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Chapter §&.
CLUSTER-CLUSTER AGGREGATION

Aggregation of microscopic particles diffusing in a fluid medium rep-
resents a common process leading to fractal structures. If the density of the
initially randomly distributed particles is larger than zero, the probability
for two “sticky” particles to collide and stick together is finite. It is typical
for such systems that the resulting two-particle aggregate can diffuse further
and may form larger fractal clusters by joining other aggregates (Friedlander
1977). As a result the mean cluster size increases in time and, in principle,
after a sufliciently long period all of the particles in the finite system become
part of a single cluster. In many cases the force between two particles is of
short range and it is strong enough to bind the particles irreversibly when
they contact each other. Tor example, such behaviour can be observed for
iron smoke aggregates formed in air (Forrest and Witten 1979) or in aqueous
gold colloids (Weitz and Olivera 1984).

In the above process each cluster is equivalent with regard to the
conditions for their motion, i.e., there is no seed particle as in the case of
DLA. Consequently, this process is called cluster-cluster aggregation (CCA)
to distinguish it from particle-cluster aggregation phenomena discussed in
the previous sections of Part II. CCA directly corresponds to the physical
situation taking place in a system of aggregating particles, in contrast to DLA

which in general should be regarded as a computer model for phenomena not
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Figure 8.1. Snapshots of configurations taken at various “times”
during the computer simulation of diffusion-limited cluster-cluster
aggregation in two dimensions.

necessarily involving attachment of particles.

The possibility of sitnulating colloidal aggregation in a computer has
been recognized for a few decades (Sutherland 1967). However, large scale
numerical investigation of cluster-cluster aggregation has become feasible
only in recent years. Simple computer models for CCA (e.g. Meakin 1983c,
Kolb et al 1983) can be successfully used to study the structure of aggregates
and the dynamics of their formation. A typical two-dimensional simulation
is started by randomly occupying a small fraction of the sites on a square

lattice to represent particles. At each time step a particle or a cluster is



Part II: Cluster Growth Models 209

selected randomly and is moved by one lattice unit in a randomly chosen
direction. Two clusters stick when they touch each other. Fig. 8.1 shows
four stages of such a process. This figure demonstrates the most important
properties of cluster-cluster aggregation. With increasing time the number of
clusters decreases, and large, randomly branching aggregates appear in the
system. The computer generated clusters and the real aggregates observed

in many recent experiments were found to have very similar fractal scaling.

Because of the simultaneous diffusional motion of aggregates, the time
is a well defined quantity in CCA (including simulations). Accordingly, the
related numerical and experimental investigations have concentrated on both
the geometrical and dynamical aspects of the aggregation process. The re-
sults suggest that in analogy with equilibrium phase transitions, non-trivial
scaling can be found in both approaches. Therefore, in addition to the fractal
structure of aggregates, in this Chapter we shall discuss the dynamic scaling
for the cluster size distribution as well (Vicsek and Family 1984, Kolb 1984).

Most of the real cluster-cluster aggregation processes are more complex
than the simple simulation described above. It is mainly the shape of the
shbrt—range interaction potential between two particles which determines the
nature of the statics and dynamics of CCA. A deep minimum in the potential
and a negligible repulsion part results in the so-called i) diffusion-limited
regime, when two clusters stick rigidly together as soon as they contact. The
relevant time scale in this process is the typical time needed for two diffusing
clusters to approach each other. During ii) reaction-limited (or chemically-
limited) CCA a small, but relevant repulsive potential barrier can prevent
the clusters from joining each other even if they are close. However, after a
number of contacts they may become joined irreversibly. In this case it is
the time needed for the formation of a bond between adjacent clusters which

determines the characteristic time.

If the attractive part is not deep enough, one expects that the event of
aggregation of two clusters can be followed by reorganization (restructuring)
or dissociation of the aggregates. In the latter case the irreversible character
of the process is lost and one is led to deal with iii) reversible CCA. The

properties of cluster-cluster aggregates are also affected by the kind of motion
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they undergo. The trajectory of a cluster can be Brownian or ballistic. In
addition, the clusters may rotate. Many of these processes have been studied
by the three main approaches (simulations, theory and experiments) to be

discussed in this section.

8.1. STRUCTURE OF CLUSTER-CLUSTER AGGREGATES

Both the related experiments and simulations indicate that cluster-cluster
aggregates are typically highly ramified, almost loopless structures exhibit-
ing fractal properties. In contrast to off-lattice DLA clusters, the overall
shape of cluster-cluster aggregates is not spherical. Instead, these aggregates
can be characterized by a well defined asphericity which becomes more pro-
nounced as the clusters become larger (Medalia 1967). This fact is a trivial
consequence of the growth mechanism: the overall shape can not be spherical
since joining two spherical clusters would immediately destroy the syminetry.
In contract to their overall shape, however, the density correlations within

cluster-cluster aggregates are isotropic (Kolb 1985).

The fractal dimension of CCA clusters can be determined by the ap-
plication of methods discussed in Chapter 4. For aggregates generated by
Monte Carlo simulations, the power law decay of the density-density corre-
lation function (Eq. (2.14)), the dependence of the radius of gyration on the
mass of the aggregates (4.12) or the scaling assumption (4.14) can be used

to evaluate D.

8.1.1. TI'ractal dimension from simulations

The actual realization of a cluster-cluster aggregation model in the
computer depends on the particular process to be simmulated. However, the
most widely used simulations are based on the following assumptions. The
particles are represented by occupied sites of a d-dimensional hypercubic cell
of linear size L. To make the finite-size effects smaller, periodic boundary

conditions are used. Initially, No = pL? sites are randomly filled, where p <
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1 is the density of the particles in the system. Then the clusters are allowed to
move following Brownian or ballistic trajectories. 1f during their motion two
or more particles belonging to different clusters accidentally occupy adjacent
(nearest neighbour) sites, the clusters combine to form a single new aggregate
with a probability 0 < p, < 1.

In diffusion-limited cluster-cluster aggregation (Meakin 1983c, Kolb et
al 1983) the clusters are assumed to undergo random walks on the lattice,
and p, = 1. The mobility of the clusters is presumed to depend on the
number of particles s they are made of. In particular, it is assumed that the

diffusion coefficient D, of a cluster of size s is given by

D, = Cs7, (8.1)

where C is a constant and « can be used to take into account the effects
of cluster geometry. For example, in a typical physical system one expects
that v ~ —1/D, because the mobility of a cluster in a fluid is inversely
proportional to its hydrodynamic radius which for an aggrepate of fractal
dimension D is close to to its linear extension (e.g. de Gennes 1979). For
the case v = 0, corresponding to a mass-independent diffusion coefficient,
clusters are selected randomly and moved by one lattice unit in a direction
chosen randomly from the 2d possible directions. If v # 0 the following
procedure is used to decide which of the clusters should be moved next. A
random number r uniformly distributed in the range 0 < r < 1 is selected
and the cluster is moved only if r < D,/ D,,,z, where D, is the diffusion
coefficient of the given cluster and D, is the largest diffusion coeflicient

for any cluster in the system.

The above lattice model can be generalized to the off-lattice case in a
manner analogous to that used to simulate off-lattice DLA (Section 6.1.1).
Similarly to diffusion-limited aggregation, this modification is not expected
to change the fractal dimension of the clusters (Meakin 1987b). Fig. 8.2
shows the projection of an off-lattice diffusion-limited cluster-cluster aggre-
gate embedded into three dimensions. Since this projection is not space

filling, the fractal dimension of the aggregate itself should be less than 2 (see
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Figure 8.2. Projection of an off-lattice diffusion-limited CCA
cluster grown in a three-dimensional simulation (Meakin 1987b).
Comparison of this figure with Fig. 8.14 shows the relevance of
computer simulation results to the experiments.
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I'igure 8.3. Dependence of the density correlations within diffusion-
limited CCA clusters on the interparticle distance r. The crossover
to the non-fractal behaviour is indicated by the horizontal part of
the curves (Meakin 1987b).

rule a) of Section 2.2.).

One way to investigate the structure of aggregates is to calculate the

density-density correlation function ¢(r) given by (2.14) (Meakin 1987b). In
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addition to the determination of the fractal dimension, this method can also
be used to study the elfects of [inite constant density of particles p. Results
for ¢(r) obtained from three-dimensional simulations of CCA are displayed
in Fig. 8.3. For r < r. the plot of Inc(r) versus Inr is approximately a
straight line with a slope @ = D — d, where r. is a p-dependent crossover
scale. The power law decay of ¢(r) indicates that the density distribution
within the aggregates has a fractal scaling up to r.. In the vicinity of the
crossover scale this behaviour is changed, and for r > r, the correlation
function becomes approximately constant. Such a crossover corresponds to a
structure which is homogeneous on length scales larger than r.. To estimate
r. one assumes that the large network spanning the whole cell at the final
stage of the simulation is made of fractal subunits of dimension D. The
number of subunits is proportional to No/rZ. Since the network fills the cell
of volume L% more or less homogeneously, and the effective volume occupied

by a subunit is rf, we can write

N,
d 0 d
L e —DH?"C. (82)
TC
From the above expression one obtains
re ~pPT% ~ p7, (8.3)

where @ = d — D is the codimension (2.18) and p = Ny /L<.

