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Chapter 5.
LOCAL GROWTH MODELS

In Part II. models based on growing structures made of identical par-
ticles will be treated. While in Chapter 2. mostly artilicial examples were
discussed, here we shall concentrate on more realistic models which are con-
structed in order to reflect the essential features of specific growth phenomena
occurring in nature. Various models allowing exact or numerical treatment
have been playing an important role in the studies of growth. Because of
the complexity of the phenomena it is usually a diflicult task to decide which
of the factors affecting the growth plays a relevant role in determining the
structure of the growing object. In a recal system the number of such factors
can be relatively large, and this number is decreased to a few by appropriate
model systems. Thus, the investigation of these models provides a possibil-
ity to detect the most relevant factors, and demonstrate their ellects in the

absence of any disturbance.

Structures consisting of connected particles are usually called clusters
or aggregates. In most of the cases the growth will be assumed to take place
on a lattice for computational convenience, and two particles are regarded as
connected if they occupy nearest neighbour sites of the lattice. However, for
studying universality and related questions, off-lattice or further neighbour
versions of clustering processes can also be investigated. A lattice site with

a particle assigned to it is called occupied or filled. An important additional
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feature included into the majority of models to be described is stochasticity

which is typical for growth phenomena.

o
(a) (b)

T'igure 5.1. 'Two possible configurations (clusters) consisting of
the same number of particles (black sites). The statistical weight of
a given cluster depends on its geometry. I'or example, the probabil-
ity associated with configuration (a) is larger for a growth process
which preferably produces compact clusters.

In general, a stochastic cluster growth model may lead to all possible
configurations which can be formed from a given number of particles. What
makes these models differ from each other is the weight or probability Py ;
associated with a given configuration 1 consisting of N units (Fig. 5.1). Pn,;
can be dilferent for the same configuration even in the same model, because
generally it depends on the sequence, according to which the individual par-
ticles are added to the cluster (Herrmann 1986). The distribution of Py ; as
a function of 7 is uniquely related to the particular model investigated, and

determines the value of the quantity

Sw(0) = = 577 =y 1" 22 P (5.1)

analogous to the order ¢ Rényi information. On the basis of (5.1) it is possible
to define (Vicsek et al 1986)

q—1 N—oco N—oo N

1
§=lim lim Sy(g)=- lim = > Py:lnPy;. (5.2)

corresponding to the configurational entropy of a given cluster growth model.
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In the following we shall distinguish two main types of cluster growth
processes, depending on the global character of the rule which is used in the
course of adding a particle (or a cluster of particles) to the growing cluster.
The rule will be called local if it depends only on the immediate environment
of the position where the new particle is to be added. In other words, when
deciding whether to add a particle at site X only the status (filled or not) of
the nearest or next nearest neighbours of this site is taken into account. On
the contrary, in non-local models the structure of the whole cluster can affect

the probability of adding a site at a given position.

5.1. SPREADING PERCOLATION

In this Section we shall consider a model which represents perhaps the sim-
plest growth process leading to a branching fractal structure (Leath 1976,
Alexandrowitz 1980). The process starts with a single seed particle placed
onto a site of a lattice. Its neighbouring sites are considered live in the sense
that they potentially may become occupied in the future. Next, one of these
live sites is chosen randomly and (i) filled with a particle with a probability
p or (ii) killed for the rest of time with a probability 1 — p. Occupation of
a site with probability p is realized by generating a random number r (with
a uniform distribution on [0, 1]) and filling the site if r < p. The filled site
becomes part of the growing cluster and its new neighbours become living
sites. A large cluster is grown by repeating the same procedure many times.
In a variation of this model at each time step all of the living or growth sites
are considered for occupation, instead of one at a time, therefore, the cluster
grows by adding shells to it. In addition, one can replace the sced particle

with a hyperplane of seed particles.

The above process is relevant to a number of spreading phenomena,
including epidemics, chemical reactions, flame propagation, etc. For exam-
ple, using the language of epidemic, the live sites are susceptible to infection,
the killed sites are immune, while the occupied sites correspond to infected
individuals (Grassberger 1983). An epidemics will spread over the whole
population if there is always at least one live site. Fig. 5.2 shows a configu-

ration of filled sites generated on a triangular lattice using a straight interval
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F= ,3I5

a0 TINE STEFZ

I'igure 5.2. Result of a lypical run of growing a percolation clus-
ter along a line for p = p.. The cluster is generated on a triangular
lattice by adding to it all of the growth sites at each time step. The
growth sites are denoted by heavy dots. (Grassberger 1985).

as the seed configuration. It seems to have a complex structure with holes

and fjords having no characteristic size that is typical for fractal clusters.

Note, that although the random numbers r are generated during the
growth, the same configurations are obtained as if we had assigned to all of
the sites of the lattice a random number previously, then defined equilibrium
percolation clusters as connected objects consisting of sites for which r < p
and started the process afterwards. Therefore, the above model is equivalent
to a simple type of growth on a static percolation cluster and as the available
sites of a given configuration are filled we gradually recover an equilibrium
percolation cluster. The growth stops when all sites belonging to the cluster
containing the seed particle are filled. Starting the spreading algorithm many
times with different initial conditions one can reproduce ordinary percolation

clusters with a size distribution corresponding to p.

Equilibrium percolation is a widely used model for describing various
properties of inhomogeneous media (Stauffer 1985). Here we only recall those
results of percolation theory which are related to the fractal nature (Stanley

1977) of spreading percolation clusters. In particular, when p is increased,
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at p = p. a transition takes place which is manifested in the appearance of a

connected inlinite cluster having a density for 0 < p — p, < 1

P(p) ~ (p— po)?, - (5.3)

where § > 0 is the critical exponent of the percolation probability, P(p) and
pc is called percolation threshold. In the following we consider the properties

of the infinite cluster. The correlation length diverges at p, according to

E~|p—p|~"r (5.4)

where ¢ corresponds to the radius at which the power law decay of the pair
correlation function ¢(r) (see (2.14)) crosses over into a constant behaviour.
As before, because of scaling we can assume that for £ > ¢ and r > a
(a is the lattice spacing) the only relevant length is £, and correspondingly
(Kapitulnuk et al 1985),

o(r) ~ P(p)f(r/&), (5.5)

where the scaling function f(z) approaches a constant for £ — co. For
z < 1 we expect that ¢(r) is independent of £ which can be satisfied only
if f(z) ~ z7P/* for z < 1. From here and using (5.3) and (5.4) we find
c(r) ~ r=P/Y» for r <« ¢ Then, in analogy with the arguments leading

to (2.18) one obtains for the fractal dimension of the infinite cluster at p.

