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Part 111
FRACTAL PATTERN FORMATION




Chapter 9: Computer Simulations 265

Chapter 9.
COMPUTER SIMULATIONS

The formation of complex patterns by moving unstable interfaces is
a common phenomenon in many fields of science and technology. During
pattern formation in real systems the surface tension of the boundary between
the growing and the surrounding phases plays an important role. This is in
contrast to the case of cluster growth models discussed in Part II., where
such eflects were not taken into account. Thus we shall use the term pattern

formation for growth processes in which surface tension is essential.

As will be discussed in the present Part, in addition to surface tension
and its antsotropy, such further parameters as the amount of fluctuations
and the driving force can influence the geometry of the resulting interfacial
patterns. Depending on the values of these parameters a great variety of
patterns are found experimentally (see Fig. 1.1). In many cases the mor-
phology of the growing phase is very complex and can be described in terms

of fractal geometry.

We shall be concerned with systems in which the motion of the phase
boundary is controlled by a field-like quantity which satisfies the Laplace
- equation. The most typical examples for diffusion-limited or Laplacian
growth include solidification, when a crystalline phase is growing in an under-
cooled melt, the development of viscous fingers which can be observed when

a less viscous fluid is injected into a more viscous one, and electrodeposition,
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where the ions diffusing in an electrolite give rise to beautiful patterns being

deposited onto the cathode.

There are three major approaches which can be used to investigate the
structure and development of Laplacian patterns:
i) Stability analysis of the original equations and their simplified versions al-
low one to study such questions as the selected velocity and the tip radius of
an advancing dendrite or finger. The crucial role of the surface tension and
its anisotropy was first pointed out in these investigations. Those who are
interested in the theoretical aspects of pattern formation can find excellent
treatment of the problem in a number of recent review articles (Langer 1980,
Bensimon et al 1986, Kessler et al 1987, 1988). Here we shall concentrate on
the next two approaches.
ii) If one is interested in the description of complex geometrical patterns, it
is effective to use such numerical methods as computer simulations of aggre-
gation models or other, more standard algorithms. These will be discussed
in the present Chapter.
iii) Ezperiments on Laplacian growth represent the third approach to the
study of interfacial pattern formation. Such investigations are usually in-
expensive and in many cases they can be carried out without great efforts.
During the past few years the related experiments (to be reviewed in Chapter
10.) have made an important contribution to our understanding of diffusion-

limited growth.

9.1. EQUATIONS

As discussed above, under certain approximations the same equations can be
used for the description of a wide range of pattern forming phenomena. We
shall write these equations for the dimensionless field-like variable u(X,t),
which may denote temperature (solidification), pressure (viscous fingering)
electric potential (electrodeposition, dielectric breakdown) or concentration
(isothermal solidification, electrodeposition) (Langer 1980, Bensimon et al
1986, Kessler et al 1987, 1988). In various approximations the interface in

diffusion-limited processes is determined by the Laplace equation
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V2u(®,t) =0 (9.1)

with appropriate boundary conditions. For example, for solidification equa-
tion (9.1) follows from the approximation that the velocity of the interface
is small compared with the characteristic time needed for u to relax to a
stationary distribution corresponding to the given shape of the changing in-
terface (then the left hand side of the diffusion equation du/dt = CV2u,
which expresses heat conservation, can be neglected). In the case of viscous
fingering in a porous medium or in two dimensions, (9.1) corresponds to the
assumption of incompressibility of the fluids. Obviously, the distribution of
the electric potential in electrodeposition experiments also satisfies (9.1) in

regions where there are no sources of charge present.

The normal velocity of the interface is given by the first boundary

condition
vp = —ci1- Vu, (9.2)

where ¢ is a constant and fi denotes the unit vector normal to the interface.
Thus the local interfacial velocity is proportional to the gradient of the field.
As an example, one can mention solidification, where (9.2) is a consequence
of heat conservation: the latent heat produced at the interface (which is
proportional to v,) should be equal to the heat flux away from the surface
(which is proportional to the temperature gradient). In (9.2) it is assumed

that Vu = 0 in the growing phase.

