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Chapter 6.

DIFFUSION-LIMITED GROWTH

Many of the growth processes in nature are governed by the spatial
distribution ol a [icld-like quantity which is inherently non-local, i.c., the
value of this quantity at a given point in space is inlluenced by distant points
of the system, in addition to its immediate neighbourhood. Tor example,
such behaviour is exhibited by the distribution of temperature during solid-
ification, the probability of finding a diffusing particle or cluster at a given

point, and clectric potential around a charged conductor.

The spatial dependence of these quantities in various approximations
satisflies the Laplace equation wilth moving boundary conditions. Since the
concentration of diffusing particles is also described by the Laplace equation,
the above mentioned class of processes is commonly called dilfusion-limited
growth. Diffusion-limited motion of interfaces typically leads to very com-
plex, branching fractal objects, because of the unstable nature of growth.
Thus, as a result of a self-organizing mechanism governed by the Laplace
equation, structures with a rich geometry can emerge from the originally
homogencous, structureless medium. This far-from equilibrium phenomenon

can be studied by approaches based on aggregation.

It is the non-local character of the probablity distribution which plays
an essential role in aggregation phenomena, where single particles, or clusters

of particles are added to a growing aggregate. The main assumption of
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the related cluster models is that the particles stick together irreversibly, a

condition which is satisfied in a wide variety of growth processes.

6.1. DIFFUSION-LIMITED AGGREGATION (DLA)

Consider an eclectrolite containing positive metallic ions in a small concen-
tration, and a negative electrode. Whenever a randomly diffusing ion hits
the electrode or the already deposited metal on its surface, it stops moving
(sticks to the surface rigidly) because of the clectrostatic attraction. This
experiment results in a complicated, tree-like deposit with scale-invariant

structure.

The model called diffusion-limited aggregation (DLA) was introduced
by Witten and Sander (1981) to simulate in a computer phenomena related
to the above mentioned process. The rules of the model are simple: One puts
a seed particle at the origin of a lattice. Another particle is launched far from
the origin and is allowed to walk at random (diffuse) until it arrives at a site
adjacent to the seed particle. Then it is stopped, and another particle is
launched which stops when adjacent to the two occupied sites, and so forth.
In this way large clusters can be generated whose structure is expected to be
characteristic for objects grown under diffusion-limited conditions. Indeed,

the experiments discussed in Chapter 10. support this expectation.

Fig. 6.1 shows a typical DLA cluster of 3000 particles. It demonstrates
that these objects i) have a randomly branching, open structure, ii) look
stochastically self-similar, and iii) this special geometry is likely to be due
to the effects of screening. By stochastic self-similarity here we mean the
following: shrinking a large branch and omitting the finest details one obtains
a structure which has the same appearance as a smaller branch. In the
case of DLA screening is manifested through the fact that the tips of most
advanced branches capture the incoming diffusing particles most effectively.
Thus, small fluctuations are enhanced, and this instability together with the

randomness inherent in the model leads to a complex behaviour (Witten and
Sander 1081, 1983).
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Figure 6.1. A relatively small DLA cluster consisting of 3000
particles. To demonstrate the screening effect the first 1500 parti-

cles attached to the aggregate are open circles, while the rest are

dots (Witten and Sander 1983).

In the actual simulations the rules are changed in such a way that the
resulting process is equivalent to the original version, but it can be realized
much more efficiently in a computer. Ior example, the particles can be
launched from a circle having a radius which is only a little larger than the
distance ol the furthermost particle (belonging to the cluster) from the origin.
This can be done because a particle released very far from the cluster arrives
at the points of a circle centred at the origin with the same probability.
However, as soon as a diffusing particle enters this circle, its trajectory has
to be followed until it either sticks to the cluster or diffuses far away. Only
in the latter case can it be put back onto the launching circle again. There
are additional relevant improvements in the algorithm (Meakin 1985) which

are described in Appendix A.
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6.1.1. TFractal dimension

The fractal dimension of diffusion-limited aggregates can be estimated by
methods described in Section 4.2. As discussed, a possible way to determine

the fractal dimension defined by the expression
N(R) ~ RP (6.1)

is to calculate the density-density correlation function ¢(r) (2.14). Fig. 6.2
shows ¢(r) obtained for DL A clusters grown on a square lattice as a function
of the distance r between the partlicles (Mecakin 1983a). The slope of the
straight line fitted to the data on this double logarithmic plot indicates that

the density correlations within the clusters decay according to a power law
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Tigure 6.2. Double logarithmic plot of the density-density cor-
relation function e(r) (2.14) for a DLA cluster of 11260 particles
generated on the square lattice (Meakin 1983a).

elr) m v (6.2)
with @ =~ 0.3 in d = 2. An alternative method is to determine the radius of
gyration of the clusters R, (N) (4.12) as a function of the number of particles

N. Plots of this kind demonstrate that (Meakin 1983a)

Ry(N) ~ N¥, (6.3)



136 Part II: Cluster Growth Models

where v = 1/D =~ 0.585. These results are in good agreement with the
expression (2.18) (Witten and Sander 1981) for the fractal dimension D =
d — a =~ 1.7. Therefore, the mass (number of particles) within a region
of radius R of a diffusion-limited aggregate scales as N ~ RTP which is

equivalent to expression (2.4).

Dependence of the fractal dimension of DLA clusters on the embedding
dimension and the sticking probability was extensively studied by Meakin
(1983). The results for 2 < d < 6 are summarized in Table 6.1. Several
conclusions can be made from this Table. First, it appears that for all d

considered, the following inequalities hold

d—1<D<d. (6.4)

These values are in good accord with the mean-field prediction D = (d? +
1)/(d + 1) to be discussed in Section 6.1.3.

Table 6.1.  The fractal dimension (D) of DLA clusters grown
on 2 < d < 6 dimensional hypercubic lattices. The mean-field
prediction D = (d?+1)/(d+1) is also shown for comparison (Meakin
1983a).

d D (d* +1)/(d+1)
2 1.70 £ 0.06  1.667
3 2.534+0.06  2.500
4 3.31+0.10  3.400
5 4.20+0.16  4.333
6 5.3 5.286

The numerical result (6.4) can be supported by an argument provid-
ing a lower bound for the fractal dimension of diffusion-limited aggregates
(Ball and Witten 1984a). Consider a system of randomly diffusing particles
making one step in unit time, whose number density is p. Let us imagine
the trajectories of these particles as they would have been in the absence of

the aggregate. The density of individual steps after time ¢ is pt, while the
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average number of virtual contacts with the aggregate is N (¢)pt, where N(t)
is the actual number of particles in the DLA cluster. Next we want to esti-
mate the average number of contacts of one trajectory with the aggregate.
To obtain this quantity we recall that the trail of a randomly walking particle
is a fractal of dimension 2 for d > 2 (Section 5.4.1). According to the related
rule given in Section 2.3.1., the fractal dimension of the intersection of two

fractals of dimensions D and 2 embedded into a d dimensional space is

Correspondingly, the average number of contacts per trajectory goes as RPa,

where R is the radius of the aggregate.

If DA > 0, a typical trajectory interscets the aggregate many times.
The number A(t) of first contacts between trajectories and the aggregate is

the total number of contacts divided by the number of contacts per trajectory
~ pt B2, (6.6)

The increase of N(t) in unit time is the same as the total flux onto the
aggregate which is equal to the time derivative of A(¢). Thus, dA(t)/dt =
dN(t)/dt = (dN(t)/dR)(dR(t)/dt). Inserting (6.6) and N ~ RP into this
identity one gets

pRYIFD 4R (t)/dt. (6.7)

Because of causality the growth speed dR(t)/dt has to remain finite in the
limit R(t) — oo, implying the inequality (6.4) we wanted to derive. If the
assumption D > 0 we made earlier is violated, the aggregate is transparent
to the particles, and the growth occurs nearly equally over the entire aggre-
gate. In this way the density has to increase up to a point when Dn becomes

larger than zero and the above considerations hold.

In addition to its dependence on d, the fractal dimension may be

affected by other factors. It is well known from the theory of critical phe-
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Tigure 6.3. A typical off-lattice DLA cluster of 50,000 particles.
A comparison with Fig. 6.1 showing a much smaller aggregate illus-

trates the stochastic self-similarity of diffusion-limited aggregates
(Meakin 1985b).

nomena that the exponents describing the singular behaviour of quantities at
a second order phase transition are not changed under the influence of irrel-
evant parameters such as anisotropy, further neighbour interactions, type of
lattice, etc. This property of the exponents, called universality, is of special
importance. The question of universality of the fractal dimension has been
addressed in the context of DLA as well, by investigating modifications of

the original model.

