)

Inr
which is an exact expression for D.

The construction of deterministic fractals generated by subsequent
divisions of a starting object proceeds in an analogous manner. In the first
step this object having a linear size Ly = 1 is divided into n identical parts
each of which is a reduced version of the original structure with the same
factor 1/r. During the next step n copies of the starting object reduced by a
factor (1/r)? are arranged inside a part generated in the previous step. This
is done in a way which exactly corresponds to the arrangement of the parts
placed in the first step within the object. In this case each of the n* objects
obtained in the kth step is replaced by the k = 1 configuration reduced by a
factor of (1/r)*. It is obvious that the number of balls of radius € = (1/r)*
needed to cover the structure grows with k as n* which on the basis of (2.4)

leads to the expression (2.10) for the fractal dimension.

As was mentioned carlier, the two methods of generating deterministic
fractals are closely related. For every finite k the linear size of a growing
fractal can be rescaled to the same value Ly and the objects obtained in
this way are the same as those generated by subsequent divisions using the
appropriate rule. Thus, for the sake of simplicity, in the following we shall

mainly use the language corresponding to the method of divisions.

The above described constructions lead to uniform fractals in the sense
that we used the same reduction parameter for all of the copies made. An
important generalization of these is represented by the case when the reduc-
tion factor (1/r) is not identical for all of the n newly created copies within
the parts generated in the previous step of the procedure. As before, the
fractal is produced by dividing an original object into parts being reduced
versions of it, but this time the factors r; > 1, (1 = 1, 2, ...n) can not be all
identical. Such non-uniform fractals are obtained in the limit of repeating

the iteration procedure infinitely many times (see the examples at the end
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of this section).

To determine the fractal dimension of a non-uniform mathematical
fractal we first note that it can be devided into n parts each being a rescaled
version of the complete fractal. Let Ni(e) denote the number of balls of
radius € needed to cover the sth part. The number of balls needed to cover

the whole fractal is

N(e) =D Ni(e). (2.11)
Since the fractal is self-similar,

Ni(e/r;) = N(e)
N, (e.r:) =N (&)

expressing the fact that one needs the same number of balls of reduced radids

¢/r; to cover a smaller version of the fractal of size Lo/r;, than one needs for
covering the complete structure with balls of radius €. Then substitution of
(2.4) and (2.12) into (2.11) leads to

n

. }:(%)Dzl (2.13)

i
4 :Z(& L J i=1

which is an implicit equation for the fractal dimension of non-uniform [rac-

tals. For r; =7y = ry = ... =r,, (2.13) is equivalent to (2.10).

Although in the following chapters we shall concentrate on the study of
random fractals growing in physical processes, here we first show that one can
generate simple stochastic fractals in a way analogous to the above described
constructions. To take an example let us consider the fractal shown in Fig.
2.1b. It is constructed by dividing the original square into 9 equal parts
and deleting 4 of them selected randomly (i.e. keeping 5). In the following
steps the same procedure is repeated with the remaining squares. Fig. 2.2
shows the resulting structure after 3 iterations. Comparing the geometrical
appearance of Fig. 2.1b and 2.2 we find that they are quite different, however,

their fractal dimension is identical D = In5/In3 = 1.465..., because one
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k=1 k=2

Tigure 2.2. Construction of a stochastic fractal. Its fractal di-
mension is exactly the same as that of the structure shown in Fig.
2.1, despite the fact that they look quite different.

needs the same number of balls to cover them.

Of course, this construction represents only a simple (perhaps the
simplest) version of possible random fractals. For example, it is not only the
position of the reduced parts which can be varied, but the number of such
units and/or the reduction parameter can also fluctuate around their average
value. In general, for the fractal dimension of random fractals an explicit
expression analogous to (2.10) does not exist and D has to be determined
using various theoretical and numerical techniques which will be discussed
in Chapter 4.

Self-similarity can be directly checked for a deterministic fractal con-
structed by iteration, but in the case of random structures one needs other
methods to detect the fractal character of a given object. In fact, random
fractals are self-similar only in a statistical sense (not exactly) and to de-
scribe them it is more appropriate to use the term scale invariance than
self-similarity. Naturally, for demonstrating the presence of fractal scaling
one can use the definition based on covering the given structure with balls
of varying radii, however, this would be a rather troublesome procedure. It
is more eflective to calculate the so called density-density or pair correlation

function
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i) = 1 3Pl F) o(r) | (2.14)

which is the expectation value of the event that two points separated by T
belong to the structure. For growing fractals the volume of the object is
V = N, where N is the number of particles in the cluster, and (2.14) gives
the probability of finding a particle at the position ¥ 4 r’, if there is one at
r’. In (2.14) p is the local density, i.e., p() = 1 if the point T belongs to the
object, otherwise it is equal to zero. Ordinary fractals are typically isotropic
(the correlations are not dependent on the direction) which means that the

density correlations depend only on the distance r so that c(F) = e(r).

