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Chapter 7.

GROWING SELF-AFFINE
SURFACES

Many growth processes lead to space filling objects with a trivial di-
mension coinciding with the dimension of the space d in which the growth -
takes place. However, the surface of these objects may exhibit special scaling
behaviour. The three basic possibilities are the following: the surface may
be i) smooth, having a trivial dimension d, = d — 1, ii) fractal with D < d
and iii) self-affine, characterized by an anisotropic scaling of the typical sizes.
In this chapter cluster growth models producing the third kind of interfaces

will be discussed.

Irreversible growth phenomena rarely result in smooth surfaces. De-
termining the fractal dimension of a self-similar interface is an important step
in characterizing its properties. There are a number of known examples for
such surfaces, including shore lines and the surface of silica colloid particles
or materials used for catalysis. Self-similarity, however, implies the presence
of “overhangs” in the surface structure: to satisly isotropic scale invariance

all possible directions should be represented equally.

During the growth of compact (non-fractal) objects the motion of the
interface is directed outward, and this orientation plays a special role. Typ-

ically, the interface can be well approximated by a single valued function
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of d — 1 variables, e.g., one can describe the properties of the surface by
examining only those points of the object which are the farthest from the
centre of the structure in a given direction. The scaling properties of such
surfaces (with irrelevant overhangs) are direction dependent: parts of various
sizes can be rescaled into an object with the same overall behaviour using a
rescaling factor in the direction parallel to the growth which is different from

that needed to rescale the perpendicular lengths.

Mathematical examples for self-affine surfaces invariant under anisot-
ropic rescaling of distances were discussed in Section 2.3.2. It was shown that
for these objects there exists a crossover scale z, separatling two regimes. For
example, the local fractal dimension of a self-affine fractal embedded in two
dimensions can be observed only for length scales z <« z., while for sizes
z > z. the object has a global fractal dimension d = 1. It is important to
realize that for cluster growth models z, = a, where a is the lattice constant.
Since a cluster of particles of size @ does not have any detail on a length scale
smaller than a, we conclude that no local fractal dimension can be associated

with growing self-affine surfaces generated on a lattice.

7.1. EDEN MODEL

Perhaps the simplest cluster growth model was introduced by Eden in 1961 to
simulate the growth of tumors. In addition to its biological applications, this
model has relevance to many other types of stochastic growth phenomena
with stable or marginally stable interfaces. When growing an Eden cluster
one of the empty sites next to the aggregate (perimeter sites) is chosen ran-
domly, and it is added to the cluster. A large cluster is obtained after having
repeated this procedure many times. The particular method by which a site

is selected for occupation is slightly different in the three basic variants A, B
and C of the Eden model.

In the simulations of the most common version A, a single perimeter
site is filled with probability 1/N,, where N, is the total number of perimeter
sites. Therclore, cach necarest neighbour site to the cluster has the same

probability to be occupied al the given time step. In version I3 one of the
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TFigure 7.1. This Eden cluster consisting of 5000 particles was
grown from a single seed by occupying randomly selected perimeter
sites (version A).

free bonds is occupied by a particle with a probability 1/Ny, where Ny is
the number of bonds on the lattice connecting a filled and an empty site.
In this way a perimeter site connected to the cluster through more than 1
bond has more chance to become occupied than in version A. Finally, it is
possible to deline a method in which all occupied surface sites of the cluster
(sites with empty ncarest neighbours) have the same probability to have a
new neighbour in the next step. In this version i) a surface site is chosen
with a probability 1/N,, where N, is the number of surface sites. Then, ii)
the new particle is added to one of the adjacent empty sites picked randomly.
All three versions are expected to have the same scaling properties, but the
rate of approaching the asymptotic behaviour can strongly depend on the
particular variation used. In general, version C exhibits faster convergence
than A and B (Jullien and Botet 1985).

Eden growth from a single seed leads to compact, d-dimensional ob-
jects which are nearly spherical and have a non-trivial surface (Fig. 7.1).
The properties of the surface of a large Eden cluster can be investigated by
determining N,(r, N), the number of perimeter or surface sites in a layer of
width dr at a distance r from the origin. For a self-similar distribution of

surface sites with a fractal dimension D one expects an expression of the form
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(5.11) N,(r, N) ~ Né~Y/Pf(r/[N/P), where § is the exponent describing the
increase of the total number of surface sites Ng ~ N with N. According to
the simulation and theoretical results (sce e.g. Leyvraz 1985), for the Eden

growth the exponent é has a trivial value
§=d—1. (7.1)

In two dimensions § = 1, in complete agreement with our earlier statement

about the global dimension of a self-affine surface.

| Because of the self-alline nature of the surface, the above quoted ex-
pression (5.11) does not hold for the growth site distribution in Eden clusters.
Numerical evidence shows that there is more than one relevant length scale
determining the behaviour of N,(r, N) and, correspondingly, one has to use
a more complex form for the scaling function f(z) in (5.11) than for the self-
similar case. In particular, the width o(N) of the distribution N,(r, N) was
found to scale differently from its average radius R(N) (Plischke and Récz
1085).