The d-dependence of the fractal dimension of aggregates grown by
diffusion-limited CCA is presented in Table 8.1. Clearly, these aggregates
have a considerably smaller D than DLA clusters generated on lattices of
the same dimension. This result is quite plausible; individual particles can
penetrate a DLA cluster easily enough to increase its dimension to at least
d — 1 (6.4). Cluster-cluster aggregates do not tend to fill holes within each
other, being fractal structures themseves. The values obtained for the d = 2
and d = 3 cases are in good accord with the experimental results discussed
in Section 8.3.1.

The question of the dependence of D on the diffusivity exponent -~y
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Table 8.1. Dependence of the fractal dimension of diffusion-
limited cluster-cluster aggregates on d as determined from the cor-
relation function (Dy) and from the radius of gyration (D).

d DO& DV Nma:n
2 1.4440.03 1.4340.02 ~ 104
3 1.7840.06 1.7540.01 ~ 101
4 2.1240.10 2.0340.04 ~ 104
5 = 2.214+0.02 ~ 10°
6 = 2.38+0.02 ~ 103

arises naturally. The simulation carried out in two dimensions suggests that
for v < 1 the aggregates have approximately the same fractal dimension
D ~ 1.45. However, it is clear that in the limit of v > 1 and low concen-
tration CCA should become equivalent to DLA, as in this case practically
only a single cluster (the largest one) is moving and it collects the rest of
the individual particles during its diffusional motion. The behaviour of the
density-density correlations in clusters obtained at the end of the simulations
for various v indicates a continuous change in the fractal dimension from a
value of D ~ 1.45for v = 0to D ~ 1.7 for v = 2 (Meakin 1985¢). Therefore,
if v > 2 the dimension of cluster-cluster aggregates is the same as that of
DLA clusters. The nature of the crossover from CCA to DLA is not com-
pletely understood. The above mentioned simulations suggest a continuous
change between the two regimes, while theoretical considerations imply a

sudden jump from one type of behaviour into the other one as a function of

Y.

Models for reaction-limited cluster-cluster aggregation (Jullien and
Kolb 1984, Brown and Ball 1985) are constructed to represent the zero
sticking probability limit of CCA. If p; ~ 0, each of the possible contact
configurations of two clusters has the same probability to occur. This model
is a cluster-cluster analogue of the particle-cluster model of Eden (1961),
where each surface site is filled with equal probability. While for the Eden

model D = d, in the case of reaction-limited CCA because of obvious steric
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constraints, the clusters can not become compact.

A possible realization of reaction-limited CCA on cubic lattices is
based on placing two clusters at random positions in a large cell. The re-
sulting configuration is accepted as a new cluster only if the two clusters are
adjacent and do not overlap. There are two main possibilities for chosing the
above two clusters. i) To produce a monodisperse size distribution (Jullien
and Kolb 1984) one starts with 2" monomers. At each iteration a dimeriza-
tion is made until there are no monomers left. Next the dimers are joined to
form clusters of 4 particles and so on. ii) In the polydisperse case (Brown and
Ball 1985) the clusters are always randomly selected from the ones available

at the given stage.

Based on the results for the fractal dimension, the monodisperse and
the polydisperse cases are principally different. The following values were

obtained

D=153+001 (d=2) and D=194+002 (d=23) (8.4)

for the monodisperse distribution and

D=159+001 (d=2) and D=21140.03 (d=23) (8.5)

for the polydisperse system. It is clear from the above expressions that D
is larger for these models than it is for diffusion-limited CCA. This is well
illustrated by the most important three-dimensional case for which D ~
1.75 in the diffusion-limited and D =~ 2.11 in the reaction-limited version of

cluster-cluster aggregation, in good agrement with the experimental results.

A relevant quantity associated with reaction-limited CCA is the num-
ber of ways Cs, s, in which cluster 1 and cluster 2 can be positioned adjacent
to each other. The square root of this quantity for s; = s; = s gives an esti-
mate of the number of active sites (sites at which a contact can be made) of
an s particle cluster. The simulations indicate that the average value of the

active sites scales as (Jullien and Kolb 1984)
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(CM?y ~ &8, (8.6)

For the monodisperse case 6 =~ 0.37 (d = 2), 6 ~ 0.58 (d = 3) and § ~ 0.72
(d = 4) were found to give the best fit to the data. It is obvious that § must
be smaller than 1 since only a fraction of the particles of a cluster is accessible
when two aggregates are probed for contact. However, at the upper critical
dimension d, (if it exists) we expect § = 1, because for d > d, the aggregates

are transparent to each other (see next Section).

In the off-lattice ballistic cluster-cluster aggregation model (Sutherland
1967) clusters are combined in pairs without the presence of other clusters
(i.e., in the zero concentration limit). The process is started with a list
of hyperspherical particles. During the simulation, particles or clusters are
picked from the list in a stochastic manner, rotated to a random orientation,
and are combined via randomly sclected straight trajectories to form a larger
cluster. The two clusters are joined at the point of first contact. After
the new cluster has been formed, it is returned to the list, while the two
precursors are erased. This process is continued until a single large cluster

is obtained.

The clusters can be selected from the list according to a probability
depending on some characteristics of the aggregates. As was discussed for
reaction-limited CCA, one possibility is i) to pick a cluster completely ran-
‘domly (polydisperse case). In the ii) hterarchical models (e.g. Sutherland
1967, Jullien and Kolb 1984) only clusters of the same size are joined. In
this case the simulation starts with 2% particles which are combined to form
2%~1 binary clusters (monodisperse size distribution). iii) An additional pos-
sibility is to choose a cluster with a probability depending on its size, e.g.,
in the form (8.1). In this model the probability of choosing two clusters of

masses 1 and s simultaneously is proportional to (s1s2)7.

Simulations of off-lattice ballistic aggregation corresponding to cases
i) and ii) resulted in practically unchanged fractal dimensions for a given d
(Meakin 1987b). For d = 2 and d = 3 the values D =~ 1.55 and D ~ 1.91 were

obtained, respectively. These numbers are closer to the fractal dimension of
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Figure 8.4. Crossover from CCA to ballistic particle-cluster ag-
gregation as a function of 7y when the objects move along straight
line trajectories (upper row). In the diffusion-limited case the pro-
cess crosses over to DLA for large «y (Jullien et al 1984).

rcaction-limited CCA clusters than to that determined for diflusion-limited
cluster-cluster aggregates. Model iii) provides a possibility to demonstrate
the elfects of cluster mobility. In Fig. 8.4 (upper row) the crossover from
CCA to particle-cluster ballistic aggregation-type structures is illustrated. In
the diffusion-limited case a crossover from CCA to DLA can be seen (lower

row) occurring in this approach at v = 1.

In all of the CCA models discussed above it was assumed that the
density of particles in the system is much less than unity. However, it is
of interest to consider what happens for p close to 1. The p = 1 limit can
be investigated using the following procedure (Kolb and Herrmann 1987).
Initially, one particle is placed on each site of the square lattice. The particles
try to move in a randomly selected direction, and form a cluster (establishing

a bond) with the particle they would collide with (clusters also try to move
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Figure 8.5. Clusters generated in the simulations of high den-
sity CCA. In these numerical experiments both surface and volume
fractals could be observed. The first picture (from left) shows a
non-fractal cluster having a fractal surface (y = —2), while the
third configuration represents a fractal cluster (y = 1).

and are combined with those they would hit). Therefore, the clusters are
defined as sets of particles connected by permanent bonds formed during
their attempts to move. A cluster is selected for a trial jump with a frequency
given by (8.1). The results are demonstrated in Fig. 8.5. Depending on ~ the
following structures can be observed just before the linear size of the largest
'éluster becomes comparable to that of the cell: a) Compact clusters with
fractal surface (y = —2), b) fractal aggregates (v = 1), and c) non-fractal
objects (v = 2).

There are many more variants of cluster-cluster aggregation. A num-
ber of them lead to fractal dimensions different from the ones given above
for the basic models. Non-universality was observed, for example, in bal-
listic CCA with a zero impact parameter (Jullien 1984) and in chain-chain
diffusion-limited aggregation (Debierre and Turban 1987), where branching

is not allowed.

8.1.2. Theoretical approaches

Before presenting a few theoretical results, it has to be pointed out
that there is no standard theory for the fractal dimension of cluster-cluster

aggregates. The theoretical methods well founded to determine the scaling
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behaviour in equilibrium phenomena are not applicable to diffusion-limited
CCA because of its far from equilibrium nature. The situation is similar to
the case of other growth processes such as DLA. However, unlike diffusion-
limited aggregation, CCA can be shown to have an upper critical dimension.
This is perhaps the most important result obtained for cluster-cluster aggre-

gates by theoretical arguments.

To treat CCA theoretically we consider the following “Sutherland’s
Ghost” model (Ball and Witten 1984b). Let us imagine that the clusters
are constructed according to an algorithm similar to the hierarchical version
of the ballistic aggregation model (previous Section). However, instead of
combining the clusters using ballistic trajectories, one selects a monomer
belonging to each of the two clusters, and joins the clusters by positioning
these monomers on adjacent sites of the lattice (this is done in the spirit of
reaction-limited CCA). The specific feature of this model is that the particles

are allowed to overlap.