Now we can use the pair correlation function introduced above as a
criterion for fractal geometry. An object is non-trivially scale-invariant if
its correlation function determined according to (2.14) is unchanged up to a

constant under rescaling of lengths by an arbitrary factor b:
c(br) ~ b= %¢(r) (2.15)

with o a non-integer number larger than zero and less than d. It can be shown
that the only function which satisfies (2.15) is the power law dependence of

c(r) onr
c(r) ~r™= (2.16)

corresponding to an algebraic decay of the local density within a random
fractal, since the pair correlation function is proportional to the density dis-
tribution around a given point. This fact can be used for expressing the
fractal dimension through the exponent . To show this for growing fractals,
we calculate the number of particles N (L) within a sphere of radius I from

their density distribution

N(L) ~ /OL e(r)d?r ~ L4, (2.17)
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where the summation in (2.14) has been replaced by integration. Comparing
(2.17) with (2.2) we arrive at the desired relation

D=d~-a (2.18)

which is a result widely used for the determination of D from the density

correlations within a random fractal.

EXAMPLES

Next we give a few characteristic examples for the types of fractals mentioned
in this section to illustrate the basic ideas discussed above. Because of the
great variety of possible constructions the list is far from being complete, and

those readers who are interested in more examples are advised to consult the
book of Mandelbrot (1982).

Example 2.1. One of the simplest and best known fractals is the
so called triadic Cantor set which is a finite size fractal consisting of discon-
nected parts embedded into one-dimensional space (d = 1). Its construction
based on the subsequent division of intervals generated on the unit interval
[0,1] is demonstrated in Fig. 2.3. First [0,1] is replaced by two intervals
of length 1/3. Next this rule is applied to the two newly created inter-
vals, and the procedure is repeated ad tnfinitum. As a result we obtain a
deterministic fractal and to calculate its fractal dimension we can use Eq.
(2.10). Obviously, for the present example n = 2 and the reduction factor is
1/r = 1/3. Therefore (2.10) gives for the dimension of the triadic Cantor set
D =1n2/In3 = 0.6309... which is a rational number less than 1. In general,
Cantor sets with various n and r can be constructed. For example, keeping
n = 2 and changing r between 2 and oo any fractal dimension 0 < D < 1
can be produced. On the other hand, various Cantor sets with the same
fractal dimension can be constructed as well. The two sets n =2, r = 4 and
n =3, r = 9 have the same fractal dimension D = 1/2, but different overall

appearance.
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Figure 2.3. The triadic Cantor set shown in this figure is gener-
ated on the unit interval by replacing each of the intervals obtained
at a given stage with two shorter ones.

The intervals or gaps between the points belonging to the fractal set
correspond to the empty regions mentioned in Sec. 2.2. They are distributed
according to a power law which is another typical property of fractals. In
particular, for a Cantor set of dimension D the number of gaps longer than

Ao scales as N(Az > Azg) ~ AzyP (see rule g) in the previous section).

IIxample 2.2. One of the standard ways to construct a fractal
surface is to replace the starting object with a single connected object of larger
surface (made of reduced parts of the original one) and repeat this procedure
using the reduced parts as originals. In two dimensions this method leads
to a line (coastline) of infinite length with a fractal dimension larger than 1.
Let us consider again the unit interval, and replace it with a curve consisting
of 5 intervals of unit length as shown in Fig. 2.4. The fractal dimension is
obtained from (2.10) and is equal to D = In5/In3 ~ 1.465 which exactly
coincides with D of the fractal shown in Fig. 2.1. and 2.2/ In fact, the

structure generated by this method is also analogous to that of Fig. 2.1.

Using a related procedure (Fig. 2.5) it is possible to define a single
curve which can cover the unit square, i.e., it has a dimension equal to
2. For this so called Peano curve D = In 9/In3 = 2, and in the limit
of k — oo it establishes a continuous correspondence between the straight

line and the plane. The Peano curve is a very peculiar construction (it has
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k=2

Figure 2.4. Construction of a growing fractal curve having the
same fractal dimension as the objects shown in Figs. 2.1 and 2.2.

infinitely fine details being arbitrarily close to each other, but does not have
any intersections), however, it is not a fractal according to the definition

given in Sec. 2.2. This is indicated by the absence of empty regions.
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Figure 2.5. Application of Eq. (2.10) to the above displayed
Peano curve gives D = d = 2 which means that this construction

does not lead to a fractal acc ording to the definition given in Section
2.2.