(£ — oo)
D=d- . (5.6)

The exponents § and v, are known exactly for d = 2 and can be calculated

by numerical or theoretical methods for higher dimensions. For example, in

two dimensions v, = % and, f = % gives for the fractal dimension of the
infinite cluster at p. D = 2% ~ 1.896.

As mentioned above the spreading percolation process reproduces a



104 Part II: Cluster Growth Models

N
1000 100 10

0.5

0.4

0.3

002 [ dininndedon B B e o
G(AN)gr

0.1 1 1 ! |

0.0 0.1 0.2 0.3 0.4
—-0.47

Figure 5.3. The average anisotropy of equilibrium ((AN)eq) and

8, where

f = 0.47 is the correction-to-scaling exponent. The fluctuation

growing ((AN>gr) percolation clusters as a function of N~

in the anisotropy of growing percolation clusters, U(AN)Q,., is also
shown (Family et al 1985).

static percolation cluster, when it terminates. IHowever, if the growth on
the given finite cluster is not completed yet, the structure of the growing
and equilibrium percolation clusters is not exactly the same. According to
the simulations the {ractal dimension determined during the growth is not
affected by the algorithm, but the same is not true for the overall shape of
the clusters (Family et al 1985). This can be shown by calculating the radius
of gyration tensor and determining the ratio, (Ay), of the principal radii
of gyration. The results presented in Fig. 5.3 demonstrate that spreading
percolation clusters are in the asymptotic limit elongated, but to a smaller

extent than the static ones.

The truly dynamic behaviour of growing percolation clusters can be

interpreted in terms of the total number and distribution of growth sites
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which are here defined as filled sites having live neighbours. Let us first
consider spreading at p = p. occupying one site at each time step. The total
number of growth sites Ng scales with the number of particles in the cluster
N as (Family and Vicsek 1985, Herrmann and Stanley 1985)

Ng ~ N¥, (5.7)

where N plays the role of time. Since the radius of the region over which

/D we conclude that the set

the growth sites are scattered increases as N
of growth sites forms a [ractal of dimension D = §D. In the case of filling
shells (considering all live sites simultaneously for occupation) at a given

time step ¢, one has a different law (Alexandrowitz 1980)
Ng(t) ~t%71, (5.8)

where d; is called the spreading or chemical dimension. Comparing (5.7) and

(5.8) one gets

(5.9)

Introducing the exponent v through the relation R(t) ~ t¥»/¥I  where R (t) is
the average radius of the infected region, it is possible to derive an additional
relation (Grassberger 1983, 1985) involving the exponents already defined

2vp — P ‘ (5

= 5.10)
U

Both (5.9) and (5.10) are supported by numerical simulations (Ilerrmann

and Stanley 1985, Grassberger 1985). For d = 2 the following results were
obtained: 6 2 0.402, d; ~ 1.675 and v =~ 1.509.

A more detailed description of the dynamics of spreading is provided
by the radial distribution of growth sites Ny(r, N), where Ny(r,N)Ar is

the number of growth sites located from the seed at a distance between r
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and r + Ar and N is the actual number of already occupied sites. Scaling
considerations suggest, and related simulations support that (Herrmann and
Stanley 1985)

§—-1/D e
N,(r,N) ~ No-V/Dj (NI/D) . (5.11)
This scaling form expresses the fact that the distribution is determined by
only one relevant length scale proportional to R ~ NP The prefactor
Né-YD js included to satisfy [ N,(r,N)dr ~ N°® (see Eq. (5.7)). Here
and in the following the scaling behaviour of such integrals is determined by

performing a change of variable z = r /N/D,

Similarly, one can determine the function P(r, N) which is the proba-
bility of choosing a growth site being at a distance r from the seed after N
particles have been added to the cluster. Again, the only relevant parameter
is N and (Bunde et al 1985a)

—1/D T .
where the scaling function g(z) typically is close to a Gaussian. Scaling laws
like (5.11) or (5.12) can be checked numerically by collecting data for various
r values and examining whether the results fall onto a universal curve when

plotting the appropriately rescaled variables.

The problem of spreading percolation has attracted considerable in-
terest recently. It was analysed by field theoretical formalism (Cardy and
Grassberger 1985), modified by i) taking into account revival of the dead sites
(Ohtsuki and Keyes 1986) and by ii) introducing various rules for choosing
a growth site before making a decision about filling one (e.g. Bunde et al
1985b).
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5.2. INVASION PERCOLATION

Invasion percolation was introduced in order to simulate the displacement of
one fluid by another in porous media under the condition that the capillary
forces dominate the motion of the interface (Lenormand and Bories 1980,
Chandler et al 1982). Many porous media may be represented conveniently
as a network of pores joined by narrower connecting throats. Consider the
process of a non-wetting fluid, say oil, being displaced from such a medium
by a wetting fluid, say water, at a constant but very small flow rate. In this
limit the capillary forces dominate which are the strongest at the narrowest
places in the medium. The interface moves quickly through a throat but
. gets stuck in the larger pores. This motion can be represented as a series of
| discrete jumps in which at each time step the water displaces oil from the

smallest available pore.

As the water behind the interface advances, it may entirely surround

regions filled with oil. Since oil is incompressible, one must take into acount

in a model] that water can not invade finite, isolated regions of “residual oil”.

The model for computer simulation of the above process is defined
on a lattice. i) A random number drawn from the uniform distribution on
the unit interval is assigned to each site of a cell of linear size L. ii) As in
the growing percolation model the process starts with a seed particle or a
surface and goes on by subsequent occupation of one of the perimeter sites
(empty sites which are nearest neighbours of the cluster). iii) However, the
perimeter site to be occupied is not selected randomly, but the one with the
smallest random number r (corresponding to the smallest capillary force) is

occupied.