The fractal dimension of such clusters can be calculated by determin-
ing the average number of bonds b(2s) (chemical distance) separating one
particle from another on an aggregate consisting of 2s particles. If two par-
ticles are chosen at random on a 2s-site cluster, the probability that they
both belong to the A cluster or both belong to the B cluster is equal to
1/4, where A and B denote the two s-site constituent clusters. In this case
the average number of bonds is b(s). With a probability 1/2 one of the two
chosen particles belongs to A, the other one to B. Then the path on A4 to
the contact point, and on B from this point to the other chosen particle add
up on average to give 2b(s). The three cases together give b(2s) = 3/2b(s)
which means that b(s) ~ s'(3/2)/1n2 1t {ollows from the construction (clus-
ters of independent orientations are linked, and no overlaps occur) that the
shortest path connecting two particles on the cluster behaves as a random
walk (Section 5.3.1). Thus one has for the mean square distance between
the particles R* ~ b(s). From here it follows (Ball and Witten 1984b) that
s ~ RP with

~ 3.4. (8.7)
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The above fractal dimension (which is independent of d) was obtained by
letting the clusters interpenetrate freely. This crude approximation can be
improved by modifying the model to take into account self-avoidance or
excluded volume effects. This can be done in a computer by discarding
overlapping configurations. The obtained hierarchical model is identical to

reaction-limited CCA discussed above. However, if

2D -d<0, (8.8)

only a small fraction of the configurations have to be removed and the two
models become equivalent. Condition (8.8) is related to rule f) discussed
in Section 2.2. giving the fractal dimension of the intersection of two f{rac-
tals. If (8.8) is satisfled, the intersection has a fractal dimension equal to
zero, consequently, overlaps occur with a probability less than 1. There-
fore, excluded volume effects are negligible in embedding dimensions above
d. = 2D, ~ 6.8, which can be regarded as the upper critical dimension of
reaction-limited cluster-cluster aggregation in analogy with d. for ordinary

equilibrium systems.

In fact, reaction-limited CCA can be considered as an equilibrium
model since the various clusters appear with the same probability (Witten
1985). One expects that this model is closely related to lattice animals. Lat-
tice animals are the collection of all possible connected configurations on a
lattice consisting of a given number of sites taken with equal weight. The
main difference between the two ensembles is that the former one is a subset
of lattice animals corresponding to binary decomposable configurations. For

equilibrium systems the heuristic Flory theory gives up to d = d,

d+ 2 *

= A +1/DY’ (89)

where D, is the fractal dimension of clusters in d.-dimensional space. If d >
de, D = D.. For lattice animals D, = 4, and the critical dimension is d, = 8.
Substituting D, = 3.4 into the above expression one gets the estimates for

the fractal dimension of monodisperse reaction-limited aggregates D ~ 1.55
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(d = 2) and D =~ 1.93 (d = 3) in surprisingly good agreement with the

simulation results (8.4).

For diffusion-limited and ballistic CCA similar arguments can be used
to obtain the upper critical dimension. Again, two particles can be used
to link together two aggregates, but the obtained configuration has to be
discarded if letting one of the clusters undergo a random walk results in
an overlap during its diffusional motion (for the ballistic case straight line
trajectories have to be considered). The effective dimension of the object
consisting of the sites visited by the diflusing aggregate of dimension D is
D + 2, since this object can be obtained by replacing each particle by a
random walk of dimension 2. Consequently, for diffusion-limited CCA d, =
2D, + 2 ~ 8.8. For the ballistic case we have d; = 2D, + 1 ~ 7.8 (Witten
1985). In general, one expects that a higher upper critical dimension results
in a lower fractal dimension for a given d < d,. The numerical resulls are
in good agreement with the above critical dimensions, because for a fixed d
they satisfy Dg(diff.lim) < Dg(ballistic) < Dg(react.lim.).

8.2. DYNAMIC SCALING FOR THE CLUSTER SIZE DISTRIBUTION

The fractal dimension conveys information about the static or geometrical
properties of a single aggregate. However, in a typical cluster-cluster aggre-
gation process there are many clusters simultaneously present in the system,
and the evolution of this ensemble of aggregates is of interest as well. This
time dependence can be investigated by determining the dynamic cluster-size
distribution function ng(t), which is the number of clusters in a unit volume

consisting of s particles at time t.

The study of the statistics of clusters is a common approach to the
description of ensembles of clusters. In many equilibrium systems n, is known
to decay as a power law at the critical point. Analogously, n,(t) has been
shown to exhibit static (as a function of s) and dynamic (as a function of £)
scaling in a number of close-to or far-from equilibrium systems (Binder 1976).
In this Section we first treat computer simulations of the diffusion-limited and

related cluster-cluster aggregation models together with the dynamic scaling
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picture emerging from these numerical investigations. This will be followed

by a discussion of the mean-ficld Smoluchowski (1917) equation.

8.2.1. Diffusion-limited CCA

In the diffusion-limited cluster-cluster aggregation model (Section 8.1.1.) the
clusters move along Brownian trajectories and stick together on contact.
Initially there are No = pL® monomers in a cell of linear size L. To make
the cluster size distribution function independent of the cell size we use the
definition n4(t) = N, (t)/Ld, where N, (t) is the number of s-clusters at time
t in the cell. The elapsed time is measured by increasing ¢t by an amount At

each time a cluster is selected to move.

The dynamic scaling of n,(t) can be well demonstrated simulating the
simple version of CCA on a square lattice with mass independent cluster
mobility corresponding to v = 0 in (8.1). In this case At = 1/n(t) has
to be used to provide a physical time, where n(t) is the normalized total
number of clusters in the system at time ¢. The choice At =1 would result
in an unphysical acceleration with growing t (since n(t) — 0 for ¢ — oo, and
this would lead to an increase of the number of steps per cluster per unit
time). The expression At = 1/n(t) yields the same diffusion coefficient for
each cluster, and it corresponds to the Monte-Carlo step per spin type time

definitions common in equilibrium simulations.

The results of simulations are illustrated in Figs. 8.6. Fig. 8.6a shows
the dynamic cluster-size distribution as a function of s for fixed times, while
ne(t) as a function of ¢ is plotted in Fig. 8.6b for three selected values of the
cluster size s. These simulations were carried out with L = 400 and initial
particle density p = 0.05. There are a few important conclusions which can
be drawn from these figures. i) The straight lines in Fig. 8.6a correspond
to a power law decay of the cluster-size distribution as a function of s up to
a cutoff value. This behaviour is analogous to that observed for equilibrium
systems close to the critical point. However, for diffusion-limited CCA the
exponent 7 describing the decay of n4(t) with s, is smaller than 2, in contrast

to equilibrium systems, where 7 > 2. ii) The position of the cutolf diverges
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Figure 8.6. (a) Dependence of the dynamic cluster-size distri-
bution function (n4(t)) on the number of particles in the clusters
(s)for fixed times (t). (b) m4(t) as a funcion of time for three se-
lected values of § (Vicsek and Family 1984).

with t. iii) According to Fig. 8.6b, n,(t) scales as a function of ¢ (for fixed

s) as well.

These observations can be well represented by the scaling assumption
(Vicsek and Family 1984a,Kolb 1984)

ne(t) ~ s~ f(s/t7), (8.10)

where 6 and z are constants analogous to critical exponents, and f(z) is a
scaling function. f(z) is such that f(z) < 1 (it is exponentially small), if
z > 1and f(z) ~ 2%, if £ < 1 with 6 usually called the crossover exponent.
The above expression can be written in an alternative form which contains

the scaling of n,(t) as a function of s and t ezplicitly for small s/t*

ne(t) ~ t~¥s™T f(s/t%), (8.11)
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where the cutoff function is approximately a constant for z < 1 and decays
faster than any power law as £ — co. The term ¢ ™% corresponds to a process
typical for cluster-cluster aggregation; the clusters which are much smaller
than s/t* gradually die out forming larger aggregates. The characteristic

cluster size is determined by the denominator tZ.

The scaling assumption (8.11) and the normalization condition

g = Zns(t)s ~ ./loons(t)sds (8.12)

can be used to obtain a scaling relation among the exponents w, 2 and 7.
Inserting (8.11) into (8.12) we have

e [ oot [T argen, o3
1 t

x

From (8.13) it follows that (Vicsek and Family 1984a)
- w=(2-71)z, (8.14)

since 0 < p < 1 when t — oo and the last integral is a constant in the same
limit. Obviously, 7 < 2 has to be satisfied, because in a physical system
12 3 0.