Example 2.3. The Sierpinski gasket shown in Fig. 2.6. is perhaps
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the most sludied two-dimensional fractal structure since it can be regarded
as a prototype of fractal lattices with an infinite hierarchy of loops. When
constructing this fractal, three of the four triangles generated within the
triangles obtained in the previous step are kept. Since the linear size of the
triangles is halved in every iteration, the fractal dimension of the resulting
object is D =1In3/In2 =~ 1.585.

Figure 2.6. The Sierpinski gasket shown in this figure has loops
on all length scales.

Example 2.4. The iteration procedure described at the beginning
of this section is not the only possibility to construct mathematical fractals.

For example, the Julia sets are derived from the transformation
2/ = Flz) = 22—y, (2.19)

where z and p are complex numbers. The set of z values (points in the
plane) which is invariant under the transformation (2.19) can be called self-
squared, and for a fixed value of u this set is in most of the cases a fractal,
sometimes with a very attractive appcarance (Peitgen and Richter 1986).
(More precisely, Julia sets do not contain the stable fixed points of (2.19),
i.e, they represent those points which can be obtained by backward iteration

of (2.19)). 2.7 shows a few typical Julia sets.

Mandelbrot studied the convergence properties of the recursion

Zhal = 2p — I (2.20)

corresponding to (2.19), as a function of x. He found that the region of m
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I'igure 2.7. The rich variety of apparently self-similar Julia sets
is well demonstrated by the above selected examples reproduced
from Peitgen and Richter (1986).

values for which the iterates of zop = 0 under (2.20) fail to converge to oo
(the Mandelbrot set) is bounded by a fractal curve (Tig. 2.9). Moreover,
marking the points in the p plane with colours depending on the number of
iterations k& needed for 2z, > 2 one obtains an extremely complex, beautiful

picture with many self-similar structures in it (Peitgen and Richter 1986).

Recursion relations are also used to construct fractal attractors charac-
teristic of chaotic motion. As a simple example we briefly mention dynamical
systems that period double on their way to chaos. At values A = \; the sys-
tem gains a stable 2% orbit. This series of period doublings accumulates
at Ao, Where the system follows a 2°° orbit. Such behaviour can be well

represented by the following one-dimensional map
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Figure 2.8. The region of p values (Mandelbrot set) for which the
iterates given by (2.20) remain finite for arbritrary k (Mandelbrot
1982).

z' = Az(l - z), (2.21)

with Aee =~ 0.837005134. llere z is rcal and (2.21) is a one-dimensional
counterpart of (2.19) in the sense that starting with some initial zo the
calculated z’ values quickly converge Lo a fraclal subsct of the [0,1] interval,
L.e., this attractor is an invariant set corresponding to (2.21). However, the
set invariant with regard to (2.19) is a repellor (not an attractor). It can
be shown that the attractor forms approximately a non-uniform Cantor set
(with n = 2 and r; # ra). The fractal dimension of this set is D «~ 0.537
(Hentschel and Procaccia 1983).

Example 2.5. The construction presented in Fig. 2.9 leads to a
fractal which is both growing and non-uniform. To grow this fractal one
adds to the four main tips of the already existing configuration a part of it
in the following manner. The part to be added is the configuration itself
minus one of the the main branches growing out from the centre vertically.

Moreover, this part has to be rotated and reduced in an appropriate way
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Figure 2.9. This non-uniform fractal grows by adding to the
four principal tips of the (n— l)th configuration the structure itself
without the lower main stem. This addition has to be done by
applying appropriate rotation and shrinking to keep the ratio of
the corresponding branches equal to b < 1.

(see Fig. 2.9) before attachment (reduction by a factor b is needed when the

horizontal branches are updated).

To obtain the fractal dimension of this tree-like object we first note
that reducing the configuration generated in the kth step by a factor 2% one
obtains a structure that would have been gencrated by the division technique
with 1/ry = 1/r2 = 1/2 and 1/r3 = 1/ry = b/2 (replacing the intervals in
each step with four new ones, two of which are half as long, and two with

size shrunk by a factor 6/2. Now we use (2.13) and calculate D from the

D D
J. b
ke 2( = = 2.
2 (2 ) + ( : ) 1 (2.22)
which can be solved numerically for any given b. For some of the b values the

implicit equation (2.22) can be inverted, e.g., if b =1/2, D =1 — In(v/3 —
1)/In2 =~ 1.45.

equation

Ixample 2.6. The random motion of a particle represents a par-

ticularly simple example of stochastic processes leading to growing fractal
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TFigure 2.10. Example for a random coastline. This Brown hull
represents the external perimeter of the trajectory of a looping ran-

dom walk on the plane which is indicated by a darker line (Man-

delbrot 1982).