In this version of the invasion percolation model (which simulates the
interface motion, if one of the fluids is infinitely compressible) the process
does not stop until the finite cell is filled in completely, since we do not have
a temperature like parameter analogous to the occupation probability p of
ordinary percolation. On the other hand, as a well deflined configuration one
can study the structure of the region filled in by the invader fluid at the

point in time when the invader first percolates, i.e., first forms a connected
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path between the two opposite edges of the cell. According to the simulations
(Wilkinson and Willemsen 1983) the number of sites occupied by the invader
at this moment can be expressed as N ~ LY, where D ~ 1.89 in two and
D =~ 2.52 in three dimensions. These values for the fractal dimension of the
invasion percolation clusters are in good agreement with those obtained for
the ordinary percolation clusters, showing the similarity between the static

properties of the two models.

To take into account the incompressibility of the fluids one needs an
additional rule: Once a region filled by “defender” sites has been surrounded
by the invading fluid none of the sites belonging to this “trapped” area is
available for occupation by the invading fluid. In this case the fractal di-
mension of the cluster which is made of the invaded sites at the moment the
invider first percolates the two dimensional cell was found to be D ~ 1.82
(Chandler et al 1982). This value is different from D =~ 1.89 and indicates
that invasion percolation with trapping and ordinary percolation belong to

distinct universality classes.

One way to quantify the difference between static and invasion per-
colation is to investigate the cumulative acceptance profile an(r) defined by
(Wilkinson and Willemsen 1983)

{no of random numbers in [r,r + dr| accepted into cluster)y

an(r) = (no of random numbers in [r,r + dr] considered) y
(5.13)
It can be shown that asymptotically
- 1 ifr <pg, (5.14)
10 ifr>p.. '

This is the same as the acceptance profile of static percolation, which is
valid in the present case only in the large N limit. Furthermore, for invasion
percolation with trapping (5.14) breaks down and ap(r) does not approach

a step function.

There is an additional threshold in the trapping version of invasion
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percolation in d > 2. It takes place when the largest, originally spanning
region of invader free (defender) sites breaks into finite isolated clusters. At
this point further deviations from the ordinary percolation behaviour can be
observed. The finite but large clusters of defender sites can be considered
as fractals. Their fractal dimension in d = 3 was found to be Dgy.5 ~ 2.13
which is different from both D of the invaded region and D of the ordinary

percolation clusters.

In an analogy with static percolation one can define the defender clus-
ter size distribution n, as the normalized number of clusters consisting of
s defender particles. The simulation results support the scaling assumption
(Willemsen 1984)

ng ~no(L)s™" (5.15)
with 7 ~ 2.07 in three and 7 < 2 in two dimensions. This 7 does not satisfy

the relation 7 = 1+ d/D known from static percolation. Instead, in d =3

dl

T=1+
Dy

(5.16)

holds with d' =~ 2.24. An important consequence of (5.16) is that ng(L)
should scale with L. This is even more explicitly manifested in two dimen-

sions, because of 7 < 2.

At first sight the latter result is surprising since 7 > 2 is a condition
which can be derived for ordinary percolation from mass conservation (the
sum ), sn, must converge as s — 00). However, the set of isolated defender
regions at the threshold can be associated with the so called volatile fractals
(Herrmann and Stanley 1984) for which 7 < 2 has been shown to be the con-
sistent value (Vicsek and Family 1984, Herrmann and Stanley 1984). In the
present case mass conservation with 7 < 2 is provided by the L dependence
of the prefactor ng(L) which should decay with growing L compensating the

divergence of the above sum.

This behaviour can be interpreted by the following mechanism. As
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one goes to a larger cell, some of the smaller isolated clusters may turn out
to be connected through parts which were outside of the original cell, and
form larger clusters. Consequently, when L increases, there is a net decrease
in the density of clusters of a given size. In general, the condition for the

scaling of ng(L) is d' < d.

5.3. KINETIC GELATION

The term gelation is generally used for a transition when some of the finite
clusters in the system join to form a single large cluster spanning the whole
sample. This phenomenon is accompanied by relatively drastic changes in the
physical properties of the system, e.g., ils shear viscosity sharply increascs.
The clusters can be made of many kinds of particles ranging from molecules
to red blood cells.

In the following we shall use the language of sol-gel transition which
takes place in a liquid mixture of sol molecules and neutral solvent molecules
under specific conditions. Originally the sol molecules are separated and are
called monomers. With time the monomers form chemical bonds with each
other producing dimers, trimers and so on. During this irreversible process
the mean cluster size gradually increases, and at a given moment, t,4, called
gelation time, the linear size of the largest molecule becomes equal to that of
the system. This single spanning cluster is called gel and its wheight grows
further after ¢,. Its mass represents only a small percentage of the mass of all
sol and solvent molecules which are typically trapped in the holes formed by
the gel, thus the sample behaves as a soft but elasctic material (gelatine). The
gelation process is largely influenced by the maximum number of chemical
bonds f (functionality) associated with a monomer, for example, molecules

with f = 2 do not contribute to the sol-gel transition.

Depending on the mechanism by which two molecules can form a
chemical bond various models can be used to describe gelation. In poly-
condensation a bond appears suddenly as a result of either i) an external
excitation or ii) the collision of molecules. In the first case the motion of the

molecules can be neglected and static percolation can be used to characterize
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the phenomenon. In the other limit, when it is exclusively the diffusion of
clusters which determines the bond formation rate, diffusion-limited cluster-
cluster aggregation (to be discussed in Chapter 8.) is a good candidate for

an appropriate model.

The kinetic gelation model was introduced to simulate another type
of gelation called addition polymerization. In this process unsaturated elec-
trons jump from one molecule to the other, meanwhile assisting in producing
bonds. As an important deviation from static percolation in this case the
bonds are strongly correlated in space. Generally, one assumes that the

mobility of sol molecules is much smaller than that of the electrons.