The mean cluster size S(t) diverges for t — oo. Expressing S(t)
through n,4(t), and using (8.11) and (8.14) we get

S(t) Zanﬂ(t ‘52 ~ 1%,

B Ea nﬂ( )S

(8.15)

Similarly, for the total number of clusters in the system, n(t) = ), n,(t) one
has (Vicsek and Family 1984b)

= ifr <1
i ) 8.
wilf) {t‘w, ifr>1. (8.16)
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Thus the scaling of the total number of particles in time is determined by the
value of the exponent 7. The simulations in d = 2 resulted in the estimates
w == LT, gre T4 and o 20,7,

For z < 1 (8.10) can be written in the form n(t) ~ t=26s~¢+¢  Com-
paring this with (8.11) one obtains w = 26 and § — § = 7. Because of the
scaling relation (8.14), from here it follows that in (8.10)

6 =2. (8.17)

The mass dependent cluster mobilities of the form (8.1) strongly in-
fluence the dynamics as well. These ellects were investigated by simulating
diflusion-limited CCA in two and three dimensions (Meakin et al 1985). To
provide cluster mobilities proportional to s7 one can use the following proce-
dure. i) F'irst a cluster is selected randomly. ii) Then a random number p dis-
tributed uniformly on the unit interval is generated, and the given cluster is
moved in a random direction by one lattice unit only if p < D,/Dpqz, where
D, is the diffusion coefficient of the selected cluster and Dy, is the largest
diffusion coellicient for any cluster in the system. iii) Finally, on each occa-
sion when a cluster is chosen the time is incremented by At = 1/[n(t) Dynaz]
even if the cluster is not moved. In other words the time is incremented by

At for each attempted move.

The dependence of the exponents w, z and 7 on <y can be determined
from log-log plots of the quantities S(t), N(t) = n(t)L? and N,(t) for various
4. The results obtained from three-dimensional simulations are summarized
in Table 8.2. This Table shows that for ~ smaller than some critical ~,
the shape of the cluster-size distribution function changes qualitatively. If
v < e, ng(t) does not decay as a power law for small s, and in the scaling
law (8.11) w = 2z.

Thus the behaviour of n4(t) is non-universal as a function of «. For
v > 0 the large clusters move faster, and relatively many small ones do
not take part in the aggregation process. In this case n,(t) is characterized
by many small clusters and a gradually decreasing number of clusters for

growing sizes. If v < 0, the small clusters have a higher velocity, so they die
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Table 8.2. Exponents 7, w and z obtained from three-dimensional
simulations of diffusion-limited CCA for various values of the diffu-
sivity exponent «y. Note that the scaling theory predicts w = (2—7)2
for 7> 7. and w = 22 for v < ..

"y z w T
-3 0.33 0.64
-2 0.45 0.90
-1 0.85 1.60
-1/D 1 2.2
-1/2 1.3 2.6 ~ 0
0 3 2.2 1.3
1/2 ~ 100 12 1.87
100 \< =05 —
10 .
2 0 ]
0. _
0.0l 1 L 1 L 4
1 10 100 1000
S
Figure 8.7.  Cluster-size distribution functions obtained from

simulations of diffusion-limited CCA on the square lattice. As
~ is decreasing, at a critical value of the diffusivity exponent
4. =~ —0.27, the monotonic decay of the distribution crosses over
into a different, bell-shaped behaviour (Meakin et al 1985).

out (aggregate) quickly, forming larger clusters. Thus there will be only a
few small and very large clusters in the system, resulting in a non-monotonic,
bell-shaped distribution.
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The crossover between the monotonic and the bell-like behaviour oc-
curs at some 7. depending on d (Mcakin et al 1985). For example, in d = 2
this qualitative change in n4(¢) occurs near v, ~ —0.27. This is demonstrated
in Fig. 8.7. According to Table 8.2, in three dimensions ~, ~ —0.5. On the
other hand, one expects that the mobility of clusters in a fluid is inversely
proportional to their hydrodynamic radius. The latter scales the same way
as the radius of gyration of the clusters, thus D, ~ 1/R, ~ s~ YD where
1/D =~ 0.57. Consequently, in d = 3 the critical mobility exponent ~, is just
in the range where -y is likely to be in a real system in which the diffusion

process is controlled by shear viscosity.

The above discussed results for the dynamics of diffussion-limited
cluster-cluster aggregation can be summarized as follows. The cluster-size

distribution is described by dynamic scaling of the form

ny(t) ~ 52 (s/t%), (8.18)

where f(z) depends on the mobility exponent «y. In particular,

f(z) ~ z%g(z) for v <. (8.19)

with g(z) exponentially small for both z << 1 and z > 1, and

5 .
5% ifzr<l
~ 8.20
/(=) {<<1, fr>1 fde: = oy ( )

The scaling (8.18) can be checked by plotting the quantity s2n,(t) as
a function of s/t*. If (8.18) is valid, then the results obtained for a given
<y should fall onto a single curve corresponding to the scaling function f(z).
Fig. 8.8 demonstrates that for the simulations carried out in d = 3 with

~ = —2 this is indeed the case.

The region of validity of the dynamic scaling (8.18) depends on the
parameters of the problem. Equation (8.18) is expected to describe the

evolution of the process in the limit when the particle density is small (p < 1).
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Figure 8.8. Scaling of the dynamic cluster-size distribution func-
tion. (8.18) is supported by the fact that after a relatively short
time the data determined for various times fall onto a single curve.
In these three-dimensional simulations 7 = —2 was used (Meakin
et al 1985).

In addition, s 3> 1 and t > 1 are required in order to be in the scaling region.

For the time variable, however, there is an upper bound as well, for the
following reasons. First, in a finite system the total number of clusters N (t)
after some time becomes so low that a statistical interpretation of the cluster
size distribution loses its meaning. Second, a non-trivial crossover is expected
to occur at a time ¢, depending on the particle density p. As the aggregation
process goes on, the number of clusters decreases and, correspondingly, the
average number of particles in the clusters, 3(t), increases. Assuming that
the clusters are approximately of the same size (this is so for v < ~.) the
average cluster radius grows in time as R(t) ~ [5(t)]YP ~ [o/n(t)]/P ~
t2/D In contrast, the average distance between the centres of two clusters,
7(t), grows as 7(t) ~ [n(t)]7Y¢ ~ t*/4, ie., slower, because d > D. This
means that approaching the time ¢, at which E(t) becomes as large as 7(t),
the aggregation process crosses over into gelation and an infinite network
(gel) appears. Naturally, in this limit the dynamic scaling (8.18) breaks
down. Thus, diffusion-limited CCA is a suitable model to simulate gelation

in colloidal systems.

The above qualitative picture can be made more quantitative (Kerstein
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and Bug 1984) by using (8.18) for the determination of the effective volume,
V (t), occupied by the clusters. This is done by calculating

V(t) _ Zva'ns(t) B pﬂm Sd/D—zf(s/tz) oy pt(d/D—l)z’ (8.21)

where V, = s% P is the effective volume occupied by an s-site cluster and the
prefactor is chosen so that V(1) = p (at the first time step V is equal to the
volume fraction of the diffusing particles). Setting V' (t;) = 1, (8.21) gives

the estimate
ty =~ p1/12(1"d/D)i (8.22)

depending on p, D and z (where z itself depends on « but it is always larger
than zero). Accordingly, gelation occurs at finite time for every -, although
t, — oo as p — 0. The gelation time becomes very large also for v <« 0 since
in this case z < 1.

Dynamic scaling of the form (8.18-8.20) is a general property of many
cluster-cluster aggregation processes in which the aggregates move along
Brownian trajectories (Section 8.3.2.). The cluster-size distribution in a
number of related computer models was found to follow (8.18), including
chain-chain aggregation (Debierre and Turban 1987), the particle coalescence

model and aggregation of anisotropic particles (Miyazima et al 1987).

8.2.2. Reaction-limited CCA

Reaction-limited cluster-cluster aggregation in the form introduced in
Section 8.1.1. does not allow the investigation of dynamic properties because
there is no physical time scale defined in the model. One way to study the
dynamics of aggregation in realistic reaction-limited processes is to use the
diffusion-limited CCA model with very small sticking probabilities (Family
et al 1985b). The formation of a permanent bond between two clusters may

depend on a number of parameters, including the mass of the two colliding
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clusters. To be specilic, in the following we shall describe the results of

simulations with a sticking probability of the form

Pa,st = pos’s’”, (8.23)

where s and s’ denote the number of particles in the two clusters. In (8.23)
po < 1 and o are constants and, naturally, if pos7s’” > 1 one uses p, ,» = 1.

As before, the mobility of clusters depends on their size according to (8.1).
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Figure 8.9. Time dependence of the total number of clusters

in the three-dimensional cell for a fixed mass-independent sticking
probability Py (Family et al 1985b)

Let us first consider the o = v = 0 case to study the effects of a small,
mass-independent sticking probability pg. The behaviour of the total number
of clusters in the two-dimensional simulations is shown in Fig. 8.9. According
to this figure, if po < 1, at the beginning N (t) decreases very slowly, but after
a sufficiently long time it tends to zero as t7%. The value of the exponent
z is independent of pg, and is about 1.5. This fact can be interpreted as
the sign of a crossover from reaction-limited into diffusion-limited CCA. For
short times there are only small clusters in the system. If they do not stick
when colliding, there is a good chance that they diffuse away without coming
into contact again. The number of clusters decreases slowly, the aggregation
is reaction-limited. As the time increases, larger clusters are formed which

can be linked in many ways and touch each other many times while they
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Figure 8.10. The cluster-size distribution function versus s for
various times and for two selected values of the sticking probability
exponent 0 (Family et al 1985b).

are in the vicinity of each other. Thus if two large clusters get close, the
probability that they stick becomes nearly 1, and the process crosses over

into diffusion-limited aggregation.