structures. A widely studied case is when the particle undergoes a random
walk (Brownian or diffusional motion) making steps of length distributed
according to a Gaussian in randomly selected directions. Such processes can
be described in terms of the mean squared distance R? = (R22(t)) made by
the particles during a given time interval t. For random walks 122 ~ ¢ inde-
pendently of d (see Chapter 5.) which means that the Brownian trajectory
is a random fractal in spaces with d > 2. Indecd, measuring the volume of
the trajectory by the total number of places visited by the particle making ¢

steps, (IV(R) ~ t), the above expression is equivalent to
N(R) ~ R? [2.98)

and comparing (2.23) with (2.2) we conclude that for random walks D = 2 <
d if d > 2. In this case, rather unusually, the fractal dimension is an integer
number. However, the fact that it is definitely smaller than the embedding

dimension indicates that the object must be non-trivially scale invariant.
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Figure 2.11. The shapes of disconnected clusters corresponding
to the stopovers of a long Levy flight on the plane. The stochastic
sell-similarity of the cluslers is demonstrated by blowing up small
parts of the configurations. The picture on the right side is an
approximately 100 times enlarged image of a tiny region in the left
configuration indicated by the arrow (Mandelbrot 1982).

Brownian motion can be used to demonstrate random fractal curves
in two dimensions as well. Consider the trajectory of a randomly walking
particle on the plane. It separates the plane into two parts: an exterior
which can be reached from a distant point without intersecting the trajectory
and an interior (Fig. 2.10). The boundary of the interior part (the Brown
hull) is a very complex curve resembling the coastlines mentioned earlier.
According to the numerical results (Mandelbrot 1982) it is self-similar and
has a dimension D = 4/3 which is the same as that of self-avoiding random
walks (see Section 5.4.2).

Example 2.7. A straightforward generalization of the Brownian mo-
tion is called Levy flight which is another example of growing random fractals.
As before, it is a sequence of jumps in random directions, but with a hyper-
bolic distribution of the jump distances. More precisely, all directions are cho-
sen with the same probability, and the probability of making a jump longer
than Azg is Pr(Az > Azg) = AzsPr | except that Pr(de > Agp) = ]
when Azo < 1. All jumps are independent, and the resulting trajectory has

a fractal dimension D = Dy.
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Iig. 2.11 shows the positions of stopovers of a long Levy flight tak-
ing place on a plane. Most of the individual sites can not be seen for the
given resolution. The displayed pattern is made of disconnected, but clus-
tered positions, and was generated using D, = 1.26 in the expression for the
distribution of jump distances. The stochastic self-similarity of the configu-
ration is manifested by the fact that enlarging a small part of the structure by
about 100 times, the resulting configuration has the same general appearance

as the original one.

2.3.2. Sclf-affine fractals

Self-similarity of an object is equivalent to the invariance of its geometrical
properties under isotropic rescaling of lengths. In many physically relevant
cases the structure of the objects is such that it is invariant under dilation
transformation only if the lengths are rescaled by direction dependent factors.
These anisotropic fractals are called self-affine (Mandelbrot 1982, 1985 and
1986).

Single-valued, nowhere-differentiable functions represent a simple and
typical form in which self-afline fractals appear. If such a function F(z) has

the property
F(z) ~ b~ F(bx) (2.24)

it is self-afline, where I > 0 is some exponent. (2.24) expresses the fact that
the function is invariant under the lollowing rescaling: shrinking along the z
axis by a factor 1/b, followed by rescaling of values of the function (measured
in a direction perpendicular to the direction in which the argumentum is
changed) by a different factor equal to b=, In other words, by shrinking
the function using the appropriate direction-dependent factors, it is rescaled
onto itself. For some deterministic self-afline functions this can be done
exactly, while for random functions the above considerations are valid in a

stochastic sense (expressed by using the sign =).

Of course, there are self-alfine fractals different from single-valued



34 Part I: Iractals

functions and at the end of this section, among others, a couple of examples
will be given for such structures as well. However, the most typical physical
process producing self-affine structures is the marginally stable growth of in-
terfaces (see Chapter 7.) leading to surfaces which can be well approximated

by single-valued functions.

As we shall see self-afline fractals do not have a unique fractal di-
mension of the kind defined in Sec. 2.2. Instead, their global behaviour is
characterized by an integer dimension smaller than the embedding dimension,
while the local properties can be described using a local fractal dimension.
To show this we shall concentrate on functions of a single scalar variable.
Such a function is, for example, the plot of the distances measured from the
origin, X (t), of a Brownian particle diffusing in one dimension as a function
of time ¢. It is obvious that a fractional Brown plot with (X% (t)) ~ t2#
stochastically satisfies (2.24) by F(t) = X (¢).