The growth is induced by the fact that the value of the field far from

the interface is a constant

Uoo = Const. (9.3)

different from the equilibrium value of u at the interface I'. If one uses
the dimensionless form of the equations, this equilibrium value is equal to

zero. Thus, unstable growth (negative gradient at the interface) takes place
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for uee < 0. In the following we shall assume this. Finally, the boundary

condition given below prescribes u on the growing interface

ur = —dok — v}, (9.4)

where the so called capillary length dy is proportional to the surface tension,
% denotes the local curvature of the interface (with x > 0 for a sphere), g is
the kinetic coefficient and 7 is an exponent depending on the physical process
considered. The local curvature can be calculated using the expression K =
1/Ry + ... + 1/R4_1, where R; are the local principal radii of curvature of

the surface.

A few additional remarks may be useful in explaining the form of the
boundary condition (9.4).
i) 1t is clear from (9.4) that u is made dimensionless in such a way that u = 0
for a resting planar interface.
ii) With 8 = 0, (9.4) reduces to the Gibbs-Thomson relation which is valid
assuming local thermodynamic equilibrium. It can be understood on a qual-
itativel basis. Let us use the language of solidification problems. At equi-
librium the same number of particles are leaving the solid as are becoming
part of it. If the surface has a part with positive curvature (bump), the sit-
uation changes since the molecules in this region can leave the surface easier
(because the molecules on the surface have fewer neighbours with attractive
interactions bonding them to the growing phase). Assume that the sample
is at a temperature (melting temperature) at which the planar interface is in
equilibrium. Then a bump will melt back which is equivalent to the state-
ment that the melting temperature at the bump is decreased. For places
with negative curvature the situation is reversed. This is expressed by the
first term of the right-hand side of (9.4).
ili) The kinetic coefficient B has various origins depending on the given
growth process (see e.g. Park and Homsy (1985) for viscous fingering), but in
each case it reflects the fact that the moving interface represents a departure

from equilibrium.

Although the Laplace equation is linear, because of the above bound-
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Figure 9.1. Schematic illustration of the Mullins-Sekerka insta-
bility. The function u (e.g. the temperature) is the same along the
lines drawn close to the interface.

ary conditions the mathematical problem posed by (9.1-9.4) is non-linear
and except for a few simple cases it can not be solved analytically. This
non-linearity is manifested in the Mullins-Sekerka instability (Mullins and
Sekerka 1963) which takes place whenever one part of the interface advances
locally faster than the surrounding region. The gradient of the field around
a protrusion becomes larger in analogy with the electric field which is known
to become very large close to the tip of a charged needle (see Fig 9.1). The
increased gradient leads to a faster growth of the interface (because of (9.2))

which, in turn, results in a further increase of the gradient.

Due to the instability small protruding perturbations of the interface
grow exponentially. For short wavelengths, however, the surface tension sta-
bilizes the interface and this mechanism introduces a characteristic length
(Mullins and Sekerka 1963). This can be shown by linearizing the difer-
ential equation and boundary conditions (9.2) and (9.4) in a perturbation
about the steady state solution corresponding to a planar interface moving
with a constant velocity v. Assuming that the perturbation has the formn
o) = boe@tt*k2 with 6y < 1 the following expression can be obtained for

the dispersion relation

w(k) =~ kv(1 — ldok?), (9.5)
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Figure 9.2. Schematic representation of the dispersion relation
(9.5). Deformations with a characteristic wave number k& for which
w > 0 grow in an unstable manner, while the region w < 0 corre-
sponds to a stable regime.

where [ = 2C /v is the diffusion length with C being the diffusion constant.
Because of the above form for 6(z,t), w represents the amplification rate of
the perturbation, and its sign determines stability. For w > 0 the pertur-
bations grow exponentially in time (instability), while they quickly die out
if w < 0. Fig. 9.2 schematically shows the behaviour of w as a function of
the wave number k. It can be seen from this figure that in a region between
k =0 and k., = v/Idy the amplification rate is positive. The upper cutoff
is due to the surface tension represented by dy. If dy = 0, the growth rate
increases indefinitely also for arbitrarily short wavelengths, and the problem

is ill-posed from the physical point of view. The fastest growth occurs for

Ae = 27 /k. = \/3ldg (9.6)

which is expected to be close to the characteristic wavelength of the pattern
emerging from the competition of the stabilizing ellfect of the surface tension
and the destabilizing elfect of the Mullins-Sekerka instability. The capillary
length do is a microscopic quantity, typically of the order of Angstroms.

However, the diffusion length [ is usually macroscopic, varying in a wide
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Figure 9.3. Schematic pictures of the major types of patterns
which typically occur during unstable interfacial growth.

Ila

range depending on the given growth process. Thus, Laplacian growth may

take place on very different length scales.