As a first approximation to this problem the following versions of
diffusion-limited aggregation were considered (Witten and Sander 1983,
Meakin 1983).

i) DLA with sticking probability less than 1. In this variation the particles
stick to the surface with a probability p,, and continue to diffuse with a
probability 1 — p,.

i) DLA with nezt-to-nearest neighbour interaction. In this version the par-
ticles stop moving as soon as they arrive at a site which is next nearest

neighbour to the aggregate.
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iii) Off-lattice DLA. During the simulations of this variant the centre of a
diffusing spherical particle is moved with the same probability to any point
within a distance equal to the diameter of the particles. If a particle is
found to overlap with another one, the particle is moved back to the posi-
tion where it first touched the cluster and is incorporated into the aggregate.
Fig. 6.3 shows an off-lattice DLA cluster of 50,000 particles. This picture
demonstrates stochastic self-similarity of diffusion-limited aggregates when

one compares it with the much smaller aggregate in Fig. 6.1.

The results are given in Table 6.2 (Meakin 1983a). It is clear from the
comparison of Tables 6.1 and 6.2 that the above mentioned modifications are
irrelevant from the point of view of fractal dimension, at least for the sizes
considered. Iowever, as we shall sce later, anisotropy plays a relevant role
in the structure of aggregates. Among other eflects, this will be manilested
in the dependence of the large scale structure of aggregates on the type of
lattice which is used in the simulations, making the question of universality

a delicate problem.

Table 6.2. Fractal dimension (D) of DLA clusters grown using
modified versions of the diffusion-limited-aggregation model. The

notation is the following: pg — sticking probability, 0—[ — off-lattice,

d — embedding dimension and nnn — sticking at next nearest neigh-
bours. If not indicated, py = 1 and nearest neighbour interaction is
used on the square and simple cubic lattices. These results should

be compared with those presented in Table 6.1 (Meakin 1983a)

Model D

d=2, p,=0.25 1.72 + 0.06
d=2, o-1 1.71 + 0.07
d=2, nnn 1.72 £ 0.05
d=3, p,=0.25 2.49 £ 0.12
d=3, o-l 2.50 £ 0.08

The above results seem to be consistent with the picture of a perfectly
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self-similar DLA cluster. However, several observations (some of them dis-
cussed in the next section) indicate that the structure of diffusion-limited
aggregates is more complex and the fractal dimension itself is not enough
to characterize its scaling properties. The first result suggesting deviations
from a standard behaviour was related to the width of the region (active
zone) where the newly arriving particles are captured by the gowing clus-
ter. The active zone can be well described in terms of the growth probability
P(r, N) which is the probability of the event that the Nth particle is attached

to a cluster at a distance r from the origin (Plischke and Récz 1984).

According to the simulations, P(r, N) can be well approximated by
a Gaussian characterized by two parameters 7 and £y, representing the
average deposition radius and the width of the active zone, respectively. For
self-similar growth one expects that for P(r, N) a scaling form analogous
to (5.12) holds, i.e., Fx and &y diverge with the same exponent as N —
co. Instead, simulations of DLA up to cluster sizes N ~ 4000 suggest that
(Plischke and Racz 1984)

N ~ NY and £N ~ NV' (6.8)

with v = 1/D as expected, but with v < v/ in contradiction with the as-
sumption of a single characteristic scaling length typical for the cutoff be-
haviour of a finite-size self-similar object. This conclusion may not hold in
the asymptotic limit, since simulations of considerably larger off-lattice ag-
gregates indicated that v’ tends to approach v as N — oo (Meakin and
Sander 1985). Therelore, it appears that an extremely slow crossover takes
place in the surface structure of DLA clusters as they grow. Similar observa-
tions have been made in the context of anisotropy of cluster shapes induced

by the underlying lattice.

Finally, we briefly discuss numerical results obtained for the fractal di-
mension from a Monte Carlo position-space renormalization (PSRG) group
approach (Montag et al 1985). This method is reviewed in Section 4.3. for
growth processes in general. When applying the renormalization transfor-

mation (4.22) one has to determine the sum of probabilities Py ;# taken over
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Figure 6.4. Extrapolation of the fractal dimension estimates, Dy,
obtained from the phenomenological renormalization method to the
large cell size (b > 1) limit. The calculations were carried out for
three different values of the optimization parameter & (Montag el
al 1985)

i! from Monte Carlo simulations, where Py, is the probability that the 7'th
configuration consisting of N particles has a radius of gyration R, such that
kR, = b/2. Here k is an optimization parameter (Vicsek and Kertész 1981)
and b is the linear size of the cell renormalized into a single site. In prac-
tice, DLA clusters are grown from the centre of a cell and one records the
number of sites in the cluster when its radius of gyration becomes equal to
the cell size. Then the number of such occurrences is determined as a func-
tion of the number of sites in the cluster at that time. The data are fitted
to a Gaussian, and the resulting curve is integrated to obtain Monte Carlo
estimates of the coefficients in the renormalization transformation. Having
determined Y, Pn, the eigenvalue (A) of the transformation (4.22) is cal-
culated numerically, and the fractal dimension is obtained from (4.25). Fig.

6.4 demonstrates that an extrapolation of the fractal dimension values D
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Figure 6.5. Central part of an off-lattice DLA cluster. The tan-
gential correlations as a function of the angle § are determined in
a layer of width 6 2 being at a distance 2 from the centre (Meakin
and Vicsek 1985).

obtained for a given cell size b to the b — oo limit provides accurate estimates

of D in spite of the relatively small cluster sizes used in the calculations.

6.1.2. Anisotropy in DLA

While an ordinary stochastic fractal has an isotropic internal structure, this
is not true for diffusion-limited aggregates which are isotropic only in a crude
approximation. The determination of fractal dimension alone does not allow
us to get an insight into the structural details of DL A clusters, although they
are of interest, since one expects that the diffusion-limited mechanism has a
very specific impact on the correlations and interrelation of branches inside

an aggregate.

To sce this one calculates the tangential correlation function cp(0)

defined in d = 2 by (Mecakin and Vicsck 1985, Kolb 1985)
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en(0) = 5 3 pr(0+0) pr(0"), (6.9)
g

where N is the number of particles in the aggregate, pr(0) = k if there are &
particles in a box of size RAOAR at the point (R,0) and pr(0) = 0 otherwise.
The summation in (6.9) is taken over 8’ values gradually increased by a fixed
small A0’ from 0/ = 0 to 8 = m. According to (6.9), cr(0) describes the
density-density correlations in a layer of width AR being at a distance R
from the origin (Fig. 6.5) as a function of the angle § measured from the
origin of the clusters, so that 0R is the distance separating two particles in

the layer.

The results obtained for off-lattice aggregates are shown in Fig. 6.6. A
finite size scaling analysis shows that asymptotically the tangential correla-
tion function for 8 < 1 scales as a function of # with an exponent ) =~ 0.41.
This exponent is definitely different from a =~ 0.29 which describes the alge-

braic decay of the ordinary radial correlation function (2.14).

-425 | T T T T T B S m— T
-450
-475
-500
-5.25
-550
-575
-6 00
-625

-6.50
675 1 L 1 L L 1 ] 1 I I I I 1
-85 -50 -4.5 -40 -3.5 -30 -25 -20 -5 -0 -05 00 05 10 15

In(8)

T T T

in[cg(8)]

SLOPE =-042— =

T'igure 6.6, Tangential correlations in off-lattice DLA clusters of
50,000 particles. The results were obtained by averaging over the
interval § R = R 4+ 0.05R, where for the curves A — D the radius I?
was respectively equal to 75, 150, 225 and 300 (Meakin and Vicsek
1985).

It follows from | > « that the density correlations around a particle

being at point R depend on both r (denoting the distance from the given
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particle) and the local angle ¢, where o = 0 in the radial direction R as it
is shown in Fig. 6.5. Let us assume that the density correlation function has

the form

gl

¢(r,p) = por "I cos® p + pyr ™t sin® ¢, (6.10)
where po and p; are constants and «) describes the decay of c(r,) in the
radial direction. The relation (6.10) provides a simple example for a function
with a power law decay consistent with the numerical data. Using (6.10) for
the calculation of the fractal dimension in a manner analogous to (2.17) we

get

a 2m
N(a) ~ fo rdrj; c(r,p)dip ~ ma® ¥ (po + pra®I ™), (6.11)

where N (a) is the number of particles within a circle of radius a. The [ractal
dimension is given by
In N
D= lim In N{a) = lim 2 — )+ Di(a) =2 - ¢ (6.12)
a—+00 Ina a—oo
with Dy = [In@(po + p1a®1~ %4 )]/ Ina representing a slowly decaying correc-
tion to scaling (Meakin and Vicsek 1985).