Let us first construct a deterministic self-afline model, in order to have
an object we can treat exactly (Mandelbrot 1985). The plot corresponding

to this model, My (t), is defined as a regular version of the above mentioned

[
q oy
}'C;M/} Ml—w' )‘7’2
~

&H:lnbg/]nbl, (2.25)

Brown plot. We assume that H is of the form

where b; and b, are integers and by — by > 0. The idea is that the functlon
X (t), whose increments are Gaussian over all §¢ with a standard deviation
(6t)H, is replaced by a function M (t) whose increments over suitable §t-s
are binomial with the same mean equal to 0 and the same standard deviation.

This means that we require
My (pb7*) — M [(p + 157%] = +(52) % = £(5)7  (2.26)

for all k£ and p, where (2.25) was used to get the last equality for 6¢ = bl_k.

An actual construction of such a bounded self-afline function on the

unit interval is demonstrated in Fig. 2.12. In this example b; = 4 and
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k=3

Figure 2.12. Deterministic model for a self-affine function de-
fined on the unit interval. The single-valued character of the {func-
tion is preserved by an appropriate distortion of the z-shaped gen-
erator (k = 1) of the structure.

by == 2. The object is generated by a recursive procedure by replacing the
intervals of the previous configuration with the generator having the form of
an asymmetric letter 2 made of four intervals. Ilowever, the replacement this
time should be done in a manner different from the earlier practice. Here
every interval is regarded as a diagonal of a rectangle becoming increasingly
elongated during the iteration. The basis of the rectangle is divided into
four equal parts and the z-shaped generator replaces the diagonal in such a
way that its turnovers are always at analogous positions (at the first quarter
and the middle of the basis). In the kth stage we obtain Mgc) (t), and the

function becomes self-afline in the k& — oo limit.

Now we can apply an exact argument to determine the structure’s
local dimension using definition (2.5) which with I = 1/b reads as D =
limp o0 In N(b)/Inb where N(b) is the number of discs or boxes of linear
size 1/b needed to cover the object. Let us cover My (t) fromt=0tot =1
with boxes of size 1/b = bl_k. TFor this purpose one needs b’f = b bins or
columns of boxes. The height of these columns (the amount by which My (t)

changes in an interval of length bl_"c is approximately b;k, because of (2.26).
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Consequently, to cover My (t) in a bin one needs (b;k/bl_k) boxes. The

number of boxes needed along the whole unit interval is

bs* _

N(E) ~ bk (,;—) = (271" (227
1

From (2.25) we have by = bH | hence N(b) ~ 6*~H which according to (2.5)

leads to

Dg=2-H, (2.28)

where Dp denotes the local or box dimension of the plot of My (¢).

To show the validity of the statement that the global dimension of an
unbounded self-affine function is equal to 1 we slightly modify the construc-
tion of the previously introduced deterministic example. This new version
has to be defined for ¢ > 1, but have the same scaling properties on the unit
interval as M (t). We construct the kth stage of the new function Mgc) (t)
from M}}‘)(t) by expanding it along the ¢ axis and multiplying its values by

an appropriate factor

5 1t b\ K — —k
o~ ()" [(2) ")

On the unit interval My(t) behaves as My (t) because of the self-affine
property (2.24), therefore, it has the same local fractal dimension 2—IT {2.28).
The values of this new function are now defined up to t — oo as k —» 0o,
moreover, its largest value in this limit diverges as t with H < 1 (slower than
t). This leads to the conclusion that the global dimension, Dg, determined
for the structure in the limit of large t using boxes of size 1/b > 1 is equal
to 1. In this case “observing the function from a large distance” (measuring

with large boxes) it looks like a ragged line nearly merged into the abscissa.

We have seen that by rescaling a bounded self-afline function, or in

other words, changing the units in which the distances are measured, an extra
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dimension, called global dimension could be found. This raises the question
of choosing the appropriate units to measure F and t. To see both the local
and global behaviours one should make a choice for the unit of both F and

t. Then a quantity t. can be defined through

|[F(t+t:) — F(t)] ~ |te|. (2.29)

This ¢, can be called the crossover scale for the given process. The most
essential fact about ¢, is that it depends on the units which happen to be
selected for F' and t, therefore, the position of the crossover is in general not

intrinsic.