There are two factors determining the asymptotic behaviour of the
surface site distribution of IEden clusters grown on a lattice with a single
seed particle. In addition to the self-affine geometry of the surface zone, very
large clusters become distorted because of the anisotropy of the underlying
lattice. In order to sece the weak anisotropy of the asymptotic overall shape
of Tiden clusters grown on a square latlice, aggregates containing of 5 x 107
particles have to be generated. I'or such sizes the deviation from a circular

shape is about 2% (I'reche et al 1985, Zabolitzky and Staulfer 1986).

There is a simple reason for the observed asphericity of single-seed
Iiden clusters. Imagine that one grows a cluster on a square lattice filling
all perimeter sites simultaneously at each time step. It is easy to see that
this procedure leads to a perfect diamond shape, since the distances of the
layers perpendicular to the axes are larger by a factor v/2 than the distances
of layers perpendiclar to the diagonals. Correspondingly, the “velocity” of
the interface depends on the local orientation of the surface. During random

Eden growth this trivial anisotropy is not manifested in a direct way because
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the local direction of the surface changes randomly. However, the interface
always has parts with an average direction which results in differences in the
growth velocity (Wolf 1987). In fact, it is possible to show analytically that
Eden clusters grown on a hypercubic lattice in d > 54 dimensions must be
anisotropic (Dhar 1985).

Instead of investigating the complex scaling of Ny(r,N) it is more
effective to concentrate on the properties of the width of the surface region
o(N). Furthermore, as an alternative to the geometry corresponding to a
single seed particle, Eden growth in a strip geometry can be studied to provide
less biased data (Jullien and Botet 1985). This means that, for example, in
two dimensions the seed is a line of L occupied sites and the growth is confined
~ within a strip of width L using periodic boundary conditions. Simulation of
the process in a d — 1-dimensional “strip” has the advantage that the two

parameters L and N controlling o can be well separated.

Let us characterize the average height of an Eden deposit by

;2
h~h=-—5Y% hy c)
= &

where h = N/L is the average number of particles per column, Ng is the
total number of surface sites and h; is the distance of the ¢th surface site from
the substrate. (7.2) expresses the fact that the vertical size grows linearly
with the number of time steps (number of deposited particles), because of the
compactness of the structure. In the single-seed case the number of particles
N controls both the height, i.e., the mean radius I2 ~ N4 and the “strip
width” which corresponds to the circumference at the mean radius, 27 R ~
N2, Consequently, one expects that the scaling properties of the single-
seed Eden clusters can be identified with those in strip geometry provided
h~h~L~NYd

Let us define the surface width as

Ng

1/2
o(L,h) = [NLS S (ki - R)Z} , (7.3)

1=1
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where h is given by (7.2). One expects that in the strip geometry there are
two separate scaling regimes: i) for h < L the fluctuations in the shape of
the surface grow as some power of h, while ii) for A > L the surface becomes
stationary and its width depends on L algebraically. This behaviour can be
described by the following scaling form (Vicsek and Family 1985, Jullien and
Botet 1985)

o(L k) ~ Lof (%) , (7.4)

where the exponents « and z correspond to the stationary and “dynamic”
scaling of the interface width, respectively. The scaling function f(z) is such
that

f(z) ~ {N i for z <1 (7.5)

~ constant for z > 1.

This is equivalent to
o(L,h) ~h?  for R/ <1 (7.6)
and
o(L,h) ~ L* for h/L* > 1. (7.7)

Comparing (7.5) and (7.6) we find that

2 == g I, (7.8)

The scaling assumption (7.4) forms the basis of the investigations of
Eden surfaces. Together with (7.7) it expresses the self-affine nature of the
surface of iden clusters, since in the h/L® — oo limit the size of the surface
in the direction perpendicular to the substrate diverges as L%, i.e., with a
different exponent than its size L along the substrate. This is a situation

analogous to the graph of the one-dimensional Brownian motion, where the
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a C

TFigure 7.2. Eden deposits of 25000 particles generated on a sub-
strate of width L = 160 using the noise reduction algorithm with

m = 1,2,4 (a-c). Figure 7.2d shows the time evolution of a cluster
for which at N = 10000 noise reduction with m = 16 was switched
on (following a growth with m = 1) (Kertész and Wolf 1988)

distance of the particle at time ¢ is plotted along the vertical axis versus the
number of steps t (see Section 2.3.2.). Tor such a plot the average width of
the curve (which is the square root of the mean squared displacement) scales

as the square root of ¢ representing the horizontal size of the sample.