The main conclusions one can draw on the basis of the above results
are the following: i) diffusion-limited aggregates are not tsotropic self-similar
fractals, instead, they possess a special kind of self-aflinity with direction
dependent scaling of the density correlations, ii) The fractal dimension is
determined by the exponent describing the decay of radial correlations, and
finally, iii) the observed slow convergence of D to its asymptotic value is due

to the correction term D, related to « .

The above discussed anisotropy originates in the fact that DLA clus-
ters grow by developing branches oriented away from a fixed origin. This
type of symmetry shows up in the behaviour of the three point correlation
function as well (Halsey and Meakin 1985). The results of the related simula-

tions indicate that while the decay of ¢(r) is determined by the same exponent
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throughout the cluster the structure is not homogeneous. In particular, the
amplitude of the power law decay at points close to the origin is larger than

elsewhere.

Another kind of anisotropy is manifested in the studies of the over-
all shape (or envelope) of DLA clusters. Results concerning the response of
diffusion-limited aggregates to anisotropy show that the anisotropy of both
the underlying lattice and the sticking probability represents a relevant pa-

rameter changing the general appearance of DLA clusters drastically.

Figure 6.7. A representative DLA cluster grown using anisotropic
sticking probability (Ball et al 1985).

One way to impose anisotropy is to make the sticking probability di-
rection dependent (Ball et al 1985). This can be achieved on a square lattice
by differentiating between two possible cases: i) the particle sticks with prob-
ability 1 if the lelt or right nearest neighbour sites to its actual position are
occupied, ii) otherwise, it only has a probability ps; < 1 of sticking. This
modified version of DILA leads to highly elongated clusters, as it can be seen
in Fig. 6.7. According to the simulations the characteristic lengths of the
aggregate X and Y in the easy (z) and hard (y) direction of growth increase
as X ~ N% and Y ~ N7 in the limit N — oo. Since X X Y ~ N, the
area covered by the cluster grows linearly with N which means that for any
applied uniaxially anisotropic sticking probability the cluster will eventually
grow into an object homogeneous on a large scale. All of these findings are

in accord with a theoretical approach discussed in the next Section.

Although relatively small DILA clusters grown on various lattices of the

same dimension were found to have the same radius of gyration exponent v,
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IFigure 6.8. Envelope of a very large DLA cluster (consisting of
4 x 10° particles) generated on the square lattice. The effect of the
lattice anisotropy is shown by plotting the last 2 X 10° particles
attached to the cluster (Meakin et al 1987).

simulations carried out on a larger scale indicated that the symmetry of
the underlying lattice may affect the asymptotic behaviour of aggregates.
Growth on the square lattice was studied in more detail from this point of
view, and the results confirmed the relevant role of the lattice anisotropy
(Meakin et al 1987) .

In order to sce how the crossover to the N — oo regime takes place
particularly large clusters (consisting of 4 x 10° particles) have to be generated
using the algorithm described in Appendix A. The anisotropy of the resulting
cross-like structures can be demonstrated by plotling only the regions where
the last 2 x 10% particles were added to the cluster. Fig. 6.8 shows a typical
configuration of these active places visualizing the envelope of a very large
diffusion-limited aggregate. It is apparent from this figure that as DLA
clusters grow larger their shape becomes more similar to that associated
with conventional dendritic growth which is known to be governed by the

anisotropy of the surface tension.



Chapter 6: Dillusion-Limited Growth 147

The above observation can be made quantitative by determining the
characteristic sizes of the four main arms of the cross-like structure (Meakin
et al 1987). Let us define the exponents v and v through the scaling of
the average length

| ~ N¥i (6.13)
and average width
w ~ NI (6.14)

of the arms as a function of the number of particles in the clusters, N. The
quantity [ can be estimated from the maximum of the cluster radius, while w
can be associated with the mean deposition distance from the nearest of the
lattice axes (crossing at the origin). The crossover to the behaviour corre-
sponding to (6.13) and (6.14) is particularly slow. However, approximating

the behaviour of R,.,. with a curve of the form

Rz = aNYI(1+bN™2) (6.15)

provides a relatively good fit to the data with y = % and with some con-
stants a, b and A not relevant from the present point of view. A similar
analysis for X gives v| =~ 0.48 =~ % These results correspond to at least
two independent length scales describing the large scale behaviour of DLA

clusters and, correspondingly, one expects that

w/l— 0 for N — oo. (6.16)

The above expression means that the angle at the tip of an arm should
go to zero in the asymptotic limit. This angle plays an important role in a
theoretical approach (next Section) based on solving the Laplace equation for
a region surrounding a tip of idealized geometry. According to this theoretical

model the rate of growth at the maximum radius is determined by the angle
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0 through dRpmaz/dN ~ R;Zéz"o, where 7 — ¢ is half of the tip angle. The
dependence of v on In N as determined from the simulations is surprisingly
linear, but it is not inconsistent with limiting values of < 180° (thin cross)
for large N and =~ 27° (D = 1.70) for relatively small N. However, it should
be pointed out that the investigation of the noise-reduced version of DLA
(Section 9.2.2.) indicates that (6.16) may be violated for sizes which are

beyond those accessible by direct simulation.

The discussion of lattice induced anisotropy raises the question of the
asymptotic shape of DLA clusters grown on other lattices. According to the
simulations on the triangular and hexagonal lattices no signs of a crossover
to a star-like overall form could be observed up to cluster sizes of 80,000 par-
ticles. The values obtained for the fractal dimensions indicat that diffusion-
limited aggregates generated on these lattices have fractal dimensions nu-
merically indistinguishable off-lattice DLA clusters (Meakin 1987).

These results suggest that during the process of aggregation there is
a competition between anisotropy (provided by the lattice) and randomness
(due to the stochastic motion of the particles) both having a relevant impact
on the asymptotic behaviour (more about such questions can be found in
Section 10.1.2.). The triangular lattice is not anisotropic enough (it has too
many axes) to force an arm to grow in a given direction. Consequently, there
seems to exist an upper limit for the number of distinct main arms growing
out from the central region of a difTusion-limited aggregate. This problem can
be attacked by introducing various kinds of anisotropies and estimating the
number of arms which can grow in a more or less stable fashion. The present
consensus is that in the asymptotic limit diffusion-limited aggregates are not
likely to have more than 5 main arms in two dimensions. In particular, off-
lattice DLA clusters might acquire the shape of a 4 or 5 fold star as NV — oo
(Ball 1986, Meakin and Vicsek 1987). However, up to sizes simulated so
far, the overall shape of an off-lattice aggregate (like those generated on the
triangular and hexagonal lattices) does not seem to deviate from a circle

significantly.
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6.1.3. Theoretical approaches to DLA

Diffusion-limited aggregation is a far from equilibrium phenomenon with no
standard theory founded on first principles only. The approaches discussed
in this Section are based on various assumptions depending on the partic-
ular theoretical model considered. The most relevant difficulty is to take
into account the spatial fluctuations characteristic for a DLLA cluster in an
appropriate way. This problem is usually treated by assuming some kind of
average behaviour for such properties of a cluster as the distribution of its
density, the penetration length of an incoming particle, or the aggregate’s

envelope.

There are two main types of mean-field appréach to DLA. The first
class is analogous to that introduced by Flory (1971) to describe the struc-
ture of linear polymers. In the Flory approximation one calculates the free
energy of a cluster as a function of N and its lincar size neglecting density
fluctuations. Then the fractal dimension is obtained from the condition that
the free energy has to be minimal. For a far from equilibrium system the con- '
struction of free energy and its minimalization do not represent well founded
principles. However, following this line it is possible to obtain for the fractal
dimension a simple expression (Tokuyama and Kawasaki 1984)

d2 + 1

D= 6.17
d41 ( )

which gives values surprisingly close to the simulation results.