It is the unstable, non-linear nature of Egs. (9.1-9.4) which is behind
the sensitive dependence of the solutions on a number of factors influencing
the growth of interfaces. Correspondingly, there exists a great variety of pos-
sible patterns which can be classiflied based upon their growth mechanism and
geometrical properties (Vicsek 1987, Vicsek and Kertész 1988). Schematic
drawings of the major types of patterns are shown in Fig. 9.3. In the first
set the patterns are divided into two groups depending on the stability of
the most advanced parts of the interface, called tips. Pictures Ia and Ib are
intended to demonstrate that a tip can be either unstable and go through
repeated tip splittings, or stable, and lead to dendritic growth. Unstable tips
result in disordered structures with no apparent symmetry. If the tips are
stable, in the sense that small perturbations around their stationary shape
decay relatively quickly, the obtained patterns have a symmetry of varying

degree. Picture Ib shows the three most commonly occurring possibilities.

In the other set (IIa and IIb) it is the geometry of the overall pattern

which is qualitatively different for the two types of structures. In some
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cases the interface bounds a region which is homogencous on a length scale
comparable to the size of the object, while under different conditions the
growing pattern has an open branching structure and a corresponding fractal
dimension. According to our present understanding all combinations of the

above two sets occur in nature.

On the basis of the above discussion it is natural to raise the following
questions:
i) What are the relevant parameters determining whether a given growth
process leads to a fractal or to another type of complex pattern?
il) What are the conditions under which a given parameter has a dominating
effect on the shape of the interface?
In Part III we shall concentrate on describing numerical and experimental

works aimed at answering these questions.

Iixperience with pattern forming systems indicated that anisotropy,
randomness and driving force (up — uos) can play an essential role during
unstable interfacial growth. Fortunately, computer simulations and model
experiments allow the investigaton of the effects of these parameters on the
formation of complex patterns. Of course, the question whether the Laplace
equation with no noise and no anisotropy leads to fractal patterns represents
one of the most interesting problems. However, at this point the interested
reader will be disappointed: there exists no definite answer to this question

yvet.

9.2. MODELS RELATED TO DIFFUSION-LIMITED AGGREGATION

Aggregation models represent a recent approach to the problem of pattern
formation. When using this method, the structure develops on a regular lat-
tice as individual particles are added to a growing cluster. Simulating aggre-
gation is an alternative to the more accurate numerical techniques (Section
9.4.) which are based on digitizing along the interface only. Because of this
simplification some of the fine details are lost, however, using aggregation
models more complex structures can be studied and the fluctuations enter

the calculations in a natural way.
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Many of the methods related to cluster growth are based on the
diffusion-limited aggregation (DLA) model (Chapter 6.). It can be ecasily
shown that DLA clusters and the solutions of Egs. (9.1-9.4) should be closely
connected (Witten and Sander 1983). Let u(X,t) be the probability that a
randomly walking particle released far from the interface will be at point ¥
after having made ¢ steps on the lattice. The probability of finding the par-
ticle at X equals the average of probabilities of finding it at the neighbouring

sites at the previous time step

u(X,t+1) = % > u(X +4,t), (9.7)

a

where & runs over the z neighbours of site ¥. Deducting a term u(X,t)
from both sides of (9.7) we see that it represents the discrete version of the
diffusion equation du/dt = CV2u. Since in DLA the particles are released
one by one the changes in time are slow and we recover the Laplace equation
(9.1). The probability that the perimeter site X gains a particle at time ¢ + 1

can be expressed analogously to (9.2)

wil® 42 1) :§Zu(i’+é’,t). (9.8)

—

a

Here v, was used to express the fact that the velocity of the interface is
given by the probability of gaining a particle at X. Furthermore, the right-
hand side of (9.8) corresponds to the gradient of u, because u = 0 at the
sites adjacent to the growing cluster. In this way (9.8) is equivalent to the
discretized version of the boundary condition (9.2). It should be pointed out
that the above relations are true for the probability distribution, and in an
actual simulation a single diffusing particle may visit sites with a frequency
quite different from that predicted by the average behaviour. Finally, (9.3)
is fulfilled by providing a steady flux of the particles released from distant

points.