Numecrical investigation of the scaling properties of o(L,h) is surpris-
ingly dillicult. In order to sce the precise asymptotic behaviour, an extremely
large number of particles is needed because in the intermediate region the
dependence of the effective exponent 8 is unusually complex as a function of
the deposition height. The main reason for the slow convergence has its ori-
gin in the so called intrinsic width o; which is independent of L. According to
this picture the surface width contains two additive terms: i) width coming
from the relevant, long wavelength fluctuations, and ii) a size independent
width o; which corresponds to the local stochastic configuration of the par-
ticles in a narrow zone at the surface. This means that for h/L* — oo one
has 0, = L*f% + o} (Kertész and Wolf 1988), and the second, correction
to scaling term of the right-hand-side strongly affects the numerical results,

especially in dimensions higher than 2. ITere the quadratic summation arises
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naturally if oo is regarded as the width of the convolution of two Gaussian
distributions, one describing the long wavelength fluctuations and the other

the intrinsic width.

The actual value of & and z has been investigated by a number of
simulations. The situation for d = 2 seems to be settled: the numerical
estimates are close to o = ~21~ and .z = % To observe scaling for d = 3 and
d = 4 the noise-reduction method was applied which reduces the intrinsic
width (Wolf and Kertész 1987a). During the application of this method to
Eden growth, counters are placed on the perimeter sites and initially are set
to have a value 0. Kach time a perimeter site is sclected for occupation, the
counter is incremented by one, and the site is actually occupied only if the
counter reaches a prescibed value m called noise-reduction parameter. As
a result, “old” perimeter sites are occupied preferentially so that the holes,
high steps and overhangs which are mainly responsible for the intrinsic width

are suppressed (Fig. 7.2).

For a given noise-reduction parameter the surface width is expected
to scale as (Kertész and Wolf 1088)

(L, h,m) = [a(m)L*f(h/L*mY))* + o}(m), (7.9)

where a(m) is an m dependent constant. It is clear from the above relation
that the exponents a and z are not aflfected by m and simulations with m > 1
can be used to estimate their values. The results are summarized below (Wolf
and Kertész 1987b),

d=2 A=033+0015 «=0.51:0.025
d=3 f§=0.2240.02 o = 0.33 4+ 0.01 (7.10)
d=4 f=015+0015 «=0.24+0.02.

The above values are in good agreement with the scaling relationship a+2 =
a+a/p = 2 following from theoretical arguments (Section 7.4). Furthermore,
they suggest that & = 1/d, in contradiction with theoretical results predicting

either superuniversality (« = 1/2 for all d) or & = 0 for d > 2 (see Section
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Figure 7.3. Scaling plot for d = 2 (lower curve, L = 60 (o), 120 (M),
and 240 (D)), for d = 3 (middle curve, L; X Ly = 10 x 10 (o), 30 x
32 (i_]) and 120x 128 (D)), and for d = 4 (upper curve, Ly X Lo X Lz =
4x4x4 (o), 9x10x10 (1), and 30x32Xx 32 (>)). The noise-reduction
parameter is m = 8 for all data (Wolf and Kertész 1987b).

7.4). The best way to visualize the results of computer simulations is to plot
the scaling function f(z) using « = 1/d and z = 2 — . Fig. 7.3 shows a

reasonable collapse of data for various values of L.

7.2. BALLISTIC AGGREGATION

In ballistic aggregation models the particles move along straight trajecto-
ries until they encounter the growing aggregate and stick to its surface ir-
reversibly. This kind of kinetics is typical for experimental situations when
molecules move in a low density vapour. Therelore, ballistic aggregation can

be uscful for the interpretation of technologically important processes, such
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as vapour deposition on a cold substrate (Vold 1963, Sutherland 1966, Leamy
et al 1980).

Two basic versions of the model have been considered recently. In the
first case the particles move along randomly oriented straight lines, while
trajectorics are assumed to be parallel in the second type of models. In addi-
tion, the geometry of the substrate can also affect the results and, accordingly,
ballistic aggregation on both a single seed (this Section) and surfaces (next

Section) has been invesligated.

«— 450 DIAMETERS ——m— > .

Figure 7.4. Off-lattice ballistic aggregates, (a) This cluster con-
sisting of 180,000 particles was generated by simulating randomly
oriented trajectories (Meakin 1985b). (b) Randomly positioned ver-
tical trajectories lead to a fan-like structure when a single seed par-
ticle is used (Ramanlal and Sander 1985).

Fig. 7.4a shows a ballistic aggregate grown using a two-dimensional
off-lattice model with a single sced particle and randomly oriented trajec-
tories. In spite of the simplicity of the rules the structure of large ballistic
aggregates is far from trivial. There are large, elongated holes and open
streaks of various sizes in the cluster, however, the structure does not appear
to be self-similar. Thus ballistic aggregates are not fractals. This statement

can be made more quantitative by carrying out simulations (Meakin 1985,
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Family and Vicsek 1985, Liang and Kadanoff 1985) and also follows from a

simple theoretical argument (Ball and Witten 1984) given below.