An alternative method is to express the growth rate of a DLA cluster
through the screening or penetration length &, where £ is the average depth
of the layer at the surface of a cluster which is accessible for an incoming
particle (Muthukumar 1983). In fact, the result (6.17) was first obtained
by this approach. As an example of such mean-field theories let us consider
the following heuristic argument (Honda et al 1986). We assume that the
particles follow a trajectory of dimension D,, (it can be a Levy walk or walk
on a fractal, see previous Chapter) and for convenience denote the number

of particles in a layer of width dr being at a distance r from the origin by
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which reduces to (6.17) for Dy, = 2. For d = 1 (ballistic aggregation) the
above expression yields D = d in accord with other results. The comparison
of (6.23) with estimates obtained by other approaches for various d and dy,

values leads to reasonable agreement as well.

Investigation of the growth probability scaling near the tips of the clus-
ters represents an important and far reaching contribution to the theoretical
description of diffusion-limited aggregation (Turkevich and Scher 1985, Ball
et al 1985). In this approach the analogy between the probability of finding
a particle at a given point close to an array of traps and the distribution of

electrostatic potential ¢ around a conductor (see Section 9.1.) is utilized.

Consider a DLA cluster of N particles having a maximum radius E.
The probability of finding a diffusing particle in a certain site I outside the
cluster satisfies the Laplace equation V?p(F) = 0 with the boundary condi-
tion p = 0 on sites adjacent to the cluster. The flux of particles onto the
cluster at a point To on its surface is proportional to Vp(¥y). The electro-
static analog of this problem is a charged conductor having the shape of a
cluster. In particular, the local electric field E = —Vé (or the surface charge
density) is the analog of the flux of particles dR/dt = (dN/dt)/(dN/dR)
onto that point, where dN/dt is the total flux of particles onto the cluster
corresponding to the total charge, and dN/dR ~ RP-1,

Clearly, if one is able to obtain an expression for dN/dR from elec-
trostatics, comparison with the above relation for the same quantity should
provide an estimate for D. It is quite natural to assume that the most ad-
vanced parts of a cluster (where the deposition of the particles takes place)
can be represented by a cone of exterior half angle ¢ (Fig. 6.9). This is
an idealization of the actual situation, however, it reflects one of the basic
properties of DL A clusters: the active surface consists of advanced tips cor-
responding to a local singularity of both the geometry and the deposition
probability.

The problem of finding the solution of the Laplace equation for a
conducting infinite cone can be solved exactly via conformal transformation

giving
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cluster -

Figure 6.9. Modelling the region around the tips of DLA clusters
with a cone of exterior half angle (.

¢(r,0) = C r™ (29 cos(md/2¢0), (6.24)

where C is a normalization factor. Thus the steady-state flux of diffusing -

particles onto the cone edge at a distance A from its tip is

V() = C;—SA“/W)—I. (6.25)

One obtains dN/dt by integrating the above expression from A = 0 to some
large cutoff at A ~ R and dR/dt by integrating up to a small cutoff A ~ a,

where @ = 1 is the size of diffusing particles or the lattice spacing. We find
from (6.25) that dN/dt ~ C R™/(2¢) and dR/dt ~ C which leads to

dN _ dN/dt
dR  dR/dt

~ R™/(29) (6.26)

Integrating the above expression gives for the fractal dimension

(6.27)

which is the main result of the probability scaling approach in two dimensions
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dn(r)

I dr ~ rP=1dr, (6.18)

p(r)dr =
where n(r) is the number of particles within a sphere of radius r. Suppose
that AN <« N new particles are added to the cluster. Then the cluster

radius increases by AR so that

N+ AN ~ (R + AR)P. (6.19)
. R+AR
Since N + AN ~ [, [p(r) + 6p(r)]dr, from (6.18) and (6.19) we get for
the increment of the number of particles within a shell at a distance r from

the origin
6p(r) ~rP~1 (6.20)

with a coefficient proportional to AN. Next one makes the heuristic assump-
tion that this increase of p(r) is proportional to the volume of the empty

regions in which the particles can diffuse before deposition

Sp(r) ~ &4(r). (6.21)

To proceed we need to obtain an estimate for £, This can be done by taking
into account that a particle makes, on average, Ny ~ £Pv steps before hitting
the cluster. The number of steps on the surface of this “cloud” of steps is
then proportional to Ny, , ~ ¢P+=1_0On the other hand, the average density
of particles belonging to the cluster grows with r as o(r) ~ rP~4, From the

condition that the actual deposition takes place when Ny, so(r) = 1 one gets
£(r) ~ r@=D) (Dw=1) (6.22)

The final result is obtained by comparing (6.20), (6.21) and (6.22)

_d2+Dw—1

D= 6.23
d 4+ L= 1 ( )
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(Turkevich and Scher 1985).

Let us discuss the above results considering various assumptions for
0. In the previous Section DLA clusters with anisotropic sticking probability
were shown to evolve into an elongated quadrangle becoming increasingly
needle-like with growing IN. This geometry corresponds to p, = m and
py = % in the limit N — co, where ¢, and p, are exterior half angles of
the cones oriented in the direction of easy growth (z) and hard growth (y),
respectively. Then expressions analogous to (6.26) applied to the description

of the tip distances in the z and y directions yield (Ball et al 1985)
X~N¥® and Y ~N!/3 (6.28)

in complete agreement with the simulation results.

It is less clear what is the appropriate value of ¢ or ¢ in (6.24) when one
is interested in D of ordinary diflusion-limited aggregates. The assumption
§ = % corresponding to a growing square on the square lattice gives for the
fractal dimension D = %, a good estimate coinciding with the prediction of
the mean-field approach. For the unbiased off-lattice case there is no direct
way to determine 8, and (6.27) can be regarded as a definition for an effective

angle 0g7¢ ~ 0.597 =~ 106° through the known fractal dimension D =~ 1.71.

The above method can be generalized to dimensions higher than d = 2
(Turkevich and Scher 1986). In this case the fractal dimension can be written
in the form D(d) = 2 + w, where w is the degree of the ordinary Legendre
function, and it is determined from an implicit equation derived from the
condition that the right-angled hypercone should be at zero potential. The
case of d dimensional cross-shape clusters can also be described by this ap-
proach using # = 0 for the angle of the hypercone representing the tips of

the needle-like arms of the aggregate. The corresponding result is

w:{(d—a)/z, if1<d<3, (6.20)

e, if d >3

Finally, it should be noted that a number of further approaches have been ap-
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plied to the theoretical description of DLA. Position-space renormalization
group (PSRG) (see Section 4.3.) represents a standard tool for calculat-
ing non-integer exponents characterizing the singular behaviour of various
quantities in systems exhibiting equilibrium phase transitions (Stanley et al
1982). However, its application to DLA raises a number of unresolved ques-
tions, especially, when small cells are used (Gould et af 1983). Small cell
renormalization has also been used to calculate the multifractal spectrum
of growth probabilities (Nagatani 1987a, 1987b). In fact, the actual values
for D are usually not accurate, and depend too strongly on the particular
(sometimes quite arbritrary) rules assumed in the course of renormalization.
In a dillerent approach first the number of main arms m in a cluster was
determined from a stability analysis (Ball 1986). Then this number was used
to calculate D using the probabilily scaling theory, assuming that the cluster
has a polygonal shape with m tips. Here it is not clear whether the shape
of a cluster can be simultancously associated with both a star-like object
and a convex polygon. The scaling of the length and the width of the arms
with NV has also been addressed using conformal transformation and scaling

arguments (Szép and Lugosi 1987, Family and Ilentschel 1987).

6.1.4. Multifractal scaling

According to the simulations and the theoretical arguments discussed in the
previous Secctions the growth of a DLA cluster is governed by the distri-
bution of the quantity p(r;), where p(F;) is the probability that the next
growth event takes place at the site being at T, adjacent to the cluster. This
growth-site probability distribution (GSPD) is a very complex function chang-
ing rapidly in space due to screcning (Halsey et al 1986, Amifra,no et al 1986,
Meakin et al 1986a). Let us imagine that we proceed along the surface of
an aggregate and we record p(r;) as a function of the arc length. Whenever
we approach a tip in the outer region of the cluster, the growth probability
associated with the actual position sharply increases since an advanced tip
captures the diffusing particles with a large probability. Leaving this region
one may get into a deep {jord which is almost completely screened by the

surrounding branches, here p(r}) is practically equal to zero. Getting close
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Figure 6.10,
deposit (grown on a strip of width 512 lattice units) which were
contacted by the 5 x 10° random walk probes at least 1, 10 and 100
times (Meakin 1987a).

This figure shows those sites of a diffusion-limited

to another tip the growth probability becomes much larger again.