Let us consider the following lattice model of the above process (Man-
neville and de Seze 1981). i) Monomers are placed randomly at the sites of
a cell of linear size L and periodic boundary conditions are imposed. Empty
sites are solvents with functionality f = 0 and have a concentration 1—-) . ¢;,
where ¢; is the concentration of monomers of functionality f = 7. ii) Initia-
tors (radicals) are randomly added to sites with a monomer already sitting
on them. The concentration of initiatiors is usually chosen to satisfy the
condition ¢y = ¢y(t = 0) < 1. iii) At each growth step one of the radicals
is randomly sclected. Next, the radical attempts a jump in a random di-
rection along one of the bonds leading out from the site. Such a transfer
is prohibited if the site at the other end of the bond has zero functionality.
The time is increased by an amount §t = [CI(t)Ld]—l even if the attempt
fails. iv) After a successful jump the functionality of the sites connected by
the given bond is decreased by one and the bond becomes occupied. v) If a
radical happens to be at the new site, the two radicals annihilate, thus ¢z (t)
is slowly decreasing in time. A radical can also get trapped in a site which
has no nearest neighbour sites of functionality larger than zero. In a finite

cell all of the radicals become trapped within a finite time.

This extensive list of rules can be programmed relatively easily and
the resulting configurations are evaluated in terms of quantities analogous to
those used in static percolation. A cluster is defined as a set of sites which
can be connected through occupied bonds. The actual status of the gelation

process is characterized by the cluster size distribution function n,(t) =
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L=YN,(t), where N,(t) is the number of clusters consisting of s monomers
at time t. The concentration of occupied bonds, p, increases monotonically
with ¢ and can be used to monitor the development of gelation with a sol-gel

transition taking place at p..

Large scale Monte Carlo simulations of three-dimensional kinetic gela-
tion (Herrmann et al 1982) have shown that the critical exponents £ and v,
defined in (5.3) and (5.4) within the errors are the same for this process as
for ordinary percolation. Consequently, the fractal dimension D = d — §/v,
of the spanning gel molecule also coincides with the fractal dimension of the

infinite static percolation cluster at p..

This universal behaviour of the two models seems to break down when
one studies the quantity A which is the ratio of the critical amplitudes of the

second moment of ng

o+ =9, i i
2 at(p—p:)~7, ifp— p]
—9 = E $°ng ~ _ . < 5.17
=3 {(1 (pc_p) ’T’ lfp_"pc- ( )

g oo

Here -y is another critical exponent and a* and a~ are the amplitudes, so
that A = a~/a*. The cluster size distribution in systems exhibiting critical

behaviour generally scales with s and p — p. as (Stauller 1985)

ng~ s f(|p—pcls?), (5.18)

where 7 and o are further critical exponents connected to the previously
introduced exponents through scaling relations, and f(z) is a scaling func-
tion. In the theory of equilibrium critical phenomena it is assumed that
f(z) = BF(Cz), where B and C are constants which may depend on the
propertics of the system investigated, but F(z) is supposed to be univer-
sal, i.e., the same for all systems belonging to a relatively broad class. This
assumption together with (5.17) and (5.18) leads to the conclusion that A,
the ratio of @™ and a~, has to be universal. According to the numerical

simulations of three-dimensional percolation A ~ 10.

A careful analysis of the amplitude ratio A for kinetic gelation in d = 3
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Tigure 5.4. Scaling plot of the data for the cluster-size distribu-
tion in three-dimensional kinetic gelation. The data are for L = 60

and ¢y = 0.0003 (Chhabra et al 1984).

(Herrmann et al 1982) showed that it is generally considerably smaller than
10. In fact, it decreases with the initial concentration of radicals ¢y, and in
the limit ¢; — 0 tends to become equal to 1. This means that F'(z) has to be
different from that describing the scaling in ordinary percolation, therefore,
the two models belong to different universality classes. An interesting obser-
vation was recently made concerning A in a system with regularly distributed
initiators, where A4 was found to be approximately equal to 10 (ITerrmann
1986). This result suggest that the randomness of the positions of initiators
is essential, in apparent analogy with the problem of diffusion in a medium

with randomly or regularly distributed traps and (continuum) percolation of

overlapping spheres (Balberg 1987).

An additional sign of non-universality of kinetic gelation is manifested
in the behaviour of n,. Although the scaling assumption (5.18) for the cluster
size distribution function is known to describe n, adequately in many differ-
ent systems, it is not consistent with the data obtained for kinetic gelation.

Instead, it shows oscillations of period s* ~ p/cy, and scales as (Chhabra et



114 Part II: Cluster Growth Models

1Y ////////////////////l/Z///

}
|
—] L_T_.
l
I 1 I
] I |
L 1L_ ! {_...._{___
___I l i__J S——
sl I I— ..__l
I
e —— '—--—--—l
| 1
- R S|

) l

| b
/1111177777777171777 7777777777,

Figure 5.5. Schematic picture of the backbone of a percolation
cluster. The bonds belonging to the backbone are drawn with heavy
lines, while the bonds leading to dead ends are denoted by dashed

lines.

al 1984)
ry ~ §-Tg—blP—Pel5 f(§)e°(p—p°), (5.19)

where b and ¢ are constants and § = s/s*. Fig. (5.4) shows the scaling
function f(z) determined from numerical simulations and using (5.19). Note,
that if f(z) tends to a constant value for large z, the last two terms represent
only a correction to the original scaling form. This, however, does not seem
to be the case, since for ¢; — 0 the oscillations are not found to be damped

entirely.

Returning to the structure of the gel molecule at p, we recall that it is a
fractal having a dimension equal (or close) to D of the infinite cluster in static
percolation at p.. In addition to its dimension a fractal can be characterized
by other quantities related to its internal structure. For example, in Chapter
3. it has been shown that a singular distribution on a fractal defines an

infinite number of subscts all having a fractal dimension smaller or equal
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to D. One of the simplest subsets of a fractal is its “backbone” which can
be introduced through the voltage distribution on a cluster (see Example
3.2). Consider now a large cluster of resistors with two electrodes — one at
ech of its opposite edges. Then the backbone is defined as the set of bonds
(resistors) with a voltage drop different from zero. It is easy to see that
Dgp = Dy, where Dpp is the dimension of the backbone and Dj is the
generalized dimension corresponding to the zero-th moment of the voltage
distribution. According to an equivalent delinition of backbone, it is a set of
bonds (sites) which can be connected staying on the fractal to both electrodes
via at least two routes having no overlaps. In short, routes leading to dead
ends are thrown away and only relevant loops contribute to the backbone
(Fig. 5.5).