An tmportant consequence of the above statement is that for self-affine
structures with a lower or upper length scale, changing the units may lead to
losing the possibility of detecting the local fractal or the global trivial scaling.
Indeed, if the units we chose are such that ¢, becomes the same order as the
lower cutoff length, a local fractal dimension can not be observed. This is
the case, e.g., for the record of a one-dimensional random walk on a lattice if
the same unit is used for the increments of F' and the time t, since then the
lower cutoff and the crossover scale coincide. Similar arguments are valid for

the detectability of a trivial global dimension.

Before the discussion of additional examples it should be noted that
the most typical self-afline structures (and the ones we consider) are diago-
nally sclf-afline. This means that they arc invariant under a transformation
whose invariant sets include any collection of straight lines parallel to the
coordinate axes. A diagonal afline transformation is specified by giving a
fixed point of coordinates ¢m (0 < m < d — 1) and an array of reduction

ratios r,,, and considering the map

Tm = Om+ Im(Tm — ©m). (2.30)

The ratios 7,, must not be equal, because then the transformation would be
isotropic. The most general kind of self-affinity would imply invariance with

regard to a transformation whose matrix has off diagonal elements as well.
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Figure 2.13. These plots of Xl/z(t) were obtained by rescaling of
Brownian plots of various lengths, For each of the three plots the
vertical scale is proportional to the square root of the horizontal
scale (Meakin 1986).

EXAMPLES

Example 2.8. It is possible to treat the random function Xpg(t) in a man-
ner analogous to the approach which was used for the description of the
déterministic function My (t), however, the arguments in this case involve
heuristic approximations. We recall that X (t) denotes the distance of a
particle from the origin, randomly walking on a straight line, as a function of
the time ¢t. The distances are measured from the starting point, the direction
of the jumps is chosen randomly (but not necessarily independently), and it

is assumed that the mean squared distance scales with time according to
(X7 (1) ~ 2. (2.31)

A random walk of this kind with 0 < I # 1/2 < 1 is called fractional
Brownian motion in one dimension. It is well known that for the ordinary
Brownian motion, when the jumps are independent and their distances have a
Gaussian distribution, If = 1/2 (i.e., Dp = 2—II = 1.5) and X1/2(t) satisfies
(2.24) stochastically. Similarly, X(t) and b= X5 (bt) can be shown to be

identical in distribution.

Fig. 2.13 visualizes the statistical self-affinity of the Brown plot with
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H = 1/2. Parts of originally difTerent horizontal extension are scaled onto the
same interval with a simultaneous rescaling of the heights by a factor which
is equal to the square root of the factor used to shrink the horizontal size.

The plots obtained are very similar as far as their appearance is concerned.

Since 0 < H < 1, it follows from (2.31) that the global dimension
corresponding to the behaviour for ¢, 3> 1 is 1, because Xy (t)/t = 0ast —
0. The local dimension can be obtained from considerations similar to those
used for the deterministic case. During a time interval 6¢, |maz [ Xy (t)] -
man [Xp(t)]| is of the order of (6¢)¥. Covering the part of Xy (t) on the
interval 8t by squares of side 8¢ requires on the order of (6t)H /6t = 6¢H-1

squares. Therelore, covering X (t) on the interval [0,1] requires

l:Hvl

N(61) ~

= gt =) (2.32)

which according to the definition (2.5) leads to Dy = 2 — If just as for the

deterministic construction (see Eq. 2.28).

The points at which Xy (t) = 0 form the zero set of the fractional
Brownian motion. It is a random Cantor set of fractal dimension D =
1 — H (Mandelbrot 1982). A fractional Brownian motion with 0 < I < 1/2
is antipersistent which means that the walker tends to turn back to the
point it came from. Alternatively, in the case H > 1/2 the increments have
posititve correlation with the direction of the previous jump. To see this we
set X5 (0) = 0 and define the past increment as — Xy (—t) and the future

increment as Xz (¢). Then

(=Xu(=t)Xu (1)) = 27 {((Xu(t) - Xu(-0)*) - 2(Xu(®)]*)} =

Dividing by (X% (t)) = t2H, one obtains the correlation of increments which is
independent of ¢; it is equal to 2221 —1 vanishing, as expected, for H = 1/2.
Calculating the Fourier spectrum of a fractional Brown function one finds
that the cocflicients of the series, A(f), are independent Gaussian random

variables and their absolute value scales with the frequency f according to a
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TFigure 2.14. A Brownian surface having a local fractal dimension
close to 2.4 (Mandelbrot 1982).

power law

[A(f)| ~ f71 = (2.34)