This is demonstrated in Fig. 6.10, where only those perimeter sites
(sites adjacent to the aggregate) are shown which were hit by randomly
walking probe particles at least 1, 10 and 100 times (Meakin 1987a). In
general, the exponent describing the singular increase of p(r;) depends on the
local configuration close to a given tip. Therefore, it is quite natural to look
at GSPD as a fractal measure (see Chapter 3.) with infinitely many types of
singularities. Probing the surface with many random walks is equivalent to
the estimation of the corresponding solutions of Laplace’s equation (Section
9.1.) which are usually called harmonic functions. Consequently, the name

harmonic measure is also used for GSPD.

In addition to describing the distribution of growth probabilities, the
harmonic measure is relevant to the physical properties of a fractal. In the
preceeding Section it was discussed that p(r}) is proportional to the local
charge density on a DLA, assuming that the aggregate is a charged electrical
conductor. Similarly, the absorption rate of a DLA shaped catalyzer repre-
senting a sink for diffusing particles can be interpreted in terms of GSPD.
Other physical processes may depend on the structure of the cluster in a
different manner giving rise to fractal measures of various types associated

with the aggregate. Ilowever, in most of the cascs the freshly grown parts of
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the aggregate determine its physical properties and those are the the corre-
sponding fractal measures which provide a detailed description of this surface

region.

To calculate the harmonic measure and its characteristic properties
one can follow two numerical methods. i) After having generated a DLA
cluster one releases further particles (Halsey et al 1986, Meakin et al 1986a)
whose diffusional motion is simulated by the same technique (Appendix A)
which is used for growing the aggregate. These probe particles, however,
are eliminated when they arrive at the surface, and a record is kept of how
many times each of the surlace sites is contacted in this way. The normal-
ized number of contacts is then regarded as the growth probability. The
main disadvantage of this method is that it can only be used to obtain in-
formation about the harmonic measure in those regions where the measure
is large cnough (places with p(f;) << 1 are not visited by a sufficient number
of trajectories). Consequently, only quantities determined by the positive

moments of the probability distribution can be calculated.

Therefore, more complete data can be obtained by ii) solving the
Laplace equation V2¢ = 0 with the boundary conditions ¢ = Const on
the cluster and ¢ = 0 far from it. Then the growth probabilities are given
by p(T;) ~ |V¢(F;)| on the basis of the electrostatic analog (preceeding Sec-
tion). For small clusters the Green’s function method can be used to solve
Laplace’s equation (Amitrano et al 1986) yiclding GSPD free of any effects
caused by the finite distance of the boundary with ¢ = 0 from the aggre-
gate. For larger clusters, which are usually needed to see the true scaling
behaviour, it is more practical to solve the discrete version of the Laplace

equation by relaxation methods (Hayakawa et al 1987).

After having determined the set of p(r;) values, the gencralized di-
mensions Dy and the f(«a) spectrum of fractal dimensions corresponding to
the singularities of strength a can be calculated using the expressions (3.11),
(3.13) and (3.16) given in Chapter 3. For this purpose one has to cover the
cluster with boxes of size ! and sum up the p(r;) values within the ith box to
obtain the accumulated probability p; associated with it. Then the exponent

describing the scaling of the gth moment of the harmonic measure is given
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In Slpi (/)17
Dy = lim :

i/L—woqg—1 In(l/L) ° {6.30)

were L is the linear size of the aggregate. To evaluate (6.30) one can either
change [ for a fixed cluster, or keep [ = 1 and consider the growth probabil-
ities for increasing L values. Note, that in principle both of the conditions
a/l < 1 and !/L <« 1 should be satisfied during the calculations to produce
results exactly corresponding to the multifractal spectrum as defined for fi-
nite fractals (with no lower cutoff length scale). In practical calculations
these conditions can not be satisfied because of computer time and memory
limitations. Due to (6.30) the log-log plots of Y. p! versus [/L have a slope
(g — 1) D, providing an esimate for the generalized dimensions. Tig. 6.11
shows the results for two-dimensional off-lattice aggregates (Hayakawa et al
1987).
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Figure 6.11. The generalized dimensions Dq calculated for off-
lattice DLA clusters consisting of 3000-70000 particles (n = 1). The
data obtained for the dielectric breakdown model (7 = 2) and the
disaggregation model (BJ) will be discussed in Sections 6.2 and 6.3
(Ilayakawa et al 1987).

The obtained estimates can be examined using a few theoretical predic-
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TFigure 6.12. The spectrum of fractal dimensionalities, f(a), for
the growth site probability distributlion of ofl-lattice DL A clusters
(layakawa et al 1987).

tions. The value D, called information dimension has particular importance.
It is equal to the fractal dimension of the set of boxes which give the domi- -
nant contribution to the first moment, i.e., to the sum of the box probabili-
ties. According to a rccent mathematical theorem, in d = 2 the information
dimension of the harmonic measure is equal to 1 (Makarov 1985), there-
fore, most of the measure is concentrated on a fractal of dimension D; = 1.
Furthermore, the exponent of the ¢ = Oth moment has to be equal to the
fractal dimension of the substrate on which the measure is defined. These
predictions are consistent with the numerical data of Fig. 6.11: Dy ~ 1.64
(Dpra = 1.7) and D, ~ 1.04). Finally, D3 =~ 0.85 is in good agreement with
a recent theoretical result implying for DLA 2D3 = D (IHalsey 1987).

The f(«) spectrum can be determined through the Legendre trans-
formation of Dy according to the expressions (3.13 — 3.15). The result is
presented in Fig. 6.12. This continuous function demonstrates that the har-
monic measure divides a DLA cluster into interwoven fractal subsets with
dimensions between 0 < f(a) < Do = D each characterized by the corre-

sponding singularity of strength ag < a < @ o.

The top of the curve in I'ig 6.12 is at Dy = D ~ 1.62 in reasonable
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agreement with the simulations aimed at calculating the fractal dimension
only. Another possibility for comparison with theoretical results is provided
by expression (6.27) connecting the fractal dimension of the cluster with
the effective angle of the cone representing the tip of an advanced branch.
Writing (6.27) in the form D = 1+ z and (6.25) as V¢ ~ 1==1 one can see
that the integral of V¢ ~ p; (which is the accumulated probability in a box
of size [ placed onto a tip) scales with the exponent z. Thus, assuming that
the fractal dimension is determined by tips having the strongest singularity

one obtalns
D=1+ ag. (6.31)

The value ag, ~ 0.7 in Fig. 6.12 is in good accord with the above prediction
(D) o= 1.7).

The definitions (3.2) and (3.3) allows one to make an attempt to plot
f(c) directly from the data obtained for the growth probabilities p(F;). As-
suming ! = a = 1 and using as a measure of the linear size MYD ~ [ instead

of L one can combine (3.2) and (3.3) to give

In[pN (p)] In

where pN(p)dlnp = [dN(lnp)/dInp]Inp is the number of sites with growth
probabilities between Inp and Inp + dlnp with dp < 1. If there exists a
unique scaling function f(a), the data obtained for In[pN(p)]/In M plotted
against Inp/In M for various M should fall onto the same curve. Of course,
this procedure should give the right exponents only if the approximation
[ = 1 can be justified. Very recent results indicate that the condition I > a

has to be satisfied to get reliable results, where a is the lattice constant.

In Fig. 6.13 the above scaling is tested using data for pN(p) deter-
mined from probing the surface of two-dimensional DLA clusters with 10°
diffusing particles (Meakin et al 1986a). The collapse of the results is not
particularly good but clearly improves as the cluster mass increases. The

maximum is close to 1.0 as expected, since it should be equal to f(amaz) = D
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Figure 6.13. Result of an attempt to rescale the data for the
growth probability distribution, N(p), into a single curve corre-
sponding to D! f(a) (Mecakin et al 1986a),

when In L = D~ ! In M is used to represent the size of the system. It can also
be seen in Fig. 6.13 that the maximum growth probability p,,.. scales with

the size of the cluster according to

Pmaz ™~ A{-E (6.33)

with 6 ~ 0.4 which is predicted by the probability scaling theory (preceding
section) through the expression § =1 —1/D.

In Section 3.4. it has been shown that apart from the multifractal
behaviour of a singular measure defined on a fractal, a fractal substrate
itself can also exibit multifractal scaling of its mass. It is presently an open
question of great interest whether randomly growing structures like DLA
clusters are such geometrical multifractals. The first steps in the direction
of treating this problem were concerned with the mass distribution in two-

dimensional aggregates (Meakin and Havlin 1987).