For ballistic aggregates the considerations resulting in a causality
bound for the fractal dimension of DLA clusters (See Section 6.1.1) take
a considerably simpler form. In the case of straight trajectories and a fixed
small density of the moving particles, the number of particles in the aggre-

gate, N(t), grows in time lincarly with the cross-section of the cluster

dN(t)

o R(t)*71, (7.11)

where R(t) is the radius of the aggregate at time t. On the other hand,

AN(t)  dN(t) dR() iy
dt  dR(t) dt ~ B (7.12)

Since v, the growth rate of the radius I2(t), can not increase indefinitely (in

other words it must remain smaller than some v,,,,) we have

RYTP < e, (7.13)

therefore, D = d has to be satisfied to guarantee v,,,, < co when R(t) — co

(D > d is excluded for obvious reasons).

Although the dimension of ballistic aggregates turns out to be the
same as the Fuclidian dimension of the space they are grown in, they exhibit
non-trivial scaling behaviour. Consider the following version of the model.
A secd particle is put into the origin of a square lattice and the rest of the
particles move parallel to the y axis with random z coordinates till they
either disappear or stick to the growing cluster (the latter takes place if a
particle arrives at a site adjacent to the aggregate). The resulting cluster
looks like a fan with higher density in the central region and long holes near
its edge. This process can be formulated easily for the off-lattice case as well,

leading to a similar structure (Fig. 7.4b).

The scaling behaviour of the density distribution p(r,0) within the fan
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can be described as a function of the distance from the seed, r, and the angle
f measured from the y dircction. Ilere the density is defined as the number
of particles within the area rArAf. According to the simulations p(r,0) can

be well represented by the scaling form (Liang and Kadanolf 1985)

p(r,0) ~ 'r'"”f(rﬂ(() — GC)), (7.14)

where the scaling function f(z) ~ constant forz < 1 and f(z) < 1forz > 1,
0. is a critical angle corresponding to the region close to the edges of the fan,
0 > 0., and p and ¥ are scaling indices. This assumption is supported by
the fact that the data points for pr# as a function of the renormalized angle
r‘9(0 — 0.) fall onto the same universal curve for various r and . In the case
of off-lattice aggregates the best collapse is obtained using 0, = (15.540.7)°,
= 0.13+0.05 and ¥ = 0.39 4 0.05 (Joag et al 1987). These values for the
exponents agree within the error limits with those obtained for the on-lattice
case. The critical angle, however, is considerably less than 6, ~ 32° found in

the simulations carried out on the square lattice.

Let us now investigate the average density in the region |0| < 8. as
a function of r. For a fixed such angle the density within a large aggregate
approaches a constant as r — oo. This means that the fan has a trivial
dimension D = d as was mentioned before. On the other hand, the approach

to the constant density is very slow, and follows a power law of the form
(Liang and Kadanolf 1985)

p(r) = poo + Ar—P, (7.15)

where poo and A are constants and § is a non-trivial correction to the dimen-
sionality. The above relation is analogous to the expression (2.37), assuming
that | ~ 1/r. Therefore, (7.15) can be regarded as an indication of the fat
fractal character of ballistic aggregates. The exponent § was determined
from the slopes of the plots In(p — poo) versus Inr for both the off-lattice and
the square lattice cases giving respectively § =~ 0.55 and =~ 0.66. Thus the

metadimension 8 appears to be non-universal.
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7.3. BALLISTIC DEPOSITION

In this section, ballistic aggregation of particles onto surfaces will be dis-
cussed. We assume that the particles are released from randomly chosen
launching points and move along parallel straight lines till they are attached
to the aggregate. In general, the angle of incidence ¥ (the angle between
the trajectories and the normal vector to the surface) can be varied from
0 (vertical trajectories) to x/2. This situation is common in a number of
technologies used to control electrical, optical and other physical properties

of surfaces by means of vapour deposition.

In an actual simulation of ballistic deposition the strip geometry with
periodic boundary conditions is used. The linear size of the substrate is
denoted by L. The particles are launched at randomly selected positions at
a height of h,,.; + 1 which is the maximum height of any particle in the
deposit. Then the particles follow a straight trajectory with a prescribed
angle of incidence until they contact either a particle in the deposit or reach
the original surface. At the point of the first contact they are stopped and
become part of the growing deposit. In the lattice version of the model with
¥ = 0 it is easy to see that there is only one active perimeter site (a site
which has the possibility to be filled in the next step) in each column. Since
one needs to record only the height of these L sites such an algorithm is fast
and does nol, require much computer time. The ofl-lattice case with J 0
can be simulated effectively by choosing a suitable underlying lattice to find

particles near the trajectory of a moving particle.

Both the experiments and computer simulations showed that in the
case of non-zero incidence angle, columnar structures grow on the surface.
This columnar morphology is most distinctive for large ¥, and the angle ¢
between the growth direction of the columns and the normal to the surface
is less than the angle of incidence. Investigations of vapour and sputter-
deposited aluminium and rare-earth-metal thin films suggested the empirical

relationship (Nieuwenheuzen and Hannstra 1966, Leamy et al 1980)

tan¢ =~ Elz—ta,nﬁ (7.16)
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known as the “tangent rule”. It is easy to see why ¢ should be less than 9:
Particles passing the “high” side of an existing column can be caught and
cause the column to tilt towards the normal. However, (7.16) has not been

shown to hold by any rigorous theoretical argument.