However, the boundary condition (9.4) is not satisfied in DLA. Instead
of being a smooth function of the local curvature, the value of u at the surface

is equal to zero, as was mentioned above (dy = 0 because the surface tension
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is assumed to be zero. On the other hand, the lattice constant introduces
a lower typical length scale, a property charcteristic for interfaces with non-
zero surface tension). In fact, there exists no well defined interface curvature
for diffusion-limited aggregation clusters: Fig. 6.1 shows that the typical
curvature is trivially given by the lattice constant, or it is equal to zero.
This is the first problem which has to be treated by the aggregation models
constructed to simulate pattern formation. In addition, the structure of
DLA clusters is largely determined by the fluctuations represented by the
individual random walks of the incoming particles. To simulate experimental
situations with varying degree of randomness one has to be able to control the
amount of fluctuations present in the aggregation process. The algorithms

resolving these problems will be described in the next two Subsections.

9.2.1. Effects of surface tension

To solve the Laplace equation it is sullicient to determine the value of the
field u at the boundary of the two phases. Then the solution can be written
as the sum over the geometry dependent Green’s function G(X,§) weighted

by the boundary value ur(5)

u(®) = 3 (%, 8ur (), (0.9)

serl

where the summation runs over all points on the interface and G(X,§) is the
electric field generated by a point charge source located at § on a grounded

conductor.

It can be shown that G(X,s) is proportional to the probability that
a random walk starting from § visits X before hitting the interface again
(Kadanoff 1985, Szép et al 1985). This quantity can be estimated by count-
ing the number of times the point X is visited by random walkers which are
released from the surface point § and terminate whenever they hit any oc-
cupied site. Thus we need two types of walks: i) particles released far from
the interface represent the constant boundary condition uy, = Const (9.3).

ii) The second type of walks leave the surface point § with a probability
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ur (8) = dok corresponding to the boundary condition (9.4), and end at an-
other surface point. These walks transfer flux from one part of the interface

to the other, changing its shape.

During the simulations (Kadanoff 1985, Szép et al 1985, Liang 1986)
one first determines the bonds connecting the surface sites of the growing
cluster with their nearest neigbouring empty sites. The total number n; of
net crossings of random walkers through these bonds is recorded ( adding to
nt 1 for incoming and deducting from n: 1 for departing particles). Then
the interface is moved forward if n; reaches a previously fixed number m
and moved backward if n; becomes smaller than —m. Here m controls the
fluctuations: for m > 1 the noise due to the randomness of the walks is
almost averaged out (see next section). There is a practical difficulty in using
(9.4) for the determination of the probability of releasing a particle from a
surface point since £ can have both positive and negative values, while the
probability ur(§) has to be always positive. This problem is resolved by
letting the particles carry a “flux” f and using, instead of (9.4),

fup (E‘T) = doﬁl (9.10)

and let x and f have the same sign (f =1 or f = —1).

There are several possibilities for the estimation of the surface cur-
vature « at site §. A simple procedure is based on counting the number of
particles, N, belonging to the aggregate and being within a distance L from
§ (Vicsek 1984). Assuming that the characteristic changes in the shape of

the surface occur on a scale larger than L, for example, the quantity

. 3 NL T

provides a reasonable estimate for k on a square lattice.

The above method can be used to simulate pattern formation under
various conditions. Fig. 9.4 demonstrates that it leads to patterns (Liang

1986) matching the experimental results obtained in the studies of viscous
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Figure 9.4. Experimental (upper picture, Park and Ilomsy 1985)
and simulated (Liang 1986) viscous fingers obtained in the longitu-
dinal geometry.

ﬁrigering in a longitudinal Hele-Shaw cell (air injected into glycerin placed
between two close parallel glass plates). Very different shapes can be gener-
ated by changing m and the ration of the number of walkers released from
the interface and far from it. For large m the generated structures resemble
dendritic growth (Szép et al 1985).

Pattern formation in diffusion-limited aggregation can be studied by
a considerably simpler model as well. Perhaps the easiest way to take into
account the effects of surface tension is to introduce a sticking probability
ps(x) depending on the local surface curvature (Vicsek 1984). A plausible

choice is
ps(K) = Ak + B, (9.12)
where A and B are constants. The analogy with the boundary condition (9.4)

is provided by the fact that the sticking probability is proportional to the
local growth velocity. If p, calculated from (9.12) is less than 0 it is set to a
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Figure 9.5. Interface of the diffusion-limited deposits with
curvature-dependent sticking probability and relaxation. The fol-

- lowing values were used for the parameters in Eq. (9.12): (a) A=0,
By (b} A=8, B=05; o] #=6, B=03 and (d] A=13, B=08
(Vicsek 1984).

small threshold value, and if p; > 1, it is assumed to be equal to 1. For short
times there is a direct correspondence between this method and the algorithm
described at the beginning of this Section (Sarkar 1985). The analogy can
be understood on a qualitative basis: A particle which does not stick to
the surface can be regarded as starting a walk from the given point of the
interface. In the present model one has to use an additional rule to obtain
well defined surfaces. According to this rule a particle previously allowed
to stick is relaxed to its final position which is one of the nearest neighbour

sites with the largest number of nearest neighbours (with the lowest potential

energy).