Simulations with various values of the sticking probability exponent o
(Family et al 1985b) indicate that in analogy with the role of ~, changing o
may result in a qualitative change in the behaviour of the cluster-size distri-
bution function n4(t). In particular, decreasing o there exists a critical o, at
which n,(t) crosses over from a monotonically decreasing into a bell-shaped
distribution. This is demonstrated by Fig. 8.10. According to the simula-
tions 6, ~# —0.6 in d = 2 and 0, ~ —0.8 in d = 3. Fig. 8.10 allows one to
draw an additional conclusion. The envelope of the cluster-size distribution

function for various times is a straight line (the common tangent) having a
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slope approximately equal to -2. It can easily be shown that this has to be
so if the time evolution of n,(t) is described by dynamic scaling of the form
(8.18).

8.2.3. Steady-state and reversible CCA

The above discussed cluster-cluster aggregation models describe processes
with a permanent evolution in time since the number of clusters in the corre-
sponding systems is gradually decreasing. CCA models can be easily modified
in order to simulate an important process of both practical and theoretical
interest, in which a far-from-equilibrium steady-state distribution of clusters
develops in the system. This can be accomplished by adding the following
rules to those defining CCA: i) single particles are fed into the system and ii)
simultanecously, clusters are removed according to some rules. In another ap-
proach the clusters are allowed to break up, and this process naturally leads

to a time-independent, equilibrium cluster-size distribution.

Steady-state conditions are typical in many applied fields. For exam-
ple, small smoke particles fed into the atmosphere form larger aggregates by
coagulation. These aggregates disappear from the air by sedimentation due
to the gravitational force. In the stirred tank reactors, often used for mod-
elling chemical reactors in industry, an analogous process takes place but the
particles are removed by letting them flow out from the chamber. In addition
to the possible applications to engineering, steady-state coagulation is inter-
esting from the theoretical viewpoint because of its analogy with dynamical
critical phenomena in near equilibrium systems. Steady-state coagulation
has been investigated by various approaches including experiments (Made-
laine et al 1979), numerical methods (McMurry 1980), simulations (Vicsek et
al 1985), and studies of the Smoluchowski equation approach (White 1982,
Récz 1985a).

One of the simplest models in which the scaling behaviour of steady-
state aggregation can be investigated is the following. The process is the same
as the original diffusion-limited CCA model, except that at every unit time

kL% particles are added to the system at different sites selected randomly,
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where L is the lincar size of the system and k is a small parameter. In
addition, a cluster is discarded as soon as it becomes larger than a previously
fixed number s,. This latter rule is an extreme version of the situation in
which larger clusters leave the system with a higher probability. In this way
both the total number of clusters per unit volume, n(t), and the number of
particles in a unit volume, m(t), in the system go to a k-dependent constant
value (noo and meo) for long times. The relazation time, t,(k), corresponding
to the characteristic time scale of the relaxation towards the steady-state is

also expected to depend on the feed rate k.

IS
(=]

4 5 6 7 8 9 10
In[k©33¢]

Figure 8.11. This figure shows how the scaling form (8.24) for
the total number of clusters in the three-dimensional model of CCA

with sources and sinks can be used to scale the data into a single
function. The deviations from scaling apparent on the left-hand

side of the plot is caused by the non-zero initial particle concentra-

tion used in the simulations (Vicsek et al 1985).

The results of the related simulations indicate that both the total
number of clusters in the steady-state, no,, and the relaxation time, t,, scale
as a function of k. Correspondingly, for the case when k < 1 and the initial
number of particles is very small the data for n(¢) can be well represented by
the following scaling form for the number of clusters in the system at time ¢
(Vicsek et al 1985)

n(t) ~ k° f(k®t), (8.24)
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where f(z) is a scaling function with f(z) ~ z for z < 1 and f(z) = 1 for
z > 1. The actual shape of f(z) may depend on the parameters «y or s, but
for a fixed set of these numbers n(t) can be expressed through the scaling form
(8.24). The scaling behaviour represented by (8.24) is demonstrated in Fig.
8.11, where the N(t) curves obtained in the three dimensional simulations
for various feed rates are scaled into one universal function (N(¢) is the total

number of particles in the L¢ cell).

The values of the exponents § and A can be determined from the
slopes of the straight lines drawn through the data on the log-log plots of
Noo and t, versus k. It was found that in one dimension § = 0.33 &+ 0.02
and A = 0.65 £ 0.03. The two-dimensional simulations gave § = 0.40 £ 0.04
and A = 0.58 £ 0.05 without, and § = 0.52 + 0.04 and A = 0.46 & 0.05 with
the logarithmic corrections taken into account, while in three dimensions
60 = 0.47 & 0.05 and A = 0.54 & 0.05 were obtained.

The one-dimensional case can be treated both exactly and using an
approximate rate equation for the number of clusters. Here we brielly discuss

the latter approach because, in spite of its simplicity, the equation

dn(t)
dt

=k — bn®(t) — F(k,s,,t) (8.25)

reproduces the exact values for the exponents 6 and A. In (8.25) b is a con-
stant and the term —F(k,s,,t) describes the removal of clusters. The term
n3(t) is included because of the following consideration. The rate of change
of n(t) due to coagulation is proportional to the number of clusters itself
and to the average collision frequency of the clusters, v. In one dimension,
because of the dilfusional motion, this frequency is inversely proportional to
the square of the average distance X between the clusters. On the other
hand, X = 1/n(t), therefore, v ~ n?(t). Although the above arguments are
not rigorous, they are quite plausible, and therefore (8.25) is expected to

provide the right asymptotic behaviour of n(¢).

From (8.25) it can be seen that in the steady-state for s — oo the
number of clusters is equal to (k/b)'/3, thus § = 1/3. In order to get an

expression for the relaxation time one integrates (8.25) for s, > 1. Keeping
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only the term which becomes singular if n(¢) — (k/b)Y/3 we get from (8.25)

n(t) ~ (k/b)® — Aet/tr (8.26)

where the relaxation time is ¢, = k=% /30"/3 with A = 2/3 and § = 1/3. In
(8.26), A is a constant depending on the initial conditions. These values for
6 and A satisfy the scaling law 6§ + A = 1 following from a scaling analysis of
the Smoluchowski equation (next Section) and are in good agreement with
the simulation results. A rigorous derivation (Récz 1985b) using an analogy
with the domain wall dynamics in the kinetic Ising model gives the same

values for the exponents, but a different value for ).

Having determined § and A in d = 1,2 and 3 we have the necessary
data to discuss the question of the upper critical dimension for the dynamics
of cluster-cluster aggregation under steady-state conditions. The simulations
indicate scaling as a function of the feed rate with exponents § = A = 1/2
for d > 2, if we assume the existence of logarithmic corrections in d = 2.
Below two dimensions different values have been found. These results are
consistent with an upper critical dimension d, = 2 for the kinetics of steady-
state CCA. In addition, the theoretical prediction 6§ + A = 1 is fulfilled for

all cases considered.

Reversible cluster-cluster aggregation takes place if the bonds connect-
ing the particles within a cluster can break. This is clearly a relevant process
in a number of situations (e.g. Barrow 1981, Ziff and McGrady 1985, Lrnst
and van Dongen 1987); for example, as the clusters grow in size, the possibil-
ity of breakup increases. In reversible CCA coagulation decreases the number
of clusters, whereas breakups increase n(t). There exists a relaxation time
tr such that after a sufficiently long time, ¢t > t,, a balance is established
between the two processes leading to an equilibrium state in which nalt) is

independent of time.

Let us consider the scaling behaviour of diffusion-limited CCA models
in which the breakup probability for a particular bond that breaks the cluster

of size s = 7 + j into two clusters of masses ¢ and 7 is
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By = hilyy, (8.27)

where h is the breakup constant, ®;; is a function determining the depen-
dence of the fragmentation rate on the cluster sizes, and ®(1,1) = 1. “To
describe the behaviour of the steady-state cluster-size distribution function
ns(h,00) we generalize the scaling assumption (8.24) to reversible aggrega-
tion. In (8.24) the argument of the scaling function was equal to the ratio
of the cluster size s to the mean cluster size S(t) (8.15). We expect that the
value of the mean cluster size in reversible CCA for ¢ — oo scales with the

fragmentation rate as (Family et al 1986)
S(h,o0) ~ h7Y. (8.28)

The above expression combined with (8.18) and (8.24) provides the following

scaling assumption
ng(h,o0) ~ s72f(shY) (8.29)

for the number of clusters of size s in a unit volume in the long time limit.
The scaling function f(z) is expected to behave as f(z) ~ 227 Te~°%, where
the exponent 7 and the constant ¢ depend on the actual choice for I7j;. The
scaling assumption (8.29) implies that n(h,oc0) ~ k¥ for the total (normal-

ized) number of clusters.