Figure 7.5, Off-lattice ballistic deposit obtained for a fixed angle
of incidence ¥ = 60° (Ramanlal and Sander 1985).

Fig. 7.5 shows a typical configuration obtained in a relatively small
scale simulation of two-dimensional off-lattice ballistic deposition with a fixed
angle of incidence 4 = 60°. The deposit has a columnar structure and the
deviation of the direction of growth from the direction of the incident beam is
qualitatively consistent with the tangent rule. To check whether the tangent
rule is qualitatively valid for ballistic deposition one needs a quantitative
determination of the growth direction ¢. This can be achieved by noting that
for off-lattice aggreggates the incoming particles make contact with only a
single particle belonging to the deposit. Thus the deposit can be considered
as a set of trees which consist of particles connected to the same root particle
at the surface. For large ¥ these trees can be identified with the columns.

The growth direction of a tree is given by the expression (Meakin et al 1986b)
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Table 7.1. Dependence of some characteristic quantities on the
angle of incidence ¥ obtained from simulations of two-dimensional
ofl-laltice deposilion. ¢ — mean angle of tree growth, 5" — prediction
of the tangent rule, and ¥ —¢ — a quantity which appears to saturate
close to 16° for large angles of incidence. All angles are shown in
degrees (Meakin et al 1986b).

0 ¢ ¢ g B
10 11.55 5.04 -1.55
20 16.17 10.31 3.83
30 23.94 16.10 6.06
40 31.02 22.76 8.98
50 39.46 30.79 10.54
60 47.13 40.89 12.87
70 55.46 53.95 14.54
80 63.93 70.57 16.07
n;-FAn;
) Ty — ZTj0
e IZTLJ'
tan ¢ (7) =~ ey , (7.17)
E Yy
1:?1j

where z; and y; are respectively the horizontal and vertical coordinates of
the ¢th particle in the jth tree, z;0 and y;0 = O are the positions of the root
particles and the summation is taken over An; particles added to the tree
already consisting of n; > 1 particles. The average growth direction can be

obtained by averaging over the angles corresponding to the individual trees.

The results of simulations for the ¥ dependence of ¢, and ¢/ =
tan™!(3 tanv) (which is the prediction of the tangent rule) are displayed
in Table 7.1. This table demonstrates that the deviations from the tan-
gent rule are quite strong. It is evident from this table that the simplest
two-dimensional ballistic aggregation models can not be used to explain the

tangent rule on a quantitative basis.

Let us now consider the structure of the surface of deposits generated
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125 LATTICE UNITS

v

A

| 0,000 LATTICE UNITS

Figure 7.6. Section from the surface of a deposit grown on the
square lattice to an average height of 5000 lattice units along a base
line of length 2'® units (Meakin et al 1986b).

on a square lattice with ¥ = 0. Tig. 7.6 shows part of the surface of a
large deposit. The apparent similarity of this plot to Fig. 2.13 exhibiting the
graph of the one-dimensional Brownian motion indicates the self-affine nature
of the surface. This analogy can be made more quantitative by studying
the variance of the heighls of the active perimeter sites. According to the
simulations to be discussed later, in analogy with the Eden model in a strip
geometry, the width of the surface defined by (7.3) scales as (L, k) ~ AP for
h < L (7.6) and o(L,h) ~ L* if h >> L (7.7) (Family and Vicsek 1985).

The scaling of o as a [unction of L for k >> L indicates the self-affine
nature of the surface of ballistic deposits. In Section 2.3.2. it was discussed
that if the root mean square distance of a one dimensional random motion
scales with the number of steps ¢ as (X2(t))'/2 ~ ¢t¥, then the graph of the
actual distance of the walker from the origin as a function of ¢ is a self-affine
function with a local fractal dimension D = 2 — H. Furthermore, X (t) has
the self-affine property X (t) ~ b= X (bt), where b is a rescaling factor and
H is a characteristic exponent. In the present case, for d = 2 the role of ¢
is played by the actual distance z along the substrate, and X (t) corresponds
to h(z) = h(z) — k, where h(z) is the height of the active perimeter site

in column z (there is only one such site in cach column). Therefore, in the
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h — oo limit the surface of the deposits satisfies
h(z,h — c0) ~ L™*h(Lz, h — o0). (7.18)

To incorporate the ¢ ~ h? behaviour for h < L one assumes that (Meakin
et al 1986b)

h(z, k) ~ hP f(z /R %), (7.19)

where the scaling function f(y) is assumed to be a randomly changing func-

tion with [f(y)| < Const for y > 1, and

fly) ~ L™ f(Ly) for i (7.20)

The latter condition is needed to satisfy (7.18). Since the width of a self-
affine function defined by (7.19) scales as y*, we see that ¢ ~ L* for h < L
is also satisfied if «/z = . Tixpressions analogous to (7.18) and (7.19) are
expected to be valid in dimensions higher than 2 as well both for ballistic

deposits and Tiden clusters gencrated in the strip gecometry.