This curvature dependent sticking probability model can be used to
demonstrate the role of surface tension in the development of diffusion-limited

patterns in the presence of noise. Fig. 9.5 shows a series of simulations
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carried out in the strip geometry with an increasing value of the parameter
A corresponding to the surface tension. These pictures illustrate that for a
fixed size of the system there is a crossover from a fractal-type structure to
a less disordered, quasi-regular geometry. Although not shown in Fig. 9.5, it
has to be noted that none of the structures is stable, and for longer “times”
(more particles added) the competition among the fingers results in patterns

similar to either Fig.9.5a or to a single finger (the latter is observed for larger

A).

Figure 9.6. Various stages in the growth of an off-lattice cluster
generated using a curvature-dependent sticking probability. This
figure illustrates the crossover from a compact to a fractal structure
as the aggregate grows larger (Mcakin et al 1987).

The patterns displayed in Fig. 9.5 were generated on a square lattice
whose anisotropy is known to affect the results when aggregation on a single
seed particle is simulated. To study viscous fingering in the radial Hele-Shaw
cell (Section 10.1.1.) under isotropic conditions one has to use the off-lattice
version of DLA with a sticking probability given by (9.12) (Meakin et al
1987). A typical pattern generated using this approach is displayed in Fig.
9.6, where the black and white layers indicate the successive stages of the
growth. The initially circular shape becomes unstable when its radius exceeds

the radius of curvature characteristic for the given value of A. In DLA tip
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splitting occurs as a one time event due to the microscopic fluctuations only,

while in Fig. 9.6 the growing tips secem to split gradually.

On the basis of Figs. 9.5 and 9.6 we conclude that for a fixed system
size, decreasing the surface tension leads to structures with a more pro-
nounced fractal behaviour. This is in agreement with the experimental ob-
servation of fractal viscous fingers in a system with zero interfacial tension
(Daccord et al 1986). One possible explanation is that noise plays an in-
creasingly relevant role as the surface tension is decreased. Similarly, in Fig.
9.5 a crossover from a quasi-regular to a disordered pattern can be seen as a
function of the size of the aggregates. Thus, these simulations suggest that
in the presence of noise (even if it is small) the asymptotic shape of Lapla-
cian patterns growing out from a centre has a fractal structure presumably
analogous to that of DLA (Vicsek 1985, Meakin et al 1987).

9.2.2. Noise reduction in DLA

We have seen above that the surface tension does not change the asymp-
totic behaviour of patterns if i) the simulations are carried out off-lattice
(isotropy), and ii) the fluctuations can not be neglected. In this Section we
shall concentrate on the interplay of anisotropy and noise during the growth
of complex diffusion-limited patterns. This problem can be investigated by
the noise reduced version of on-lattice DLA described below (Tang 1985,
Szép et al 1985, Kertész and Vicsek 1986). For simplicity, we shall not treat
the effects of surface tension in the form discussed in the previous section
since the finite size of the particles can be regarded as representing a small

finite surface tension.

There is a natural way to decrease the fluctuations in DLA (Kertész
and Vicsek 1986). Instead of adding a particle to the aggregate immediately
after it hits a growth site, one keeps a record of how many times each of the
perimeter sites (empty sites adjacent to the cluster) becomes a termination
point for a randomly walking particle. After a perimeter site has been con-
tacted m times it is filled and the new perimeter sites are identified. The

scores (number of contacts) associated with these sites are set to zero. The
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scores associated with all of the other surface sites remain at their values
before this event. Clearly, this procedure decreases the noise with growing
m, because probing the surface with many walks provides a better estimate
of the expectation value of the growth rate at the given point than a single

walk. In the limit m — oo, application of the method yields the solution of

the lattice version of the noiseless Laplace equation (9.1) with the boundary
conditions (9.2) and (9.3).

Figure 9.7. Clusters consisting of 400 particles generated on the
square lattice using the noise-reduced diffusion-limited aggregation

algorithm. (a) m=2, random fractal; (b) m=20, dendritic growth,
and (c) m=400, noisy needle crystal (Kertész and Vicsek 1986).