The scaling form (8.29) can be checked by simulations. In order to
avoid the complexities originating in the geometrical properties of the clusters
it is practical to use the particle coalescence model in which clusters are
represented by single sites (Kang and Redner 1984). However, when two
clusters of masses ¢+ and 7 meet they coalesce into a heavier single-site cluster
of mass 1+ 7. The breakup probability (8.27) is chosen to be Fi; = h(i+7)*.

According to the simulations of the above model (Family et al 1986)
the exponent y determined for various « is independent of the dimension

of the lattice on which the aggregation process takes place for 1 < d < 3.
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Figure 8.12. Scaling of the steady-state cluster-size distribution

function N4(h,00) obtained from one-dimensional simulations car-

ried out with breakup constants k = 10™%, 1078, 107® and 1077
(Family et al 1986).

In addition, the scaling law y = 1/(a + 2) resulting from the mean-field
Smoluchowski equation approach (next Section) is satisfied in all cases as
well. Thus we conclude that in contrast to irreversible aggregation, the
spatial fluctuations in the density of the particles are compensated by the
ffagmentation effect down to at least one dimension, i.e., the upper critical
dimension is d. < 1. The agreement with the scaling assumption (8.29) for
the cluster-size distribution is demonstrated in Fig. 8.12, where the one-
dimensional results for the quantity s2N,(h,oc0) obtained for @ = 1 and
various values of h are scaled into a universal function when plotted against

skY. Similar agreements exist for d = 2 and d = 3 and for other values of «.

8.2.4. Mean-field theories

The classical understanding of aggregation kinetics is given by the rate equa-
tion approach proposed by Smoluchowski (1917). The basic assumptions of
his theory are the following. i) The reaction rate K;; for two clusters of
masses ¢ and j is about the same for any pair of clusters having masses ¢ and
J, respectively. ii) The concentration of clusters with a given mass can be
represented by its spatial average. Thus the space dependence of all quan-

tities is neglected, consequently, this approach is an intrinsically mean-field
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theory. iii) Finally, it is assumed that the system is sufficiently diluted so
that the rcaclion rate between two types of clusters is not influenced by the

presence of other clusters.

With these assumptions the rate of aggregation of i-clusters with J-
clusters to form a cluster of mass 1 + j is proportional to the concentration
of reactants IRate ~ Kyjni(t)n;(t), where K,; is called the collision matrix
or kernel. Smoluchowskl s equation is then found by writing the popula-
tion balance equation, taking into account both the gains and losses due to

collisions

t-I-—J =8

Thus the above coagulation equation constitutes an infinite set of coupled
non-linear rate equations which have to be solved for a given initial distribu-
tion ne(t = 0). Iiq. (8.30) has been studied extensively for decades, and there
exists a vast number of papers in the literature devoted to the description of
its’properties. Here only those aspects of the Smoluchowski approach will be

discussed which are closely related to fractal aggregation and its simulation.

The question of validity of (8.30) for diffusion-limited CCA arises nat-
urally. It can be investigated by checking the collision rates and the evolution
of the cluster-size distribution during the simulation of CCA and relating the
results to those obtained from the Smoluchowski theory. From the point of
view of Eq. (8.30) the question translates into finding the form of the collision
matrix when the clusters are fractal. Smoluchowski showed that for diffusing,
simple spherical clusters in d = 3 the coagulation kernel is proportional to
K;j ~ (/3 + Y3 (713 + 7 7Y/3), where the first term of the right-hand
side is related to the effective cross-section proportional to the sum of the
cluster radii R;+ R; and the second term is the sum of the diffusivities of the
two colliding clusters (according to the Stokes-Einstein formula, the mobility

of a cluster is inversely proportional to its radius).

Assuming that the cluster diffusivity depends on ¢ as t7 (8.1) one ex-

pects for the kernel describing diffusion-limited CCA
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Figure 8.13. Effective collision rates Ky, for 7 = 0 determined
from simulations of diffusion-limited cluster-cluster aggregation on
a simple cubic lattice (Zilf et al 1985).

d—2
Kij ~ (fl/D +f”D) 7 +37). (8.31)

The coefficients K;; can be determined from simulations by counting the
number of collisions in unit time between clusters of masses ¢ and ;7 and
dividing this number by n;(f)n;(t). Fig. 8.13 shows the results for the
effective K3 for v+ = 0. The large fluctuations are due to the small number
of clusters of the given size at the given stage of the aggregation process.
The mean-field approximation is verified by the fact that the collision kernel

is apparently independent of time except for small times (Ziff et al 1985).

In the most relevant physical situations the collision kernel is a ho-
mogeneous function of its variables (see e.g. Botet and Jullien 1984, Ernst
1985)

Kying = A K;;. (8.32)
Obviously, (8.31) satisfies this condition with

2w=(d—2)/D+~. (8.33)
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It is possible to relate w to the dynamic exponent z describing the
time development of the typical cluster size which is defined as the second
moment of ng(t) (8.15). The dominant contribution to its increase arises from
aggregates of comparable size. In this approximation, the sums in the rate
equation are reduced to a single term involving the reaction of two clusters
of half of the typical size. Calculating the second moments of the two sides

of the resulting equation gives (Leyvraz 1984, Kang et al 1986)

— ~ Kss ~ [S()]?¥. (8.34)

(8.35)

Substituting (8.33) into (8.35) we find a relation between the dynamic expo-
nent z, the mobility exponent v and the fractal dimension D (Kolb 1984)

B i
1-9-(d-2)/D’

2 (8.36)

Note that for the Brownian kernel v = —1/D, thus for ordinary diffusion-
limited CAA in three dimensions the above expression predicts 2 = 1. For
d > 2, (8.36) is in agreement with the simulation and experimental data,
although the numerical values show some deviations from (8.36). For exam-
ple, the simulations give z ~ 0.85 in d = 3 for v = —1, while 2 ~ 0.7 from
(8.36). The differences in the values provided by the simulations and the
predictions of the Smoluchowski equation might be due to an extremely slow
crossover to the asymptotic regime. These results are consistent with the
conclusion made in the previous Section that the upper critical dimension
for the kinetics of CCA is d. = 2 (Kang and Redner 1984, Vicsek et al 1985).

Reaction-limited CCA of fractal aggregates can be studied by the
Smoluchowski approach assuming that the coagulation kernel is of the form
(Ball et al 1987)
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Kij ~ 30 if ) (8.37)

since the kernel is expected to be proportional to the reaction surface (the
number of active sites to be able to form contacts) which was shown to scale

with the cluster size (8.6). For clusters of very different masses one assumes
Kij~ij>= b if  isj. (8.38)

The above expression follows from a picture in which the larger cluster is
imagined being made of 7/7 blobs of mass j. Then, for D < d the smaller
cluster can easily penerate the larger one and the reaction surface is additive

over the accessible blobs,

The solution of the Smoluchowski equation corresponding to the above
kernel is known (Ernst 1985). i) For w < 1/2 the cluster-size distribution
has a bell shape. ii) If w = 1/2, n,(t) decreases as s™7 with 7 = 3/2 up to
a cutoff size. iii) For w > 1/2 the solution can be interpreted in terms of
gelation and n,4(t) ~ s7" with r = (34 2w)/2 > 2. Note that these solutions
(iﬁalitatively correspond to the numerical results ontained in the simulations
of CCA (see e.g. Fig. 8.7).

There is a mechanism by which the singularity of the solution at
w = 1/2 can stabilize the system through the self-adjustment of the fractal
dimension D (Ball et al 1987). Let us imagine the effect of increasing w from
1/2. According to the previous paragraph this leads to an increased 7, i.e., to
a greater number of smaller clusters which are able to penetrate within the
larger ones. This dominant reaction will increase the fractal dimension of the
large clusters. In turn, w will be decreased since the number of active sites
is less for more compact objects. However, if w is decreased from 1/2, n4(¢)
becomes nearly monodisperse. Then the clusters of nearly equal size will
interpenetrate substantially less than for w = 1/2, and the resulting clusters
will be more open having a smaller D leading to an increase of w. There-
fore, the system can adjust D to force w to be equal to 1. This qualitative

argument is supported by stability analysis and experimental results.
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The Smoluchowski equation can be used to obtain relations among
the exponents describing the scaling behaviour of steady-state CCA. Feeding
single particles into the system can be represented by the term ké,;, while the
elimination of clusters containing more than s, particles means that ng(t) =0
for s > s,. With these changes (8.30) has the form

L
dng(t)/dt = kb1 +1/2 ) Kynmj—n, Y Kjenj. (8.39)
t4j=8<sg, i=1

The above rate equation represents a special case of the more general equation
(R4cz 1985a)

dng(t)/dt = kbsy — G,(n1,n2,...,n,), (8.40)
where G, is a homogeneous function of degree §
Ga(Any, Ang, ..., An,) = )\I/EGE(?’L}_,‘ng, sovg Ty ) (8.41)

with § = 1/2. The scaling analysis of (8.40) for general 6 can be carried out

by rescaling the time and the cluster-size distribution

(8.42)

Using the above variables k is eliminated from (8.40), and this means that

the solution for large ¢ can be written in the form
ng(t) = kb (k*~%1) (8.43)
which is exact only if n;(0) ~ k'/¢. However, one expects that the steady-

state properties are insensitive to the initial conditions. Accordingly, for the

total number of clusters, ) n,(t), one has

n(t) = kP p(k1~%¢). (8.44)
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This relation is in agreement with the scaling form (8.24) suggested by the

simulations with (Rdcz 1985a)

6+ A =1 (8.45)

Since for zero feeding rate n(t) ~ t~% (8.16), ¢(z) must behave for z < 1 as

z7% and from (8.44) we obtain another scaling law

5 = 26. (8.46)

For the original Smoluchowski equation § = A =1/2 and z = 1.