One consequence of (7.18) is that the intersection of the surface and

a plane placed at a distance h from the substrate has the fractal dimension
D=d—-1-c. (7.21)

To see this we recall rule f) of Section 2.2. relating the fractal dimension
of the intersection of two fractals of dimensions D4 and Dp through the
expression Do = Dy + Dp — d. Tor a self-affine deposit the local fractal
dimension is Dy = d — « (see Section 2.3.2., where Dj,cq; was shown to
be equal to 2 — & for d = 2) and the dimension of the plane parallel to
the substrate is Dg = d — 1. Although the deposits do not have a well
defined local fractal dimension because of the coincidence of the crossover
scale and the lattice spacing (this question was discussed at the beginning

of this Chapter), the global behaviour of the cross-section is not affected by
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the crossover scale and (7.21) is expected to hold.

The scaling of the surface width has been extensively studied for a
number of deposition models. In the case of the square lattice large scale
simulations (Meakin et al 1986b) led to numerical values for the exponents
o, B and z close to the theoretical prediction (Kardar et al 1986)

o= 12, f=1/3 and z=13/2. (7.22)

The surface width can also be determined for off-lattice ballistic deposits as
a function of the angle of inclination 9. For off-lattice aggregates the surface
sites are not well defined and the surface thickness should be calculated from

a modified expression (Meakin and Jullien 1987)

MA+N

Z |hi — hiyi1l, (7.23)

where h; is the minimum distance from the substrate of the point at which -
the 7th particle is deposited and N — M is the increment in the deposit mass
over which the characteristic quantities are determined. According to the
2d simulations the L dependence of o(L,h) is described by the exponent
= 1/2, for all 4. The exponent 3, however, was found to depend on
the angle of inclination. This is demonstrated by the following few sclected
values: f =~ 0.343 (¥ = 0), f ~0.281 (9 =45°) and B =~ 0.402 (¢ = 80°).

In addition to the ¢ dependence of 3, its value is changed when the
deposition process is modified to take into account surface restructuring.
Consider a lattice model with angle of inclination equal to zero, in which a
particle alter having contacted the deposit is moved to a new surface site
with the smallest height within a given region surrounding the point of first
contact. Such and analogous relaxation rules tend to smooth out irregu-
larities and result in estimates of 8 close to 1/4 (Family 1986, Meakin and
Jullien 1987).

Large scale simulations of ballistic deposition in three dimensions seem

to support the scaling assumption (7.4) for the width of the surface. The
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numerical results o« =~ 0.33 and § =~ 0.24 obtained for the corresponding
exponents (Meakin et al 1986b) suggest that the exact value of o in d = 3
might be equal to 1/3 = 1/d. In addition, # = 1/4 is consistent with the
scaling relation a+a/8 = 2. The situation scems to be similar to that of Eden
growth: there is only one independent exponent describing the scaling of the
surface width and it is found to be close to a = 1/d (Wolf and Kertész 1988).
While the situation is settled for the two-dimensional case, the theoretical
predictions for higher dimensions are not consistent with the above numerical
results. It is not clear whether there exists an upper critical dimension for

the problem of growing self-afline surfaces above which a = 0.

7.4. THEORETICAL RESULTS

The theoretical treatment of growing seclf-afline interfaces is based on con-
structing a continuum differential equation for describing the motion of the
interface. We shall consider first the general case of a random interface evolv-
ing in the strip geometry with a d — 1 dimensional substrate of linear size L.
Since the exponents « and 3 characterizing the width of the interface ¢ were
found to be less than unity, both ¢ /L and o/h go to zero as ¢ — co. It is
convenient to ignore overhangs so that A can be considered as a single valued
function of X. Therefore, one can assume that local coarse scale derivatives
dh/dz exist. Let us now express the velocity of the interface h(X,t) as a
function of its local gradient. To take into account the stochastic nature of
the growth one writes down the simplest non-linear Langevin equation for
h = h — h (comoving frame) in the form (Kardar et al 1986)

Oh(R,1) /8t = vV 2R(R,t) + A[VA(E, 1)) + n(X,1), (7.24)

where the time variable t is associated with the average deposition height A.
In the above equation the first term describes the relaxation of the interface
due to the surface tension 5. Its meaning is quite obvious; protrusions (places
with local curvature V2h less than zero) tend to disappear under the influence
of the smoothing effect of surface tension. Such effects are expected to be

particularly important if surface restructuring is allowed.
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h“

vdt

Tigure 7.7. Schematic picture showing the increment of h as the
growth locally occurs along the normal to the interface.