Fig. 9.7 shows three representative clusters generated on a square
lattice with various values of the noise reduction parameter m. The overall
appearance of the aggregates indicates that as a function of decreasing noise
(increasing m) two types of morphological changes occur in these small scale
simulations. At about m = 5 the random, tip-splitting structure typical
for DLA clusters crosses over into a dendritic pattern with well defined but
irregularly spaced side branches having stable tips. Further increasing m
results in the growth of a structure consisting of four needles growing out

from the centre along the lattice axes.

The above described morphological changes taking place in the se-
quence random fractal — dendriltic — needle are results of the competition

between the anisotropy provided by the underlying square lattice and the
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i’y

1200 LATTICE UNITS

Figure 9.8. Noise-reduced diffusion-limited aggregate (m=2,
N =50,000) generated on the square lattice (Kertész et al 1986).

fluctuations due to the random walks. An analogous result is obtained for
fixed m and increasing cluster size (Kertész et al 1986). Fig.9.8 shows that
_é,ggrega.tes with m = 2 have asymptotically a cross-like shape, while for much
smaller sizes their envelope is approximately circular. As was discussed in
Section 6.1.2. the overall shape of extremely large diffusion-limited aggre-
gates grown on a square lattice is approaching a cross. Thus, the method
of noise reduction seems to reveal the asymptotic behaviour of DLA clus-
ters using considerably smaller number of particles. In conclusion, in a far-
from-equilibrium growth process the structure of the interface can change
non-trivially as a function of size. In the present case this is due to the
fact that on a long run lattice anisotropy dominates over the disorder due to

fluctuations.

The clusters generated on lattices using noise reduced DLA are ex-
pected to reflect some of the relevant features of large Laplacian patterns with
anisotropic surface tension growing in the presence of fluctuations. These
aggregates usually have the overall shape of a 2n-fold star, where n is the
number of axes of the underlying lattice. A convenient approach to the char-

acterization of such clusters is to define two exponents 1| and v through
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the expressions (6.13) and (6.14) describing respectively the scaling of the
average length / and width w of the arms of the clusters as a [unction of
the number of particles in them. Large scale simulations for m > 1 indicate
that in the asymptotic limit both exponents are somewhat larger, but close
to v = vy ~2/3 (Meakin 1987). Correspondingly, the fractal dimension of
the noise-reduced DLA clusters is about D ~ 1.5.

T T T T | T //]/’
28 o .
//
///
26} T
o
Sl -
= SLOPE = 0091
24+ a
///
22r m=30 7]
1 | 1 1 1 1 1
3 4 5 6 7 8 9 10 n
Ln (M)

.- Figure 9.9. Dependence of the ratio l/w on the size of the aggre-
gates grown on the square lattice with a noise reduction parameter
m = 30. | and w denote respectively the length and the width of
the main arms of the clusters (Meakin 1987).

The situation is quite delicate, as is illustrated by Fig. 9.9, where
the logarithm of the ratio R = [/w is plotted versus the logarithm of the
number of particles, N, in the clusters. For intermediate cluster sizes the
data show scaling of R with N of the form R ~ N¥I=Y% and the R ~ Const
behaviour is manifested only above a certain size. This result suggest that
V|| > vy obtained for very large ordinary diffusion-limited aggregates is not

necessarily valid in the asymptotic limit (it describes a transient situation).

9.3. GENERALIZATIONS OF THE DIELECTRIC BREAKDOWN MODEL

In its simplest form the dielectric breakdown model (DBM) discussed in

Section 6.3. exhibits a fractal scaling analogous to that of DLA. However,



Chapter 9: Computer Simulations 283

various modifications of DBM result in qualitative deviations between the
two models. We briefly recall that in DBM the Laplace equation is solved
on a lattice to obtain the growth probabilities associated with the perime-
ter sites, instead of releasing random walkers as is done in DLA. Then a
perimeter site is filled with a probability proportional to some power () of
the calculated growth probability. This procedure makes the method quite
versatile, e.g., it can be used to grow deterministic patterns as well (Section
6.4.). Furthermore, it has a parameter n which provides an additional oppor-
tunity to generate a family of qualitatively different patterns corresponding

to a non-linear dependence of the growth velocity on the local gradient.