The fractal dimension of the backbone of a cluster is an independent
exponent characterizing the “loopness” of the structure. For example, in
three-dimensional static percolation Dgg ~ 1.74 < D =~ 2.5. Dpgp has
also been determined for kinetic gelation in d = 3. It was found to be
approximately equal to 2.22 (Chhabra et al 1985), a value considerably larger
than Dpp for percolation. This can be understood:; the main contribution
to the mass of the clusters comes from loops formed by chains generated by

randomly walking radicals.

To take into account experimental realizations many variations of the
kinetic gelation model have been considered, including simulations with poi-
son sites disabling radicals (Pandey and Stauffer 1983) and mobile solvent
molecules (Bansil et al 1984).

5.4. RANDOM WALKS

Investigation of various types of random walks represents a particularily ef-
fective approach to the description of systems consisting of growing, non-
branching objects (de Gennes 1979). The most important example is poly-
merization, where monomer molecules of functionality 2 (being able to form
two chemical bonds) are joined together leading to a long chain called linear

polymer molecule. Tn most of the cases walks on a lattice are considered,
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the lattice sites corresponding to a monomer. The set of sites visited by the
walker is regarded as a chain of molecules or particles (in general, multiple
occupation of a site is allowed). For simplicity we shall use the term random
walk for this trail.

In an actual realization, a random walk starts from an initial position
and proceeds by making jumps of one lattice unit in a direction which is
selected randomly from the directions allowed by the given model. For ex-
ample, when strictly self-avoiding walks are considered, there is no allowed
direction if all of the nearest neighbours of the current position of the walk-
ing particle are occupied, and the walk must terminate. In this section we
shall concentrate on walks which are truly growing, i.e., are never trapped
. by themselves. Assuming that the particle makes one step in a unit interval,

the number of steps in a walk N is equal to the duration of the walk, ¢.

The most fundamental quantity used for characterization of random
walks is their mean squared end-to-end distance {R2(t)) = RZ(t), where R, (2)
is the distance between the walking particle and the initial position at time ¢.
It measures the square of the average spatial extent of a walk, Ro(t), and its ‘
time dependence will allow us to make conclusions about the fractal nature

of the process. In particular, if
Ro(t) ~ t* (5.20)

the quantity D = 1/v will be identified with the fractal dimension of the

chain.

5.4.1. Self-intersecting random walks

The simplest version of random walks is a sequence of jumps in random
directions, where there is no constraint on the probability of jumping to any
of the neighbouring sites. This process can also serve as a lattice model for
diffusion, and we shall also refer to unrestricted random walks as trails of

diffusing particles. As was bricfly discussed in Txample 2.6, the trail of a
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diffusing particle has fractal properties. To see this let us denote the end-
to-end vector at time t by ﬁe(t) = 25:1 a;, where a; is a vector of length
a equal to the lattice spacing and it has z possible orientation with z being

the coordination number. Then

(RE()) = Y _(d:d,) = a®t +2 ) (ddy) ~t, (5.21)

%) i>]

since due to the independence of the orientations of a;-s the cross products
vanish. Accordingly, the characteristic linear size of a walk is Ro (t) ~ £1/2,
For a walk starting at t = 0 it is also straightforward to show that the prob-
ability of finding the walker at a distance R from the origin is asymptotically
- P(R,t) ~ e"R*/DPt where D = a®/At with At =1 in our case.

Let us consider the set of sites which are visited by a walk of duration
¢t at time intervals ¢ > At’ > 1. The typical distance of these sites is
[ ~ (At’)l/z, since the walks which take place during each time interval At
are themselves independent random walks. Consequently, the whole walk

can be covered by N (l) boxes of linear size [, where

t

N() = e t—2, (5.22)
This expression corresponds to the definition of fractal dimension with D = 2.
In obtaining (5.22) we implicitly assumed that the random walks of size /
do not overlap and we need a separate box to cover each of them. This is
obviously not true in one dimension which is indicated by the fact that D > d
in this case. The D = d = 2 case is marginal, while in d > 2 the fraction
of overlaps becomes negligible and a true self-similar object is generated by
random walks. Note, however, that one can consider the number of steps ¢
made within a region of radius Rp, instead of the number of distinct sites
visited by the walker. Then regarding ¢ as the number of particles within
this region the scaling of mass M (Ro) ~ R2 has the same form as (5.22) even
in d < 2. Fig. 2.10 shows a long random walk on the plane together with its

external perimeter.
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The situation does not change qualitatively if the jump direction de-
pends merely on a finite number of previously completed steps. Let us sup-
pose that only the last At’ steps aflect the probability to jump in a given
direction. In the next step this probability has to be strictly independent of
the history preceding the last At’ steps. Then one can define a walk which
is made of sites visited at times separated by a time interval larger than
At" and the previously considered model is recovered. Therefore, finite time

memory has no effect on the asymptotic behaviour.

The owverall shape of unrestricted random walks is asymptotically
highly anisotropic. Numerical simulation shows that the ratios of the squared
principal radii of gyration of three dimensional walks are the following (Solc
1973)

(R} : (R2) : (R?) =11.8 : 2.69 : 1.00. (5.23)

There is an exact result for the quantity

d

2 ((R; - B})?)

1>)

@-1(( £ 22) )

Ag = : (5.24)

measuring the asphericity of a walk in d dimensions. Ilere R? is the square
of the sth principal radius of a walk (the ¢th eigenvalue of the corresponding
radius of gyration tensor). According to the analytical calculations (Rudnick
and Gaspary 1986)

2(d + 2)

Age= T2
7 (Bd+4)

(5.25).
There are several ways to modify the above discussed simplest case. If the
direction of each step is correlated by the direction of the previous one, the
situation changes qualitatively. In this case arbitrarily distant points also
become correlated, and the mean square distance diverges according to an

exponent I3 (t) ~ t*#, where H and the correlations are related (see Example
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2.8). The fractal dimension corresponding to the set of points visited by a

walker for a given H is
D=— (5.26)

a result following from an argument analogous to that leading to (5.22).