The sccond term in (7.24) is the lowest-order non-vanishing term in a
gradient expansion. Its inclusion can be justified by the following argument.
Consider, for example, the growth of an Eden cluster in two dimensions. In
general, the growth takes place in a direction locally normal to the interface.
When a particle is added, the increment projected onto the h axis is 6h =
[(v62)% + (v6LVR)?Y2 (Tig. 7.7) which leads in the weak gradient limit to

At = v[1 4 (VA)Y? ~ v + (v/2)(VR)? + ..., (7.25)

where v is the velocity normal to the interface. The above expression reduces
to the second term in (7.25) after transformation to the comoving frame and is

supposed to play a relevant role in situations where lateral growth is allowed.

The third term in expression (7.24) is included to take into account
the fluctuations. The noise denoted by 7n(X,t) is assumed to have a Gaussian
distribution, so that (n(X,t)) = 0, and

(n(X,t)n(X',t")) = 2C64(X —X')6(t — t'). (7.26)

Let us use Eq. (7.24) to obtain a scaling relation among the exponents
«, B and z in addition to (7.8). For this purpose we assume that for large

scale solutions one can neglect the noise in (7.24). Furthermore, if the surface
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tension eflects are small, we can omit the first term in (7.24) as well. Then

we have the following simpliflied equation
Oh/ 8t ~ (Vh)? (7.27)

which has a solution of the form (7.19) with h ~ t. This can be checked by
inserting (7.19) into (7.27) (Meakin et al 1986b). When carrying out this
substitution it is easy to see by comparing the leading terms in ¢ that the

two sides of Eq. (7.27) are equal if

z+fz=z4+a=2 (7.28)

(where (7.8) z = /3 was used), and f(¥) satisfies

BIH) - 72 f(7) = [ 4 f(:;f)] . (7.29)

It can be shown by similar arguments that the scaling relation (7.28) is not .
affected if the surface tension term is also included into the calculations. In
addition to the above heuristic arguments, more complete proofs of (7.28)
can be given by application of mode coupling techniques to the [ull Eq.
(7.24) (Krug 1987) or by mapping it to the directed polymer problem in a
(d + 1)-dimensional space (Kardar and Zhang 1087).

In order to determine the actual values of the exponents in (7.28) the
formalism of the dynamic renormalization group can be applied to the full
stochastic problem defined by Eq. (7.24) (Kardar et al 1986). The corre-
sponding method was elaborated for the Burgers’s equation which can be
obtained from (7.24) using the transformation ¥ = —Vh. Instead of repro-
ducing the calculations, here we discuss the results which can be summarized
as follows. Eq. (7.24) embodies three different universality classes, depend-
ing on the values of the parameters v and ).

i) The v+ = A = 0 case corresponds to random deposition of particles with
no surface restructuring or sticking of the particles to each other. Then for

L > 1 the columns grow according to the Poisson statistics describing the
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probability that the number of particles in a given column is equal to h if
h particles per column have been deposited. Thus o ~ R1/2 is given by the

central limit theorem, and
B=1/2. (7.30)

Since the size of the substrate does not have an effect on o, the other two
exponents can be regarded to be equal to zero.
ii) If A = 0, the evolution of the interface is dominated by surface restruc-

turing. IFor this case
a=(3-d)/2, g=(3-4d)/4 and z=2 (7.31)

can be obtained by Tourier transforming (7.24) (IEdwards and Wilkinson
1082).

iii) The third universality class corresponds to the general case when neither
~ nor A is equal to zero. From the dynamical renormalization group approach -

the following exponents were found

a=(3-d)/2, B=(3-d)/3 and 2=3/2 (7.32)

Tt is clear from (7.31) and (7.32) that the critical dimension appearing in these
theories is d = 3, where logarithmic corrections are expected to complicate

the situation.

A comparison of the above results with those obtained in the sim-
ulations leads to satisfactory agreement between the theory and numerical
experiments in two dimensions. Indeed, for d = 2 both the Eden growth
and ballistic deposition results suggest « = 1/2 and # = 1/3 in accord
with (7.32). Simulations of ballistic aggregation with surface restructuring
resulted in estimates for 8 close to 1/4 which is predicted by (7.31).

The situation is more controversial in higher dimensions. The simu-
lations with no restructuring provide numerical evidence for the conjecture

that a = 1/d and the validity of the scaling relation a -+ z = 2 which allows
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one to obtain the rest of the exponents once « is known. These results are
in disagrecement with the theoretical predictions. It is apparent from (7.32)
that the perturbative dynamic renormalization method suggests an upper
critical dimension equal to d = 3. According to very recent theoretical argu-
ments d. = 3 corresponds to the weak coupling regime (i.e., to small noise),
and for large (n(X,t)?*) another regime exists with a dimension independent
(or superuniversal) exponent z = 1.5 (Kardar and Zhang 1987, McKane and
Moore 1988).

As concerning ballistic deposition with surface restructuring three-
dimensional simulations of the olf-lattice process (Jullien and Meakin 1987)
indicate that the surface width diverges logarithmically with 2 and L in a
better agreement with the theoretical result d, = 3 (7.31) obtained for this

case.