To analyse the mass distribution one chooses a site randomly on a
large off-lattice aggregate and determines P4(r) which is the probability of
having s sites belonging to the cluster within a distance r of the given site.

Then the fractal dimension is given by
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(s) = /0 " B, [l ~ ¥, (6.34)

Next we assume that P,(r) has the simplest scaling form yielding (6.34)

Py(r) ~ %f (3) (6.35)

1

where the factor s7" is needed to satisly the normalization condition of Ps(r)

/ " py(r)ds = 1. (6.36)

Tt is important to note that (6.35) is qualitatively different from the expres-
sion one would have for a homogeneous object, where the number of particles
within a box of given size is described by the Poisson distribution. In the
large r limit the Poisson distribution becomes delta function-like on a log-log
plot, while (6.35) results in an invariant shape. If (6.35) is valid the mo-
ments of the distribution can be easily calculated (changing the variable of

integration to s = z/r?)
oo
(s7) ~ [ s f(s/rPYds ~ r?P for ¢ > 0, (6.37)
0

therefore, all of the positive moments can be expressed as powers of the first

one.

However, the simulations of 2d off-lattice DLA (D =~ 1.7) do not seem
to lead to a satisfactory agreement with the above scaling picture based on
the assumption of a single exponent D. Attempts to rescale P;(r) according
to (6.35) onto a universal curve failed, as is shown in Fig. 6.14. The best
collapse of the data was achieved using Py(r) ~ s7%9f(s/r1:57), which is
clearly inconsistent with (6.35). In addition, the ratio (s?)/{s)? was found to
depend on r: another result indicating that the mass distribution within a
DLA cluster can not be described by simple scaling of the type (6.35). Thus
one is led to the conclusion that geometrical multifractality of DLA clusters

should be investigated further with the help of the formalism given in Section
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Tigure 6.14. Attempt to scale the quantity Ns(r) = N(r)Ps(r)
determined for various r (a) into a single curve (b), where N(r) is
the total number of circles of radius r considered in the numerical
experiment (Mcakin and Iavlin 1987).

in Section 3.4.

6.2. DIFFUSION-LIMITED DEPOSITION

The deposition of materials onto surfaces to form layers with specific
properties has become an important technology with a very broad range of
applications. In practice, deposition is carried out under conditions which
allow various complex physical and chemical processes to occur. Diffusion-

limited deposition (Meakin 1983h, Racz and Viesck 1983) represents a rele-



Chapter 6: Diflusion-Limited Growth 163

2048 LATTICE UNITS

Figure 6.15. Torest of clusters grown on the square lattice along
a 300 lattice unit long straight substrate. Because of screening,
dilTusion-limited deposition leads to a power law distribution of
tree sizes (Meakin 1983b).

vant limiting case, and its investigation is expected to be helpful in under-
standing more complicated systems used in commercial processes. The main

difference between free aggregation and deposition is in the boundary condi- |
tion: In the latter case a d, dimensional surface of nucleation sites is present
instead of a single sced particle. As the simulations show (Fig. 6.15) the
presence of the surface and the competition of the incoming particles result
in a forest of tree-like structures. For our purposes a cluster can be defined
as a collection of particles connected to the same nuclealion site through

nearest neighbours.

Let us first summarize the results of simulations concerning the global
structure of deposits grown in two dimensions along a linear substrate of
length L. The distribution of particle density is very inhomogeneous in the
direction perpendicular to the substrate. This can be studied by calculating
the normalized number of particles at a height h, p(k) = L1} _p(h,z),
where p(h,z) = 1 if the lattice site at (h,z) is filled and is equal to zero
otherwise. The plot of Inp(h) versus logh suggests that for h < L the
density p(h) behaves as (Meakin 1983b)

p(h) ~ A= (6.38)
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with « =~ 0.29. IHere || denotes the direction parallel to the direction
of growth. An effective fractal dimension can also be defined for deposits

through the relation
N(h) ~ D=2 (6.39)

where N (h) is the number of deposited particles within a distance A from the
substrate. Since N(h) ~ foh ke p4=da=14h the above effective dimension
is Dy = d — «), in analogy with (2.18). Assuming that the correlations in
the deposit decay in the same way as in a DL A cluster, we conclude that
the elfective dimension of deposites coincides with that of diflusion-limited

aggregates (D, = Dpra).

The density correlations within a layer of a two-dimensional deposit
provide relevant information about the internal structure of the deposit. To
investigate the correlations along the lateral direction z (parallel to the de-

position line) one can use the expression (Meakin et al 1988)
1
gnlz] = Zg;p(h,a:—l—x")p(f‘a,:z:"). (6.40)

The results for the lateral correlation function are shown in Fig. 6.16a. The
¢p(z) curves exhibit a number of interesting features. For all h values they
have a well pronounced minimum followed by a less apparent maximum.
The position of the minima z,.;, (k) depends on the height at which the
correlation function was calculated. The corresponding log-log plot supports

that the position of the minima scales with h according to an exponent ~ 0.8.

One can also attempt to scale the correlation function ¢ () measured
at different heights (k) onto a common curve. Fig. 6.16b shows that the

correlation function can be described quite well in terms of the scaling form

ch(z) ~ h=% f(z/h°), (6.41)

where the exponents a) and § have values of 0.275 and 0.8, respectively.
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Tigure 6.16. (a) Density correlations c¢p(z) in the lateral (z)
direction within a layer of a two-dimensional deposit being at a

distance h from the substrate. (b) The data for various h are shown

to collapse into a single curve using the scaling form 6.41 (Meakin

et al 1988).

FFinally, the behaviour of ¢j(z) is nontrivial for z < h. The slope of
the curve seems to approach the limiting value e; =~ 0.42 which indicates
that the decay of correlations in the lateral directon is faster than in the

direction parallel to the growth, and

cp(z) ~ 7%t for 2= 1 (6.42)
The above results suggest that the trees are anisotropic. and that o and o
are close to the analogous exponents determined for the radial DLA clusters.

Therefore, it is of interest to calculate the dependence of mean tree height
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which leads to the scaling law (Rdcz and Vicsek 1983)

r=2—g¢ (6.46)

In contrast to the cluster size distributions determined for homogeneous equi-
librium systems (where 7 > 2), for diffusion-limited deposition the inequality
7 < 2 must hold in order to have a diverging sum in Eq. (6.45) if N goes to
infinity. Because of 7 < 2 the main contribution to the sum comes from the

s > 1 clusters and the use of the integral for its evaluation is justified.

Assuming that the mean cluster size

s=21 (6.47)

scales with N as S ~ N7 the substitution of (6.44) into (6.47) results in
~ = 1/(2—7) which is again different from the expression v = (3 —7) /o valid

for percolation systems.

An important step in completing the description of scaling in dif-
fusion-limited deposition is finding relationships connecting the exponents
Ds, o), a1, v, vi characterizing the geometry of deposits and the expo-
nents o and 7 describing the scaling behaviour of the cluster size distribution.
The following argument based on scaling assumptions can be used to estab-
lish a relation connecting the two types of exponents. Since the number
of clusters containing s particles decays as ny ~ s~7 one can write for the

number of trees having a height larger than hg

(IHT)/U”
Nh>h, ™ n3>ﬂn o= h’() ]

(6.18)

(3
S=z. N

K
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(H) and width (W) on the number of particles s in the trees. The simulations

indicate that for s > 1,
H ~ s and W ~ g%+ (6.43)

with the effective exponents v =~ 0.65 ~ 2/3 and v ~ 0.56.

An important aspect of the deposition process is that it produces a
statistical ensemble of aggregates in a natural way. This forest of trees can
be characterized by the cluster size distribution function, ng(N) which is
the number of trees containing s particles after N particles have been de-
posited. Both n,(N) and N are normalized quantities and obtained from
the corresponding total number of clusters and particles after a division by
the area of the d, dimensional surface onto which the deposition takes place.
In large DLA clusters the density correlations decay algebraically similarly
to the decay of magnetic correlations within large droplets in an equilibrium
system near its critical point. Thus we expect that ngs(N) exhibits a scaling
behaviour analogous to that of the droplet size distribution in thermal criti-
cal phenomena (Fisher 1967) or to the cluster size distribution in percolation

models (Stauffer 1985).