Random walks, therefore, may have a highly non-trivial structure ex-
hibiting fractal scaling. However, an unresricted walk does not represent a
real polymer chain appropriately, since it does not account for the repulsion
between two molecules which are close together. In other words, a random
walk can cross itself, while two monomers can not occupy the same posi-
tion in space (excluded volume effect). The simplest modification to avoid
this problem is to prohibit intersections: whenever a random walk would
cross itself it is removed from the statistics. According to their definition
self-avoiding random walks (SAW-s) do not grow indefinitely. They rather
reproduce the equilibrium statistics of linear polymers in a good solvent.
Since we are more interested in non-equlibrium, truly growing phenomena -

next we shall consider a never stopping version of SAW.

The following rules define a model called true self-avoiding walks
(TSAW) (Amit et al 1983) already discussed in part in Example 4.1. The
walker jumps at each time step to one of the neighbouring sites with a prob-
ability depending on the number of times the new site has been visited in
the past. In particular, the probability p;; of jumping from site ¢ to the
neighbouring site 7 is in the model equal to

Cng'Jhk

= — ,
Z e—Jik Nk
k=1

where g;; is a parameter controlling the degree of inhibition associated with
the particular bond 17, ny is the number of times the site k has been visited
before and z is the lattice coordination number. The strongest inhibition is
provided by the limit when all g;; — oo, but TSAW can cross itself even in

this limit. This occurs when there is no previonsly unvisited neighbour, and
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is made possible by the normalization included in (5.27).

The upper critical dimension and the fractal dimension D = 1/v of
TSAW have been investigated by various approaches. According to heuristic
arguments (Pietronero 1983, Obukhov and Peliti 1983) one first assumes that
the root mean square end-to-end distance Ry() is the only relevant length
measuring the size of a self-similar TSAW. In this case we expect the density

p(r,t) of points visited in a walk of duration ¢ to have the form

p(ryt) ~ R4S (L> . (5.28)
Ro
Furthermore, assuming as usual that Ro(t) ~ t¥, the increase of Ro(t) due

to the prolongation of a walk for additional At steps is given by
ARy = Ro(t + At) — Ro(t) ~t* 1AL, (5.29)

This increase is primarily due to the repulsion effects forcing the walk to
expand. The magnitude of this effect is expected to be proportional to the
gradient of p(r,t) calculated at a distance from the origin approximately

equal to Rg. From (5.28) we have

dp(r,1)

2 lrnRy ~ tRG T F(1) ~ 1D, (5.30)

Comparison of (5.29) and (5.30) leads to

p=1/y="12 (5.31)
The above result does not hold above d = 2, because in this case the repul-
sion effects become negligible compared with the outward expansion of the
walk due to ordinary diffusion. Therefore, allowing self-intersection even by
taking into account long living memory does not change the upper critical
dimension. However, in d = 1 TSAW exhibits different scaling behaviour
from ordinary random walks and has a mass scaling exponent close to that
predicted by (5.31).
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Finally, there is a model called growing self avoiding trail (GSAT)
which seems to lead to a fractal dimension different from D = 2 in d = 2,
although it allows for self intersection (Lyklema 1985). This is a growing
self avoiding walk during which the condition of avoiding sites is changed
so as not to allow the walker to pass through the same bond twice. Such a
process never terminates except at the origin, because on a lattice with an
even coordination number there are either at least two free bonds leading
out from a site or none. The origin is a special point, where the number of
free bonds is always odd. Extensive Monte Carlo simulations indicate that
D ~ 1.87 in two dimensions and the unresricted random walk value D = 2
is recovered only in d = 3. Therelore, GSAT has an upper critical dimension

d = 3 at which logarithmic corrections of the form
Ro(t) ~ At(Int)™ (5.32)

are expected to modify the asymptotic behaviour. The simulations confirmed

the above expression.

5.4.2. Growing sclf-avoiding walks

In this section strictly self-avoiding walks will be considered, i.e., the walk will
not be allowed to have intersections. Iowever, in contrast to the equilibrium
version of SAW, the walk is designed in such a way that it tries to avoid
itself whenever it is possible. There are two possibilities: depending on the
particular model a walk can be trapped by itself or it is bound to grow

indefinitely.

The interest in growing self-avoiding walks is motivated by a well
known transition in the conformation of polymer chains as a function of
temperature T (de Gennes 1979). At high temperatures the molecules be-
have as ordinary SAW with a fractal dimension D = % in d = 2. Lowering
T results in a collapse of the chains at a temperature Ty due to an attrac-
tive two-body interaction. In this tricritical 0 point the fractal dimension of

chainsis D ~ 1.75 (d = 2). At T =0 one has a completely space filling SAW
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with a trivial dimension. As we shall see below, a never terminating self-
avoiding walk is a good candidate to describe the geometry of long molecules

at the 8 point.

The growing self-avoiding walk (GSAW) can be defined as a simple
modification of TSAW with ¢ — co (Majid et al 1984, Lyklema and Kremer
1984). In the case of GSAW the walker chooses an unoccupied neighbouring
site randomly, with a probability p = 1/n, where n is the number of free
neighbours. If n = 0, the walk terminates; this property represents the main
difference from TSAW. The scaling of Rp(t) with the number of steps ¢ in
principle could be studied by exact enumeration of the possible walk config-
urations (Section 4.3.). When calculating the average end-to end distance
each configuration enters the sum by its own weight P, ; = HJ- pt,:(7) which
is the product of the probabilities pt(7) of adding the jth new step to the
ith configuration of length ¢ (for ordinary SAW all P, ;-s are equal). Knowing
Rq(t) one can use expression (4.20) to estimate the fractal dimension. How-
ever, it turns out that in the case of GSAW the typical cluster size available
in the exact enumeration approach (¢ ~ 20 steps) is not enough to see the

true behaviour.
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Figure 5.6. Extrapolation of the effective exponent 1/(t) = 1/D(t)
obtained from high precision Monte Carlo simulations of growing
self-avoiding walks up to a chain length of { = 200 steps (Kremer
and Lyklema 1985a).