There is a diflerence between the boundary conditions which are used
when DLA and DBM clusters are generated. The condition that a randomly
walking particle sticks to the aggregate when it arrives at a site adjacent to
the cluster (DLA) is equivalent to keeping the probability equal to zero at
the perimeter sites. In the case of DBM one sets the field equal to zero on the
surface sites (sites already filled). This seemingly small difference becomes
relevant when noise-reduced versions of DLA and DBM are considered. To
decrease the fluctuations in DBM one fills a new perimeter site only after
it has been chosen m times. Again, m — oo corresponds to deterministic

growth.

Application of the above method with m = 20 on the triangular lattice
(Nittmann and Stanley 1986) results in tip splitting patterns very similar to
that shown in Fig. 9.6. On the other hand, noise-reduced DLA clusters on
the same lattice have stable tips, and look like random snowflakes since they
are sixfold analogues of the patterns displayed in Fig. 9.7. Obviously, DBM
is less susceptible to lattice anisotropy than DLA. It has to be emphasized
that using DBM with m > 1 one obtains disordered structures with branches
having a well delined, m-dependent thickness, without taking into account
the surface tension. Although this finding is somewhat surprising, a simi-
lar behaviour is found in the experiments on viscous fingering with miscible
fluids, where interfaces with characteristic curvatures can be observed (Pa-
terson 1985). Thus the noise-reduced DBM may offer help to understand

some of the properties of moving interfaces with zero surface tension.
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Figs. 9.4-9.7 demonstrate that aggregation models can be useful in
studying the growth of realistic geometrical structures of various kinds, in-
cluding viscous fingers. One of the most appealing challenges is, however,
to understand the development of such intricate objects as snowflakes and
other related dendritic crystals. In the remaining part of this section we shall
concentrate on models producing patterns relevant to the growth of complex

dendritic structures.

Snowflakes exhibit a number of very characteristic features. They
(a) are quasi two-dimensional, (b) have sixfold symmetry and (c) can have
a large number of entirely different shapes. To grow snow crystals in the
computer one can use variations of the DBM on the triangular lattice, which
provides the two-dimensional nature and the sixfold symmetry of the patterns
simultaneously. Thus the properties (a) and (b) are built into the simulations
by this restriction. However, at this point our goal is not to explain (a)
or the fact that snowflakes have six arms (these properties are due to the
anisotropy of the surface tension). Instead, we shall be more concerned with
the statement (c).

Fig. 9.10 shows patterns which are quite similar to the real snowflakes
also displayed in the figure. The simulated clusters were obtained using the
following model (Nittmann and Stanley 1987). i) The growth probability is
determined by solving the Laplace equation on the triangular lattice with a
boundary condition corresponding to DLA, i.e., setting the field u equal to
zero at the perimeter sites. ii) Perimeter sites are picked randomly, with a
probability proportional to (Vu)". iii) A perimeter site is filled if it has been
chosen m times. As the non-linearity parameter n is increased, qualitatively
different patterns are obtained. Although there exists no direct physical
interpretation of the parameter 1, one expects that the complicated processes
taking place on the surface of a snowflake may give rise to a non-linear
response to the local gradient of the field (temperature). In addition, one
can simulate the effects of surface tension which leads to the thickening of

arms and the disappearance of small holes.

Since snowflakes are almost perfectly symmetric, one expects that they

can be studied effectively by deterministic growth models (Section 6.4.). It is
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Figure 9.10. Real (top row, reproduced [rom DBentley and
Humpreys (1962)) and simulated (bottom row) snowflakes. The

simulated patterns were generated on the triangular lattice up to

4000 particles with m = 200. The value of the exponent 7 for pat-
terns (a-c) was equal to 0.05, 0.5 and 1.0 (Nittmann and Stanley

1987).

natural to assume that the low level of randomness in the Shape of snow(lakes
is due to the fact that the fluctuations in the conditions alfecting the growth
process take place on a length scale larger than the size of a snowllake. To
simulate the development of dendritic patterns with the spatial fluctuations

neglected, the following method can be used.

The process starts with a seed particle placed on a triangular lattice.
At each time step the value of the ficld v is calculated by solving the laltice
version of the Laplace equation (9.1). The value of the field is assumed to
be zero on a circle having a radius a couple of times larger than the size
of the cluster. For the surface sites u is prescribed by (9.4), in which « is
calculated by a method described in the previous Section and the kinetic

term is neglected. The gradients at the surface are normalized onto the unit
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Figure 9.11. Three examples for patterns generated by the de-
terministic growth model on a triangular lattice. (b) and (c) were
obtained by changing the parameters @ and b of equation (9.13)
randomly during the growth (Family et al 1987). The inset shows

a few typical snowflakes reproduced from Bentley and Humpreys
(1962).

interval and those perimeter sites for which the gradient is larger than ¢ are

filled.