The related simulations (Racz and Vicsek 1983, Meakin 1984) suggest
that, indeed, the size distribution in diffusion-limited deposits can be well

represented by the scaling form

no(N) ~ s f (%;) , (6.44)

where f(z) is a cutoff function with f(z) =~ 1 for £ < 1 and f(z) = 0 for
z > 1. The above scaling behaviour is assumed to be valid for large s and N
values. The expression (6.44) can be used for the derivation of a scaling law
between the exponents 7 and o. The total number of particles per nucleation

site, N, can be calculated through n,(N) as follows
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where sg is the number of particles in a tree of height ho. Using (6.48) the

density of the deposit at a distance h from the substrate can be expressed as

p(R) ~ nhsh, m(ho), (6.49)

where

vy
kg

m(ho) ~ / cp(z)zddz ~ h?(d'”“l)/%l (6.50)
0

is proportional to the number of particles in a layer of a tree at a distance hg
from the substrate, and for the correlation function describing the density

decay (6.42) was assumed. Substituting (6.38), (6.48) and (6.50) into (6.49)

we get

T=14+ oy + (ds — ar)vy (6.51)

which is a scaling relation among the exponents introduced earlier. TFor
oy =a =a=d— Dy and vy = vy =1/D, the expression (6.51) leads to
(Récz and Vicsek 1983)

ds
T=14+ — 6.52
Z (652
which relates the exponent describing the power law decay of the cluster size
distribution to the fractal dimension for the case of deposits with isotropic

scaling.

The above theoretical predictions have been tested by various ap-
proaches. The simulations of diffusion-limited deposition led to a cluster
size distribution decaying as a power law for intermediate values of s and
decreasing much faster for s larger than a characteristic value depending on
N. According to large scale numerical experiments (Meakin 1984) the value
of 7 for d; =1 and d = 2 is 7 =~ 1.55 in good agreement with both (6.51) and
(6.52), since they predict 7 ~ 1.5 (with | = 0.3, @1 = 0.4, 1| = 2/3 and
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TFigure 6.17. Deterministic fractal model for diffusion-limited
deposition (Vicsek 1983).

vy =1/2)and 7 ~ 141/1.7T ~ 1.59. For d, = 2 and d = 3 the value 7 ~ 1.84
was obtained in the simulations, while (6.52) would give (with D, =~ 2.5)
T o2 J.B.

Another possibility for checking the validity of the scaling form (6.44)
and the scaling laws (6.46) and (6.52) is to calculate the corresponding
quantities using a deterministic fractal model for diffusion-limited deposi-
tion (Vicsek 1983). According to this approach the deposit is generated by a
recursion whose stages are demonstrated in I'ig.6.17. The resulting structure
has a geometry analogous to the deterministic fractal shown in Fig. 2.1a.
In order to obtain the cluster size distribution, one should note that the
largest clusters generated in the k-th stage of the deposition process contain
Sraun k) Zf 57~1 = 5% /4 particles and the number of these clusters per nu-
cleation site is 37%. This means that the cutoff function in (6.47) for this
case is the step function 0(1 —4s/5%). Therefore, the cluster size distribution

can be written in the form

ng(N) ~ —=—8 (1 " “—‘9) , (6.53)

where we took into account that the normalized number of clusters of size

5!/4 (1 < k) is 2/3"*! and that these delta function-like peaks are separated
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from each other by a distance proportional to 5'. Since s; ~ 5'/4 and N =
(5/3)* one recovers the scaling form (6.44) with 7 = 1+1In3/In5 and o =
1 —1In3/In5, so that the scaling law (6.46) is satisfied. Since D =1n5/1In3,

the scaling relation (6.52) is also fulfilled in the deterministic model.

6.3. DIELECTRIC BREAKDOWN MODEL

This model was introduced in order to simulate a variety of dielectric break-
down phenomena which range from atmospheric lightning to electric treeing
in polymers. Although the actual physical processes can be quite different
in these phenomena, the global properties of the resulting discharge patterns
are very similar: they have a randomly branching, open structure resembling

DLA.

Before describing the model let us outline the phenomenology of the
discharge process. If an insulating material is exposed to an electric field
exceeding a critical value, a conducting phase is created because a large field
produces mobile charge carriers. The motion of the interface is controlled by
the electric field and it is more or less stochastic in time. In the diclectric
breakdown model (DBM) (Niemeyer et al 1984) the complicated details of the
physical processes occurring at the tips of the discharge pattern are ignored,
and the corresponding equations are replaced by the assumptions i) ¢ =
¢o = 0 in the conducting phase, where ¢ is the electric potential satisfying

Laplace’s equation
Vi = (6.54)

and ii) the growth velocity is stochastically proportional to some power n of
the local electric field E = —V¢. The apparent analogy between DLA and
DBM can be understood on the level of the equations which determine the
behaviour of the two models. If the exponent n = 1 the growth probability
in both growth models is proportional to the local value of the gradient of
a distribution satisfying (6.54), since the probability of finding a diffusing

particle at a given point is also given by the Laplace equalion (Wilten and
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Sander 1981).

The actual model is formulated on a d-dimensional hypercubic lattice,
and the Laplace operator, V2, is replaced with its discrete version. For

example, in two dimensions (6.54) takes the form

1
bij = Z(¢f-1,:‘ + Gir,y + bij-1 + bij1), (6.55)

where ¢; ; is the value of ¢ in the grid site ¢, 7. The boundary conditions are

the following

¢;; =0 for sites belonging to the cluster, (6.56)

and ¢;; = —1 for sites on a large circle of radius ro centreed at the origin.
The boundary condition describing the motion of the interface is represented
by an expression for the growth probability at the site 7,7 adjacent to the

cluster

pij = CV¢l, =-Cql, (6.57)
where the normalization factor is given by 1/C = 3 qb?,j with the summa-
tion running over all of the nearest neighbour sites to the cluster. It is the
exponent n which is an important extra property of DBM with regard to
diffusion-limited aggregation, because n turns out to be a relevant parame-
ter from the point of view of the fractal dimension of the patterns (Niemeyer
et al 1984). There is another slight difference in the boundary conditions.
The absorbing boundary condition used in DLA corresponds to a zero po-
tential (probability) in the sites adjacent to the aggregate (not on the cluster
itself as is the case according to (6.56) for DBM).

The simulation starts with a sced particle at the origin of a lattice.
The potential for each site of the lattice within a circle of radius rq is calcu-
lated using relaxation methods. (6.55) represents a system of linear algebraic
equations (one equation per site) which can be solved by iteration. Relatively

good convergency can be achieved by the Gauss-Scidel overrelaxation scheme
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which on a square lattice has the form

2 1. .1% k+1 k k k
o5t =gl +w Z(‘ﬁE-Jlr,lj) +olt) ol 90 -l (658)

if one sweeps the sites in such a way that + and j increase as one goes to the
next site. In (6.58) w is the overrelaxation parameter. Finding an optimal
value for w by trial and error may speed up the convergence considerably.
Next a perimeter site is chosen randomly, and a random number » drawn [rom
a set of random numbers uniformly distributed between 0 and p,,4., where
Pmaz 15 the largest growth probability. If r < p; ;, the perimeter site ¢,7 is
filled, and the whole procedure starts again by calculating the distribution ¢

in the presence of the new configuration.

This procedure for growing an N-site cluster requires much more com-
puter time than generating a diffusion-limited aggregate of the same size since
one has to solve the Laplace equation within a large region of radius rg. Cor-
respondingly, the data for the fractal dimension were obtained for clusters
consisting of about 10000 particles. The simulations for n = 1 led to clusters -
with D ~ 1.70 in good agreement with the expectation that DLA and DBM
with n = 1 belong to the same universality class (Dpra =~ 1.7 in 2d).

Varying 7 results in a non-trivial change of the fractal dimension
(Wiesmann and Pietronero 1986), a property which makes the DBM model
particularly interesting from a theoretical viewpoint (a direct connection be-
tween 1 and physical quantities has not been established). Table 6.3 shows

the numerical estimates for D.

The mean-field type argument (Section 6.1.3.) leading to the expres-
sion (6.23) for the fractal dimension of DLA clusters can be generalized to
take into account the effects of the growth exponent 7. The result is given
by (Matsushita et al 1986)

d? + n(Dy — 1)
D) = 3D = 1)

(6.59)

which should be compared with the results given in Table 6.3. The agrecement
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Table 6.3. Tractal dimension for several values of the probabil-
ity exponent 7 of the dielectric breakdown model. The data were
obtained for clusters consisting of N particles and generated on
d-dimensional lattices (Wiesmann and Pietronero 1986).

d n D N

2 0 2.00 20000
2 0.5 1.92 30000
2 1 1.70 10000
2 2 1.43 3000
3 0 3.00 20000
3 0.5 2.78 10000
3 1 2.65 4000
3 2 2.26 1500

is good, e.g., for d = 3 and n = 2 expression (6.59) predicts D = 2.2, while

the numerical value is D ~ 2.26.