Finally, we shall use the rate equation approach to obtain a relation
among the exponents describing reversible CCA. In the stationary limit the
left-hand side of the Smoluchowski equation (8.30) vanishes, and with the

breakups taken into account it can be written as

o0

0= - Z [K,-jninj — F,-jn,-+j] — Z[K_gjnsnj — st-n5+3-], (8.47)
i+5=s i=1

where Fjj, the breakup rate (8.27), is assumed to have the scaling property
FA{)\J' = /\aFij. (8.48)

This type of scaling is satisfied by most of the physically relevant forms of I7;.
To obtain an expression for the exponent y defined by (8.28), we also assume
that the rate equation (8.47) is invariant under the scaling transformation
h — Ah and s — AVs. Then using (8.29), (8.32) and (8.48) in (8.47) one gets
(Family et al 1986)

)

S - E— 8.49
o — 2w+ 2 ( )

y:

This relation is supported by explicit results for fragmentation models satis-

fying detailed balance (Ernst and van Dongen 1987) and by numerical sim-
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ulations (Section 8.2.3.) of the particle coalescence model in which y ~ 0.66

was oblained for w =0 and a = —1/2.

8.3. EXPERIMENTS ON CLUSTER-CLUSTER AGGREGATION

The aggregation of clusters of particles can take place in a wide variety
of experimental conditions. For example, the first quantitative analysis of
the fractal nature of cluster-cluster aggregates was carried out for clusters
of metallic smoke particles formed in air. If the particles interact through
an attractive force and the aggregates are mobile, the resulting structures
normally have fractal properties. The key point is that the bond which is
formed between two particles has to be more or less rigid. Otherwise, surface
diffusion and evaporation lead to considerable restructuring of the aggregates
terminating in simple shapes characteristic for equilibrium morphologies. In
most of the cases the relative stiffness of bonds is provided by the size of the
aggregating particles: atoms or small molecules are usually mobile on the
surface of a growing object, while microscopic particles consisting of a large
number of atoms tend to stick to each other rigidly. Colloidal suspensions of
metallic or other particles are the most typical systems of this kind. Polymer

molecules can also form stilf bonds.

Two approaching particles do not stick necessarily, even if there exists
a short range attractive force between them, because a repulsive barrier,
V,, in the interaction potential may prevent the particles from forming a
bond. The probability of sticking is proportional to p, ~ exp(—V,/kpT’), and
depending on the value of V,, the aggregation is diffuston-limited (p, =~ 1)
or reaction-limited (ps < 1). A common source for the repulsion term is
the electric charge accumulated on the surface of the particles. This charge
can be compensated by adding appropriate substances, and the diflusion and

reaction-limited regimes can be studied in the same colloidal system.
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8.3.1. Structure

Gold colloids are particularly suitable for studying Brownian clustering phe-
nomena. This was recognized by Faraday who studied their stability and
resistance to aggregation. The main advantages of using gold colloids are
the following (Weitz and Oliviera 1984a, 1984b). i) The freshly made sus-
pension typically consists of highly uniform spherical particles with a size
distribution characterized by a root-mean-square deviation of about 10%.
ii) the particles stick irreversibly since gold metal bonding is likely to occur
at the point two spheres touch. iii) the rate of aggregation can easily be
controlled by adding pyridine to the system. Finally, iv) the structure of
gold particles can be examined by transmission electron-microscope (TEM)
techniques, because they give images with high contrast and do not suffer

from charging problems when using an electron beam.

The standard recipe to make gold colloids is the reduction of a gold salt
Na(AuCly) with sodium citrate. In a typical experiment the mean diameter
of particles is about 15 nm, and they are separated at the beginning by
about 60 particle diameters corresponding to a volume fraction of ~ 1078,
The dilfusion constant associated with the particles is approximately 5 X
10~ 7cm? /sec, which results in a diffusion time ~ 10msec on a length scale of

the interparticle distance.

In the course of their formation the gold spheres become covered by
citrate ions, creating a large negative surface charge. The ions in the solution
produce a Debye-Hiickel screening length of the same order as the particle
diameter. The resulting short range repulsive interaction makes the colloids
rather stable against aggregation. Iowever, it is possible to eliminate the
negative charge on the surface of the particles by adding neutral pyridine
molecules to the solution which being absorbed on the surface of the gold
spheres displace the negative citric ions. As a result aggregation times rang-
ing from several minutes (fast or diffusion-limited CCA) to several weeks

(slow or reaction-limited CCA) can be realized.

The real space visualization of three-dimensional gold colloid aggre-

gates is achieved by preparing TEM grids using samples of the solution at
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200 nm 500 nm

Figure 8.14. Transmission electron micrographs of gold colloid
aggregates. These projected images correspond to three-dimensional
clusters of various sizes. The largest aggregate consists of 4739
spherical gold particles (Weitz and Oliviera 1984b).

several points in time (Weitz and Oliviera 1984). The TEM grids consist of
an approximately 20nm thick carbon film supported by a copper grid. As
the fluid evaporates the surface tension pulls the aggregates straight down
to the grid, i.e., “flattens” them causing only a small distortion of the true
geometric projection. Therefore, in this approach it is the two-dimensional
projection of the three-dimensional clusters which is used to obtain informa-
tion about the structure. According to rule a) in Section 2.2., the fractal
dimension of an object projected onto a plane is equal to that of the original
one if D < 2. In the case D > 2, the projected structure does not exhibit

scale invariance.
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Ln (L)

Figure 8.15. Determination of the fractal dimension of gold col-
loid aggregates by plotting the number of particles in the clusters
versus their linear size .. The slope gives I) =~ 1.75 (Weitz and
Oliviera 1984a).

During fast aggregation the particles stick at the first time they collide.
Fig. 8.14 shows representative pictures of aggregates taken from a single grid.
Although these pictures are two-dimensional projections, they have open,
ramified geometry and the number of areas corresponding to overlapping
particles is relatively small. Thus we can assume that the aggregates are
fractals with a dimension smaller than 2. In fact, the scale invariance of the
structure of aggregates is nicely demonstrated by the fact that the properly
magnified small clusters have an overall appearance similar to the shape of
the largest aggregate. In order to obtain an estimate for the fractal dimension
of the aggregates, one can measure the number of particles NV in a cluster as
a function of the linear size L. For a fractal of dimension D one expects N ~
LP (2.2). In Fig. 8.15 In N is plotted against In L, and the straight line giving
the best fit to the data indicates that the structure of gold colloid aggregates
is characterized by a fractal dimension D ~ 1.75 in good agreement with the
computer simulations of diffusion-limited CCA yielding essentially the same

value.

During reaction-limited or slow aggregation the particles form a bond
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Figure 8.16. Scattered light intensity profiles for various times.
The growth of fractal silica aggregates is indicated by the upper-
most series of data coresponding to a fractal dimension of DD ~ 2.12
(Schaefer et al 1984).

with a small probability (they collide many times before sticking). In addition
to gold colloids (Weitz et al 1985), this limit can be investigated using silica
particles of diameter ~ 27 A(Schaefer et al 1984). Again, the surface charge
has to be reduced to provide a sticking probability larger than 0, but much
less than 1. This can be accomplished by reducing the pH to 5.5 in the
solution contaning silica monomers, while increasing the salt concentration
to > 0.5 M.

To analyse the structure of the growing silica aggregates (Schaefer et
al 1984) one can also use light scattering and small angle x-ray scattering
(SAXS), as an alternative to transmission electron microscopy. In Section
4.1. it has been shown that scattered intensity from a fractal of dimension

D scales with the wave number of the radiation, g, as I(q) ~ ¢~ . This re-
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lation is valid for wave numbers corresponding to linear sizes larger than the
diameter of the particles and smaller than the lincar size of the aggregates.
Obviously, it can be applied to an ensemble of clusters as well, if the size dis-
tribution of aggregates is approximately monodisperse (for diffusion-limited
dynamics this condition is usually satisfied). Even if the cluster-size distri-
bution is not monodisperse, the scattered intensity at any ¢ is dominated by
the contributions from the largest clusters if 7 < 2, a condition which is sat-
isfied as well (see Section 8.2.1). An important advantage of the scattering
techniques is that they allow in sttu measurement of the geometrical prop-
erties, l.e., there is no need for sample preparation before the application of
the method.