Let us now concentrate on the development of a mean-field approach
to the description of the columnar geometry of ballistic aggregates (Ramanlal
and Sander 1985). This continuum theory which is to treat aggregation with
uniaxial trajectorics is based on the tangent rule (7.16) relating the angle
of incidence ¥ to the angle of holes or columns ¢, where both angles are
measured with respect to the normal to the envelope of the surface. It is
easy to understand why ¥ > ¢: the particles arrive at the surface of the
columns close to their most advanced parts and this results in a growth
closer to the normal. Although (7.16) does not hold precisely, this fact does

not change the general features of the theory.

The tangent rule can be used as a local prescription for the motion
of the interface. According to this assumption each element of the surface
moves in the direction which is determined by (7.16). For the envelope of
the fan structure of Fig. 7.4b the interface in the long time limit satisfies
(Ramanlal and Sander 1985)

3]

o —tand,

oz (7.33)
Y
= = tan(0),

T
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Tigure 7.8. Schematic picture of the envelope of the interface
g p

(used to construct Igs. 7.33).

where 6 is measured from the y axis (Fig. 7.8). On the other hand, we must
have 0 = 19 — ¢, since the surface moves along a straight line originating at
the seed (because of the tangent rule). The solution of the set of equations
(7.16) and (7.33) can be obtained by converting to polar coordinates. Then -
Or /80 = rtan¢ with the polar angle

0 = tan"![tan /(2 + tan® ¥)] (7.34)

follows from the tangent rule. The solution is

r =rgf{l),
ﬁ 1 (n+1DY(n-1)/2
f(ﬂ) - ﬁ]sinﬂ] (3n _ 1)3/4 )
n = (1— 8tan?0)~1/2,

(7.35)

where 7 is a time dependent constant. f{#) can laso be written in a more

compact form

F(0) = (cos9)?/cos¢. (7.36)

The most important feature of the solulion appears quite naturally in (7.35).
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When tanf = 1/\/5, n diverges. This condition corresponds to an angle
f ~ 19.5° which is in good agreement with the simulation results. One way
to understand this result is to note that (7.34) has a maximum at 19.5°, thus
one never expects to see a fan with an opening angle away from the incident
direction larger than this value. Ilowever, the above angle is not universal
since in the case of the square lattice, (discussed in Section 7.2.), the opening

angle was found to be about 32°.

Iq. (7.36) describes the static behaviour of the surface. In order to
determine the actual motion of the interface one writes for the velocity of a

point of the interface whose normal is nn
v =vth = —(i - J/p)ia = o, (7.37)

where 101 is a unit vector in a direction between the incident beam and the
normal, as given by the tangent rule, J is the constant flux of incoming
particles per unit area per unit time, and p is the local density. In the
above expression f is given by (7.36) in order to be consistent with the’
solution obtained before for a fixed ro. Eq. (7.37) has to be completed by the
condition that there is no growth if cosd < 0 (the surface is in a geometrical
shadow). Finally, the velocity of the interface in a given direction k can be

expressed as

=
<l

Uk =2 (7.38)

=
=i

Returning to polar coordinates with k = #, Eqs. (7.37) and (7.38) can be

written in the form

ar(0,t)/8t = vo[(1 + Q%) cos 19]1/2,
Q = ar /3¢, (7.39)
cosd = (cosf — Qsind)/(1 + QQ)I/Q.

It can be checked by direct insertion of (7.35) into (7.39) that the former is

an exact solution to the partial differential equation (7.39), with the initial
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condition of growth from a point. For other initial conditions (7.39) can be

treated by either stability analysis or numerical integration.

(a) (b)

Tigure 7.9. Numecrical solutions of 15q. (7.39) for perturbed ini-
tial conditions. (a) Growth on a sced partlicle, and (b) on a line
(Ramanlal and Sander 1985).

The actual solution depends on the roughness of the initial conditions.
It can be shown that the asymptotic solution (7.39) is marginally stable,
therefore, a smooth enough initial interface does not lead to instabilities. |
Let us assume that initially the surface looks like (Ramanlal and Sander
1985)

§(0,0) = 6o cos(m0) (7.40)

representing the fluctuations in the profile due to the random distribution
of incoming particles. If 8§y < 1, the surface remains smooth because of
the marginal stability of the solutions of (7.39). Ilowever, if (for example)
60/7(0) = 0.05 and m=44, the long empty strips characteristic for the fan
structure appear, as is demonstrated in Fig. 7.9a. The streaks and ragged
edges of Tig. 7.4b probably arise in this way. This suggests that the specific
shape of ballistic aggregates emerges from the interplay of fluctuations (rough
initial condition) and the consequent geometrical shadowing. The same line
of reasoning and a periodic initial condition give rise to the growth of columns
shown in Fig. 7.9b.

The main conclusion of the above mean-field continuum theory for
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ballistic deposition is the following. The columns are nucleated due to the
random nature of the deposition. Whenever the height per width of a cluster
is large enough to produce geometrical shadow, this non-linear effect gives
rise to the growth of a distinct column growing out from the given seed

cluster.