To sce the scaling of Ry one should carry out high precision Monte

Carlo simulations up to sizes ¢ ~ 200 (Kremer and Lyklema 1985a), and
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analyse the data by the application of expression (4.16) which normally can
be used only for exact enumerations. I'rom this approach the effective expo-
nent v(t) = 1/D(¢) can be estimated for chains of length ¢ < 200. Fig. 5.6
shows the results obtained for the square lattice. An unusually slow crossover
seems to take place from the small to the large cluster behaviour, and the
extrapolated value D(t — oo0) = 1.5 coincides with the best results for the
fractal dimension of ordinary SAW. This means that the growing and the
original version of self-avoiding walks belong to the same universality class;
the kinetic rule does not change the asymptotic scaling. The observation of
a slow crossover, however, is a qualitatively new result of these investiga-
tions and as we shall sce such behaviour is manifested in many other growth

phenomena.
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Tigure 5.7. Example for a short IGSAW on the square lattice. To
recognize whether the next step would lead to a trap it is enough
to know the local configuration and the direction of the old part.

The goal of constructing a non-trapping SAW was achieved by in-
troducing the model called indefinitely growing self-avoiding walk (IGSAW)
(Kremer and Lyklema 1985b). This walk is analogous to GSAW, except that
the walker recognizes possible traps (cages from which he can not return)
in advance, and avoids them. To generate such a walk in two dimensions
one needs local information on the walk only. This is demonstrated in Fig.

5.7, where a short IGSAW is shown on the square lattice. It is clear from
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this figure that when the walker approaches his previous path, in order to
avoid trapping, he can use the knowledge of the local configuraton and a
quantity, called the winding number, attributed to the already visited sites.
This number is equal to n; — n,, where n; and n, denote respectively the
number of left and right turns made previously by the walker. In addition,
I'ig. 5.7 demonstrates the irreversibility of such walks which can be checked
by simply calculating the corresponding jump probabilities for a reverse walk
along the same path. In order to recognize whether a new possible step leads
into a trap it is enough to consider all sites which form the smallest closed
path in the forward direction. This means that for the triangular lattice only
nearest neighbour (nn) sites, on the square lattice next to nn sites, while on
the honeycomb lattice all next to next nn sites have to be examined together

with the corresponding winding numbers.

An early numerical study based on exact enumeration of the config-
urations gives for the fractal dimension of IGSAW D ~ 1.75 (Kremer and
Lyklema 1985b) indicating that IGSAW has different scaling behaviour from

the previously considered models. Actually, the value
7

can be shown to be exact by establishing a correspondence between IGSAW
and walks along the external perimeter or “hull” of an infinite percolation
cluster (Weinrib and Trugman 1985). Then (5.33) follows from an exact
result for the fractal dimension of the latter process (Saleur and Duplantier
1987).

First we show that the ring-forming version of IGSAW on a honeycomb
lattice reproduces the perimeter of critical percolation clusters (Weinrib and
Trugman 1985). The rules of this version of the original model are somewhat
different: the origin is an allowed site, and a walk is considered to become
trapped if it enters a region from which there is no path to the origin. How-
ever, one has good reasons to expect that the fractal dimension of large walks
is the same in both versions. Honeycomb lattice is considered because for

this lattice there is a one-to-one correspondence between the walk and the
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Tigure 5.8. Example for a short IGSAW on the hexagonal lattice.
It follows the perimeter of a site percolation cluster on the dual
triangular lattice.

external perimeter of the site percolation clusters on a triangular lattice at
its percolation threshold. (The equivalence is exact only for the ring-forming

version.)

Consider the site percolation problem on the triangular lattice which
is dual to the honeycomb lattice. The perimeter of a cluster can be defined
as the bonds on the dual lattice separating filled from empty sites. Let us
imagine that we build up the edge of a percolation cluster by deciding the
occupation of a site determining the perimeter as we proceed. At each step
one makes a decision whether a given site is occupied (with probability p. = %
or empty (with probability 1 — pc = £). This choice determines whether the
perimeter turns left or right at that step. Morcover, as demonstrated in Fig.
5.8, when the perimeter approaches itself the condition of self-avoidance is
automatically satisfied, since the occupation of the corresponding sites has
already been determined. The perimeter separates occupied from empty

sites, thus it can not cross itself or enter a trap.

In this way IGSAW on a honeycomb lattice traces out the hull of
critical percolation clusters. In this sense it is equivalent to an analogous walk

designed with the purpose of generating the external perimeter of percolation
clusters (Ziff et al 1984, Ziff 1986). On the basis of universality valid for the
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Figure 5.9. External perimeter of a percolation cluster generated
by the ring-forming version of IGSAW on the square lattice. This
configuration contains 194 468 sites (Ziff 1986).

critical behaviour of percolation the same statement can be extended to other
types of two-dimensional lattices. A long perimeter walk on the square lattice

is shown in Fig. 5.9. to demonstrate the structure of such walks.

The proof of (5.33) is completed by finding the fractal dimension of
the hull. Assuming that the front of diffusing particles is equivalent to the
perimeter of large percolation clusters, theoretical arguments (Saleur and
Duplantier 1987) led to the following expression for the fractal dimension of
the hull

7
D:1+1/VP:4—, (5.34)

where v, = % is the correlation length exponent for percolation known ex-

actly. An exact derivation of (5.34) can be obtained using the formulation
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of percolation as a ¢ = 1 Potts model, and applying a Coulomb-gas mapping
technique. Furthermore, it can be shown that hulls (i.e., IGSAW) are directly
related to a SAW with short range attraction, thus they are expected to be
in the same universality class as chains at the 8 point. IGSAW is also related
to the front of diffusing particles in d = 2 (Sapoval et al 1985). We conclude
the description of IGSAW by mentioning that finding an algorithm for the
d > 2 case is far from trivial and no successful attempt has been published

yet. The reason is that in d > 2, non-local information is required to avoid

traps.

The last model discussed in this Section simulates linear aggregation.
It generates a one parameter family of strictly self-avoiding, indefinitely grow-
ing walks. Tn this model the jump probability is determined by solving the
Laplace equation with appropriate boundary condilions. One of the advan-
tages of this Laplacian random walk (LRW) is that it can be defined in any

dimension.

LRW grows according to the following rules (Lyklema and Evertsz
1986). Imagine a configuration centred at the middle of a circle having a
radius much larger than the size of the walk. TFor this configuration the
Laplace equation V2¢ = 0 is solved with a boundary condition ¢ = 0 on the
walk and ¢ = 1 on the sphere. Let us define the probability of jumping to
a given neighbouring site to be proportional to the potential at this possible
new position. As a result the walk is self-avoiding and never stops, since the

potential is zero in the cages (because of screening) and on the walk itself.