Fig. 8.16 shows the temporal development of the scattered light in-
tensity. The non-trivial time dependence of the data is explained by the
observation that after a relatively short time a few large clusters were visible
through a telescope in the scattering volume. These clusters are responsible
for the relatively quick increase of the intensity for small g. The error bars
decrease as the aggregation proceeds, and the maximum grows two decades
in.intensity until 37 h after initiation. I(g) behaves as a power law in the
range 5000A> ¢~! >500A. The slope on this log-log plot corresponds to
a fractal dimension D =~ 2.1 which agrees well with the simulation results
(for the polydisperse case the reaction-limited CCA model gives D ~ 2.1 as
well). The combination of light scattering with SAXS makes it possible to

demonstrate that the fractal scaling extends over two decades.

Due to the gravitational force large aggregates growing in three dimen-
sions leave the active volume of the system because of sedimentation. This
problem does not arise in two-dimensional systems. Carrying out experi-
ments on 2d CCA has additional advantages. i) It makes the visualization
of the results much easier. This is illustrated by Fig. 8.17, where ordinary
photographs taken {rom aggregates of carbon particles floating on water are
shown (Horkai and Bdn 1988). ii) Two-dimensional aggregation takes place
on surfaces and such processes are interesting from a practical point of view
as well. iii) Changing the properties of the interface the aggregation process

can be controlled. Finally, the high density limit of CCA can be realized and
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Figure 8.17. Snapshots of carbon particle aggregates illustrating
two-dimensional CCA. Since the diameter of the particles used in
this experiment was relatively large (approximately 0.5mm), sur-
face tension effects dominated the process and the clusters moved
along essentially straight lines rather than Brownian trajectories
(Horkai and Bdn 1988).

studied easier.

One of the common ways to study dillusion-limited cluster-cluster ag-
gregation on a surface is to use a fluid-air interface where the charged col-
loidal particles are trapped by surface tension. For example, a fresh sus-
pension of silica micropheres of diameter 3000A can be dispensed onto the
flat surface of water with the simultaneous injection of a methanol spreading
agent. In this experiment the electrostatic repulsion of particles is screened
by adding salt (1.0N CaCl) to the water. The aggregation process can be

followed by optical observations and making photomicrographs. The ob-
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tained pictures are suitable for digital image processing, and the methods
discussed in Section 4.2. can provide estimates for the fractal dimension of

the aggregates.

From the log-log plot of the radius of gyration versus the number of
particles in the individual aggregates the estimate 1.20 &+ 0.15 was obtained
for the fractal dimension of the silica clusters (Ilurd and Schaecfer 1985).
This value is considerably smaller than D ~ 1.43 which was calculated for
computer simulated cluster-cluster aggregates. The discrepancy can be inter-
preted using the Debye-Hiickel theory for the calculation of the electric field
in the vicinity of a small aggregate. The estimates for a particle approaching
a dimer show that the barrier for end-on approach is much lower than for par-
ticles trying to stick to the side. Thus, a growing cluster has a tendency not
to branch when there are repulsive forces present. This effect is expected to
decrease the fractal dimension, at least for sizes below the asymptotic limit.
An analogous decrease in D was obscrved in the simulations of chain-chain

CCA, where side-branching is entirely prohibited.

The complexity of the situation is illustrated by the fact that there are
two more fractal dimension values which can be observed in two-dimensional
CCA. Aggregation of polystyrene spheres of diameter 4.7um confined be-
tween two glass plates led to fractal structures with D =~ 1.49 (Skjeltorp
1987). In this system two touching clusters are likely to rotate around the
point of contact until at least three particles touch simultaneously. This
rearrangment seems to eliminate the above discussed anisotropy of sticking
probability and the result is in a better agreement with I ~ 1.48 obtained
from the simulations of the corresponding CCA model. Finally, a fractal di-
mension D =~ 1.7 was observed in the experiments on the two-dimensional ag-
gregation of polyvynil toluene (Armstrong et al 1986). To interpret this value
we recall that investigations of the diffusion-limited CCA model with rela-
tively high densities showed that structures with a fractal dimension about
1.7 are formed in the system close to its gelation point, i.e., when a cluster

spanning the whole cell is formed.
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8.3.2. Dynamics

Some of the predictions of the dynamic scaling theory for the cluster-
size distribution, n,, described in Section 8.2.1. can be checked by carrying
out quasielastic light scattering experiments (Weitz et al 1984, Feder et al
1984). Such measurements are made while the aggregation goes on, thus
the time dependence of the growth process can be conveniently monitored.
According to the standard theory of dynamic light scattering (Berne and
Pecoria 1976) the first cumulant of the autocorelation function of the scat-

tered light is given by

|

K = 1(0,0) / 5°14(t)Ss(q) (Dsq? + A)ds, (8.50)

where ¢ is the scattering vector, D, and A are respectively the translational
and rotational diffusion constants of clusters of mass s, and I(g,0) is the
time averaged total scattered intensity. The structure factor of an s-cluster

depends on the fractal dimension D in the form S,(g) ~ s71¢~ P (

see Section
4.1.). For fractal aggregates the dominant contribution to the decay of the
intensity autocorrelation function comes from the translational term in which

s~YD  where R, is

the cluster diffusivity can be estimated as D, ~ R;1 ~
the radius of a cluster consisting of s particles. In this approximation the

first cumulant becomes a moment of the cluster-size distribution function
K, ~/31_1/Dns(t)ds. (8.51)

The analysis of similar expressions in Section 8.2.1. showed that for r <
2—1/D the above integral gives an estimate for R™'(t) ~ S~ D (t) ~ t=2/D,
where R(t) is the average cluster radius at time ¢ and S(t) denotes the mean
cluster size. Here the exponents 7 and 2z describe the static and dynamic
scaling of the cluster-size distribution which scales as ny, ~ s77 up to a cutoff
at sizes proportional to t*. For diffusion-limited CCA in d = 3 it was also

shown that z ~ 1, therefore, we expect
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In R (microns)

In t (hrs)

Figurc 8.18. Scaling of the mean cluster radius of gold col-
loid aggregates with time. The slope indicates a fractal dimension

1/0.56 =~ 1.79 (Weitz et al 1984).

(K1)~! ~ R(t) ~ /P, (8.52)

Gold colloids represent suitable systems for studying aggregation ki-
netics as well (Weitz et al 1984). In Fig.8.18, In R(t) determined from mea-
suring K; for gold colloids is plotted versus the time variable t. The straight
line fitted to the data has a slope of 0.56 which corresponds to a fractal di-
mension D =~ 1.79 being close to the value obtained from simulations and
independent experiments. The agreement supports the dynamic scaling as-
sumption (8.18) for n,(t).

For reaction-limited aggregation the dynamics of growth is qualita-
tively different (Weitz et ol 1985). Instead of scaling with time according
to an exponent that is less than 1, the behaviour of the mean radius is bet-
ter described by an exponential increase R ~ e©*, where C depends on the
experimental conditions. If the repulsion between the gold particles is par-
tially compensated, the dynamics is initially exponential (slow) which crosses
over to exhibit the behaviour characteristic for diffusion-limited aggregation.

These regimes are demonstrated in Fig 8.19. The initially exponential in-
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Figure 8.19. Increase of the characteristic cluster size during the
aggregation of gold particles. Three kinds of kinetics can be ob-
served: (curve a) reaction-limited, (curve b) crossover, and (curve
c) diffusion-limited. The inset shows the initial behaviour on an
expanded scale. The reaction-limited kinetics can be well approxi-
mated with an exponential (Weitz ef al 1985).

crease of R(t) and its subsequent crossover to a power law growth is consis-
tent with the simulation results shown in Fig 8.9, where the total number of
clusters N (t) is plotted for a small constant sticking probability. For 7 < 1
one has R(t) ~ [N(¢)]~/? and indeed, N(t) in Fig. 8.9 behaves as expected
from this relation and Fig. 8.19.

A direct test of the dynamic scaling for n,(t) can be carried out by
analysing TEM images of the clusters of gold particles on TEM grids pre-
pared at several times during the aggregation process (Weitz and Lin 1986).
The number of particles in the aggregates is counted, and the data are com-
piled in histograms. Two kinds of plots have been obtained: i) n,(t) exhibits
a reasonably well-defined peak as a function of s for diffusion-limited CCA,
while ii) it decays as a power law for reaction-limited aggregation. In addi-
tion, the cluster-size distributions can be scaled onto a single curve in both

cases, which indicates dynamic scaling of the form (8.18).

Dynamic scaling can also be observed in other aggregating systems.
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TFor example, in dilute solutions of polyfunctional monomer molecules, an
ensemble of branched polymers is formed as smaller molecules are linked
through new chemical bonds. A standard technique to monitor the process
of polymerization is infrared spectroscopy which gives the number of bonds
in the system, instead of the number of monomers. Because of this property
of the method the formalism elaborated in 8.2.1. has to be modified (Djord-
jevic et al 1986). To account for the fact that only the bonds are detected
experimentally, the system should be characterized by n(t), which is the
number of clusters with b chemical bonds in them. Since the total number of
bonds is not a conserved quantity (it grows permanently), the scaling form

for

ny(t) ~ b=% f(b/t%) (8.53)

is expected to hold with 0 = 1.5 instead of # = 2, where the latter relation

was shown (Section 8.2.1) to be a consequence of mass conservation.
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