Finally, as an example for random self-afline functions defined in higher
dimensional spaces we mention the Brownian relief or Brown plane-to-line
function shown in Iig. 2.14. Ils vertical cross sections represent plots of
one dimensional random walks (X (£)). It is not a trivial task to define and
construct a fractional Brownian surface with a given II. There is, however,
a relatively simple procedure generating a surface in d = 3 with H = 1/2. A
horizontal plateau is broken along a straight line chosen at random and one of
them shifted verically. The difference between the levels of the two sides of the
resulting precipice is also chosen randomly from a set of lengths distributed
according to a Gaussian. Then we repeat the same and follow the kth stage by
dividing all heights by vk. Generating surfaces with an arbritrary If requires
other methods, e.g. involving the construction of a set of random Fourier
coefficients with a distribution f~#~3/2 and reconstructing the surface from

its components or random addition algorithms (Voss 1985).
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Example 2.9 In 1872 Weierstrass constructed a function which is
continuous everywhere, but differentiable nowhere. Mandelbrot proposed a
simple extension of this function which turned out to have no characteristic

length scale. Let us consider the Fourier series

(e a]

1 — cos(b™t)
ct)=Y W (2.35)

which is the real part of the more general Weierstrass-Mandelbrot function

(Mandelbrot 1982). In the range of parameter values

1< D<2, b>1 (2.36)

C(t) is continuous but the series defining dC(t)/dt diverges everywhere. The
frequencies 6™ form a “Weierstrass spectrum”, spanning the range from zero
to infinity in a geometrical progression; this is the sense in which C(t) pos-
sesses no scale. The self-aflinity of C(t) for b > 0 can be easily shown by
a formal replacement of n by n + 1 in (2.35) leading to the scaling relation
C(t) = b=(2=P) C(bt) which is equivalent to the definition (2.24) of self-affine
functions. This means that the graph of C(t) on the interval to < t < btg
can be obtained by magnifying the graph in the range to/b <t < to with

factors b and b2~ % in horizontal and vertical directions, respectively.

It can be argued and supported by numerical invesligations that the
local fractal dimension of C(t) is equal to the parameter D. Consequently,
for D = 1.5 it may also be regarded as a deterministic model for Brownian

motion.

Example 2.10 So far we have discussed single-valued self-affine
functions, because they seem to be more relevant from the point of view
of applications than other possible self-affine structures. The two examples
given below represent other types of self-affine objects, constructed in a spirit

related to that used to generate some of the self-similar fractals.

Fig. 2.15 shows a growing structure which is a generalization of the

fractal displayed in Fig. 2.1a. The rules of construction are analogous, but
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Figure 2.15. This growing self-affine fractal is generated by a
procedure analogous to that used for constructing Fig. 2.1a, ex-
cept that in the present case the seed configuration is not isotropic
(Jullien and Botet 1987).

k=1 k=2

Figure 2.16. Generating a disconnected self-affine fractal em-
bedded into two dimensions using elongated rectangles instead of
squares during its construction.

in the present case the seed configuration is anisotropic (Jullien and Botet
1987). As before, the self-afline structure is produced in the & — oo limit,
and the kth configuration is obtained by replacing the 7 subunits of the
k — 1th configuration with the whole structure generated in the k — 1th
step. Obviously, the global dimension of the resulting object will be equal
to 1, since the width of the structure grows with k as 3%, while its length as
k®. This self-afline fractal has a lower cutoll length which is the size of the

particles it is made of, therefore, it has no local fractal dimension.

The last example of this section is constructed by dividing the unit

square into anisotropic subunits which serve as seeds for further divisions.



Chapter 2: Fractal Geometry 43

Fig. 2.16 demonstrates the actual procedure analogous to that used for gener-
ating the fractal shown in Fig. 2.1b. For this example the scales are chosen in
such a way that the crossover scale is the same as the side of the unit square,
and because of this the trivial global scaling is not manifested (although
it could be seen by applying the constructon “backward”, i.e., growing the
square). On the other hand, the structure has a local fractal dimension which
can be calculated, for example, by covering the structure with squares of size
corresponding to the shorter side of the elongated rectangles generated at
each step of the construction. One can also use rule d) of Section 2.2. Let
us assume that in the kth step the sides of the rectangles are lgk) = I¥ and
lgk) = 1% where I; < l5. Since the fractal shown in Fig. 2.16 can be gener-
ated by multiplying two Cantor sets of dimensions D; = In 2/In(1/!;) and
D, =1n2/1In(1/1;), respectively, we obtain for the local fractal dimension of
the resulting structure Dy = In2/In(1/l1) +In2/In(1/13).

2.3.3. Fat fractals

The most important feature of structures discussed in the previous sections
was that they had a fractal dimension strictly smaller than the embedding
dimension d. There are, however, structures for which D = d, but still
exhibit a fractal behaviour (Mandelbrot 1982) in the following sense. When
one calculates the volume V (I) of such fat fractals using balls of decreasing
size [, it converges to a finite value algebraically with a noninteger exponent.