A simple generalization can be accomplished by choosing the proba-

bility of jumping to site ¢ equal to

o7

where ¢; is the value of the field at site 7,  is a parameter and 7 runs over
the nearest neighbours. The parameter n governs the probability difference
among allowed directions. For n = 0 IGSAW is recovered. In fact, this

analogy provides a non-local method for growing of IGSAW-s in dimensions
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larger than 2. For n > 0 (n < 0) the walk is self-repelling (self-attracting),
and has a smaller (larger) fractal dimension than IGSAW. The case n = 1
is analogous to a model based on linear aggregation of diffusing particles
(Debierre and Turban 1986).

5.4.3. Walks on fractals

The problem of random walks on fractals has attracted great interest recently
(for reviews see Aharony 1985, ITavlin and Ben-Avraham 1987). Ilere we
shall discuss only some of the specilic aspects of this field which are related
to fractal growth. The condition of self-avoidance will not be considered, thus

we can refer to random walks on fractals as diflusion on a fractal substrate.

Consider the random motion of a particle placed onto a fractal network
of dimension D made of bonds or filled sites. The walk starts at ¢ = 0 and
the particle jumps with equal probability to any of the nearest neighbour
sites belonging to the fractal. Its mean squared distance from the origin is

expected to scale with the number of steps (time) as

RE(t) ~ ¥/, / (5.36)

i
where the exponent d,, depends on the structure of the fractal in a non-
trivial way. Tor dillusion on Kuclidian lattices Df;, = 2. But the trajectory

of a diffusing particle expands slower on a fractal, and in general d,, > 2.

Writing (5.36) in the form ¢t ~ Rg‘” suggests that d,, is a fractal
dimension-like quantity. However, d, is typically not the fractal dimen-
sion of the trail as a geometrical object, but describes the fractal scaling
of mass (number of steps) within a region of radius Ry. While on Euclid-
ian lattices the fraction of self-intersections becomes negligible in dimensions
d > 2, in the case of fractal substrates returns to already visited sites play
a relevant role in all d, except very special constructions. This is indicated
by the fact that generally d,, > D. For example, d, = In(d + 3)/In2 >
In(d+1)/In2 = D for the d-dimensional versions of Sierpinski gaskets (avlin
and Ben-Avraham 1987), or dy, = D + 1 [or the fractal shown in Fig. (2.1)
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(Guyer 1985) when defined in d dimensions. Morcover, d,, can be larger than

d. This is the case, i.e., for dillusion on percolation clusters up to d = 6.

The anomalous diffusion law represented by (5.36) can be supported
by Monte Carlo simulations, scaling arguments or solutions of the problem
for simple systems. The following derivation based on scaling arguments
demonstrates that (5.36) is equivalent to the assumption (O’Shaughnessy
and Procaccia 1986)

o(r) ~ oor~’, (5.37)

with o(r) defined through ;,:(r) ~ o(r)r?~! which is the total conductivity
(or diffusivity) of a shell of n(r) ~ rP~1 sites being at a distance r from the
origin of walk. To see this let p(r,t) denote the average probability per site
at time t of finding the particle within the shell between r and r + dr. Then

the conservation of probability requires that

0

2 lnlr)otr )] = 5 (a1 222 ). (5.58)

Inserting (5.37) and the expression for n(r) one obtains the diffusion equation

in the form

Ip(r,t) 1 9 p—1-0 9p(7,1)
ot rP-19r (JOT or (5:28)

which has the exact solution

246
= ~D/(2+6) T
p(r,t) = Const t exp { ol T 0)%} . (5.40)

From (5.40) one can easily obtain the main quantities of interest., First, we
see that (5.40) is equivalent to (5.36) with d,, = 2 + 0, since

RE(t) = /0 r2n(r)p(r,t)dr ~ t¥/ 3+, (5.41)
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Next we observe that N(t), the total number of distinct sites visited scales

with time as
N(t) ~ tP/(3+8) = ydo/2 (5.42)

because p(0,t), the probability of returning to the origin is inversely propor-
tional to N(¢). In (5.42)

ds =2D/d,, (5.43)

denotes the so called spectral dimension. This quantity enters the spectral

density of vibrational modes of a fractal in the form of dimension, hence its
name (Alexander and Orbach 1982).

Anomalous diffusion in inhomogeneous media has been extensively
studied using percolation models (Gefen et al 1983). It was recognized that
d, is surprisingly close to % for percolation clusters in dimensions 1 < d <
6. This fact led to a conjecture (Alexander and Orbach 1982) about the
superuniversality of d,, giving rise to a large number of controversial results
about its validity for percolation. Scaling arguments can be used to express
the spectral dimension for the infinite percolation network at the threshold
through known standard exponents 3, v, (sce Section 5.1.) and p, where the

conduclivity scales as @ ~ (p — pc)#. The result is (Alexander and Orbach
1982)

dvp — 3

dg=2— |
° - B 20,

(5.44)
Finally, we discuss the fractal nature of growth sites which belong to the
fractal and are nearest neighbours of the already visited sites (they are anal-
ogous to the live sites defined in Section 5.1.). Let us denote the number

of growth sites at time ¢ by G(t). The following relation has been proposed
between N(t) and G(t) (Rammal and Toulouse 1983)



Chapter 5: Local Growth Models 131

dN(t) _G() (5.45)

expressing the assumption that the probability of access to a growth site
(dN/dt) is proportional to the number of growth sites, and is inversely pro-
portional to the number of already visited sites. Integrating (5.45) and using
(5.36), (5.42) and (5.43) we have

G(t) ~ t2P/du=1 o Ry (t)2P 4w, (5.46)

where 2D — d,, is the elfective fractal dimension of the set of growth sites.
This result is supported by simulations of diffusion on a Sierpinski gasket-
type deterministic fractal (Havlin and Ben-Avraham 1987). Plotting In G(t)
against In N (¢) the slope of the straight line fitted to the data is = ~ 0.53

in good agreement with z = 2 — 2/d, ~ 0.535 obtained from (5.46), where
G(t) ~ N(t)=.