Finally, the distribution of the growth probabilities p; ; represents a
fractal measure, just like in the case of DLA. The corresponding hierarchy of
exponents can be determined numerically (see Fig. 6.11), leading to results

being in reasonable agreement with the expectations.

6.4. OTHER NON-LOCAL PARTICLE-CLUSTER GROWTH MODELS

DLA has attracted great interest because of its obvious relevance to a
large class of important physical processes. The success of diflusion-limited
aggregation models has prompted a rapid increase in the number of various
non-local cluster growth models leading to fractal structures. Many of these
new constructions have been shown to exhibit remarkable scaling behaviour.
However, none of them has such a direct relation to any significant physical
phenomenon as DLA has to diffusion-limited growth. Therefore, the inves-
tigation of these models is important {rom a didactical point of view rather

than for describing real processes.
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The screened growth model (Rikvold 1982, Meakin et al 1985a) is truly
non-local, since the probability of adding a particle to the cluster at site 7 is
determined by the position of all the other particles in the aggregate. This
probability for the ith perimeter site of an N particle cluster is given by

D = N‘J - = N. 3 (6‘60)
i e 3 P
k=1 k=1

where N, is the total number of perimeter sites, 7;; is the distance of the jth
particle to the ith perimeter site and A is a constant which does not affect
the scaling behaviour. Because of the long-range, independent multiplicative
nature of the contributions coming from the particles already belonging to
the aggregate, a cluster grown according to (6.60) is a fractal. Computer

simulations and theoretical considerations suggest that for this model
D = X, (6.61)

The following heuristic argument (Meakin et al 1985) supports the
above relationship. Let us imagine that the cluster grows by adding sites
at a rate P; given in (6.60), so that ), Py is the average number of sites
created in unit time. It is possible to estimate the D-dependence of the rate
P; by changing the summation to integration when calculating the exponent

describing the behaviour of P; as a function of the distances r;;
N R
PP ~/ rP-1=2gr ~ BRP7X, (6.62)
i=1 “

where a is a short distance cutoff length of the order of the lattice unit, B is
a constant and R > 1 is the cluster radius. Supposing that D > X we have
P; ~ e~BR°™" and

N,
3 Pe L RPeERTT g, (6.63)
k=1
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The above expression implies that the growth slows down dramatically ev-
erywhere with R becoming large. This is not expected to occur, since the
formation of any branches protruding from the more compact structure can
grow much faster than the other regions. On the other hand, such unstable
perturbations decrcase the fractal dimension D. Accordingly, a state with
D < )X has to be reached. However, it is the largest D < A which will be
most favourable on combinatorial grounds: the number of different possible
ways to obtain a given cluster shape by successive addition of sites increases

with the fractal dimension of the cluster.

Studying the properties of the screened growth model requires large
amounts of computer time because the growth probabilities p; have to be
updated for all of the perimeter sites after each growth event. The reward
for the extra cost is a knowledge of p; with a high accuracy, making it possible

to carry out a detailed scaling analysis of the growth probability measure.

As was discussed in Section 6.1.4., if the distribution of growth prob-
abilities can be described in terms of a fractal measure characterized by a

spectrum of singularities of strength

a=—Dlnp/InN, (6.64)

then the quantity

[(a) = DIn[pN(p)InN]/In N (6.65)

corresponds to the fractal dimension of the set of singular parts with strength
a. Here pN(p)dInp is the number of sites with probabilities in the range Inp
to Inp + Indp expressed through N(p) which is the number of sites with p
between p and p + dp divided by dp. TFig. 6.18 shows the results for f(a)
determined for A = 1.5 (Meakin 1987). The fact that the plots obtained for
various cluster sizes N collapse onto a single curve demonstrates the existence

of a unique f(a) spectrum.

Diffusion-limited aggregation with disaggregation (Botet and Jullien
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M =1000-15000

10F s 6. MODEL

in[N(1np) tn(M)] /1n (M)

I

O 1 1 1 1 1
-2.50 -200 -1.50 -100 -50

n {p)/in (M)

T'igure 6.18. Scaling of the growth probability distribution
for screened growth clusters with a fractal dimensionality of 1.75
(Mcakin 1987a).

1985) is an interesting modification of the original DLA model, because dur-
ing its simulation an equilibrium type regime is attained. In this lattice model
a cluster is defined as a set of particles connected by filled bonds (not all of
the bonds of the underlying lattice are filled). Given a cluster of N particles
and the corresponding bond configuration at time tg = 0, one chooses with
the same probability one of the particles which is linked to the rest of the
cluster by only one bond. This particle is then allowed to diffuse away, and
as in DLA it sticks to the cluster again forming a single new bond when it
arrives at an adjacent site to the aggregate. At this point (¢ = 1) a new single
connected particle is chosen randomly, and so on. In case the particle gets
too far from the aggregate, it is climinated and a new one is simultaneously
released from a randomly sclected point on a sphere centreed at the origin

of the cluster and having a radius just exceeding that of the aggregate.

This model does not scem to represent any realistic physical process
because the strength of a bond depends in a rather unusual way on the ac-
tual configuration. Nevertheless, it is of interest to compare the resulting
structures with those generated by other aggregation or equilibrium models.
IFig. 6.19 shows the process of approaching the steady-state configuration
from two qualitatively different initial cluster shapes. The fractal dimension

determined from the simulation of diffusion-limited aggregation with disag-
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TFigure 6.19. The process of aggregation with disaggregation re-
sults in qualitatively equivalent clusters even if it starts from very
different initial configurations (Botet and Jullien 1985).

gregation on a square lattice is D ~ 1.54, definitely smaller than the fractal
dimension of DLA clusters. It is, however, very close to the fractal dimension
D =~ 1.56 of lattice animals representing a classical example of clusters ex-
isting in an equilibrium model (lattice animals arc all the possible connected
configurations of N particles each considered with the same weight). Obvi-
ously, in the present model two different configurations may have different

weights. This was seen in the related simulations.

The growth probability distribution for diffusion-limited aggregation
with disaggregation is expected to be uniform because of the equilibrium
nature of the model. This can be checked by leaving a given configura-
tion unchanged while releasing particles from the single connected places.
Counting the number of trajectories terminating at the perimeter sites the
retrapping probability distribution and the corresponding D, spectrum can
be determined from (6.30). According to the simulations (Hayakawa et al
1987) Dy is independent of ¢, as expected (see Fig. 6.11).
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Figure 6.20. A Laplacian carpet generated on the square lattice
using a deterministic version of the dielectric breakdown model.
This configuration was obtained for p = 0.45

All models discussed in Part II so far have been stochastic concerning
both the generated structures and the rules used to grow an object. This is
quite understandable: the overwhelming majority of the structures existing
in nature have a random geometry (it is man who prefers to produce regu-
lar shapes). Non-local growth enhances the fluctuations which leads to an
increase of the already present randomness (see Chapter 9.). However, the
degree of randomness can be rather different depending on the particular
process considered. There are growing objects which have a simple overall
shape (but still a complex surface, next Chapter), like a water droplet in the
supersaturated vapor of the atmosphere. Under somewhat different circum-
stances, instead of a droplet a snow crystal starts growing and the resulting

structure usually has a complicated regular structure.

Deterministic aggregation models lead to clusters with perfect symme-
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try corresponding to the lattice on which the aggregation takes place. To
obtain a noiseless structure which is grown in the presence of a diffusion field
one can consider the following deterministic variation of the dielectric break-
down model. The process starts with a seed particle. The distribution of the
electric potential satisfying (6.54) is calculated with the boundary condition

# = 0 on the cluster and ¢ = —1 on a circle (in d = 2) far from it.

From this point the two algorithms are different. In the deterministic
model (Garik 1985, Family et al 1987) each surlace site is considered for
occupation simultaneously. At a given time step, all perimeter sites for which
Vé; = ¢; > p are filled, where ¢; denotes the potential at the ith perimeter
site and 0 < p < 1 is a fixed parameter. Next the potential distribution
. is calculated for the new configuration, more particles are added, and so
on. Although simple, this method produces regular Laplacian carpets with
a fractal dimension which can be tuned by changing p. Fig. 6.20 shows a
typical example. Note, that while in the case of diclectric breakdown model a
branch advances with a probability linearly proportional to the local gradient,

in the present model this dependence is a deterministic step function.