This is in contrast to ordinary or thin fractals, where V (I) — 0 if [ — 0.

In general, the resolution dependent volume of an object can be written

in the form

V(1) =V(0) + 1 (1), (2-37)

where V(0) = Vg is the volume in the limit I — 0. For thin (ordinary)
fractals V'(0)=0, and f({) ~ 14"P with D < d. For fat fractals V (0) > 0, but
f(l) - as in the case of the thin ones - follows a power law with an exponent
which can be regarded as a quantity characterizing the scaling properties of

the structure. This fact can be expressed in the form (Farmer 1986)
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V(1) =~V (0)+ Alf (2.38)

where A is a constant and f is an exponent quantifying fractal properties. g

can be calculated from

_ . In[N(@) =V (0)
b=l Inl ’

(2.39)

where N () is the number of d-dimensional balls needed to cover the struc-

ture. By delinition 4 > 0, and it is equal to oo for non-fractal sets.

It is important to note that fat {ractals are in general not self-similar
objects. They have more in common with the Peano curve, since these struc-
tures are typically made of parts with dimension smaller than the embedding
dimension d, while the whole object has a finite measure in d (lines with pos-
itive area, surfaces with positive volume, etc.). However, fat fractals are
more inhomogeneous than the Peano-type objects, since for the latter V(1)

converges exponentially to its limiting value.

The example to be discussed below is constructed by generalizing the
procedure leading to Cantor sets. However, there are many physical systems
in which fat [ractals are expected to occur. It has been shown that {at {ractals
can be associated with chaotic parameter values beyond the period-doubling
transition to chaos, chaotic orbits of Hamiltonian systems or ballistic aggre-
gation clusters. In addition, such biological objects as bronchia in the lung

or coral-colonies are most likely to have the structure of fat fractals.

EXAMPLES

Example 2.11 As an illustration of fat fractals, consider the following
modified Cantor set. In the original version (Example 2:1) first the central
third of an interval is deleted, then the central third of the remaining intervals
and so on ad infinitum. To “fatten” this thin fractal delete instead the central

%, then %, then -L

57, etc., of each remaining interval. The resulting set is
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topologically equivalent to the classical Cantor set, but the holes decrease in
size sulliciently fast so that the limiting set has nonzero Lebesque measure

and a dimension equal to 1.

The exponent f can be easily computed for the more general case of
cutting out intervals of length hg(c) = c* at stage k, where 0 < ¢ < 1is a
parameter (Umberger et al 1986). For a given c the total length (Lebesque
measure) of the remaining set is larger than zero and is given by 0 < Lo, =

limpy oo Ln < 1, where

By = Wy = e, (2.40)

In the above expression the length of the covering intervals is chosen to be

equal to the length of a single segment after the nth iteration is completed

1 = ”
€n = 52 [[a=c. (2.41)
k=1

To calculate § for this set we use (2.39)

8= lim In(L,, — Loo)
n—oo Ine,
mfi— I (1-c) (2.42)
= lim Sl
n—oo nln(1/2)

where the terms []} (1 — c*) = o(n) are not written out. The above limit can
be evaluated by using the identity In [[J(1 — ¢¥)] = X In(1 — ¢*) to give

p= ln(l/c). (2.43)

This example can be extended to arbitrary embedding dimension
(Mandelbrot 1982). Suppose that we cut out a piece of volume v; from
the unit hypercube of dimension d in such a way that the resulting structure

is made of the 2¢ hypercubes remaining at the corners of the starting object.
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Next, from each of these cubes a similar piece of relative volume v, is cut
out, and this process is repeated infinitely many times. The total volume

remaining after the kth iteration is

k

Vie=(1=v1)(L —vz)...(1 = v) = [J (1 = wi). (2.44)

Vi decreases as k — oo to a limiting value V. For vy fixed one has V = 0,
however, if 3 0° vx < oo, the limiting volume is positive, [I57(L = vx) > 0.
Since these objects are inhomogeneous in a rather specific way, measuring
their volume with balls of size [ one finds that it converges to V() =V
according to (2.38).

Example 2.12 To construct a fat fractal having a structure more
typical for growth phenomena than Cantor sets, one can modify the method
discussed in Example 2.5. In its original form the tree-like object shown in
Fig. 2.9 is a thin fractal with a fractal dimension depending on b, which is
the length ratio of the first horizontal and vertical branches. It is obvious
from the construction as well as from (2.22) that b = 1 results in a two-
dimensional, “homogeneously fat” object for which f(I) converges to zero
exponentially fast. In order to generate an inhomogeneous fat fractal one

should select a sequence of by values such that ) 5°(1 — bx) < co.