To approximate the boundary condition (9.2) one assumes that ¢ varies

in time as (Family et al 1987)

q(t) = a+ b(t mod [c]) (9.13)

which is a piecewise function depending on the parameters a, b and ¢. This
expression ensures that the growth velocity is proportional to the local gra-
dient in a discretized manner (if the local gradient is small, its value excceds
q(t) less frequently and this results in a slower growth). By varying a and
b the effects caused by surface diffusion and changing undercooling can be
simulated.

The above method is capable of producing most of the symmetric
patterns observed in the related experiments. The various cases include
faceted growth and structures corresponding to needle and fractal crystals.

If the parameter a is changing in time, the combinations of these patterns



Chapter 9: Computer Simulations 287

are obtained within a single cluster. In Fig. 9.11 a few examples are shown,
where the sixfold symmetry is provided by the underlying triangular lattice.
There is a striking similarity between the simulated and the real snowflakes

(also displayed).

Perhaps the most important conclusion which can be drawn from the
study of the above methods is related to the seemingly unlimited number of
symmetric structures produced in dendritic growth. These models demon-
strate that the great variety of patterns appearing as a result of the same so-
lidification process is likely to be induced by the temporal changes in the envi-
ronmental conditions during crystallization. Indeed, snowflakes fall through
regions of air with more or less randomly changing temperature and vapour
pressure, and it is the time dependent interplay of such factors as undercool-
ing, surface tension and surface diffusion which leads to the observed rich

behaviour.

9.4. BOUNDARY INTEGRAL METHODS

Simulation techniques involving aggregation of particles are bound to de-
scribe the behaviour of the discrete version of the Laplace equation. Corre-
spondingly, the obtained patterns are either influenced by the fluctuations
present in the algorithms or are determined by the lattice anisotropy. Ilow-
ever, in many experimental situations (for example in viscous fingering) the
motion of the interface is expected to be described by the continuum version

of (9.1) without any significant amount of external noise.

The complex interfacial patterns in such cases scem to emerge as a
result of the initial surface geometry and the subsequent proliferation of tip-
splitting instabilities. This observation suggests an analogy with determin-
istic chaos: slightly different initial configurations may lead to very different

disordered patterns because the instabilities amplify the smallest deviations.

To study this aspect of fractal pattern formation one is led to solv-
ing the Laplace equation without using an underlying lattice. This can be

achieved by the so called boundary integral method in which for d = 2 the



288 Part III: Fractal Pattern Formation

free interface is approximated as a piecewise linear with uniform monopole
sources along each leg. A given interface uniquely determines the source dis-
tribution which, in turn, uniquely determines the velocity distribution along

the interface.

The above idea is based on converting Egs. (9.1-9.4) to an integro-
differential equation (Kessler et al 1984, Gregoria and Schwartz 1986). Be-
fore doing so, for convenience we confine ourselves to the two-dimensional
case and replace the boundary condition (9.3) and (9.4) with the essentially
equivalent conditions u(Rp) = 0 and ur = 1 — (%,), where Iy is the ra-
dius of a circle much larger than the growing object and the kinetic term
in (9.4) is neglected. Furthermore, using the language of solidification, we
can say that the boundary condition (9.2) corresponds to the fact that an
element of the interface at position X, represents a source of temperature of
an amount proportional to v, (X;). Then the temperature at any other point
is the background temperature (which is now assumed to be equal to Z€T0)
plus the superposition of sources at all interface points propagated by the

diffusion Green’s function. Therefore,

w) = [ d\GR 7 un(x)), (9.14)

where the Green’s function for the two-dimensional Laplace equation is

G(%,¥) = In(X — )2 + In(R2¥/y? — %)% — In(Ro/v?). (9.15)

The equivalence of (9.14) to (9.1) and (9.2) can be shown by noting that
for points not belonging to the interface the Laplace equation is satisfied,

because
VIG(R,¥) = —6(X - §), (9.16)

where 6(X) denotes the Dirac delta function. The boundary condition (9.2)

is also satisfied since



Chapter 9: Computer Simulations 289

LTS _][%j-|p-vn(i') = v (). (9.17)

The above expression is based on a standard result of potential theory which
can be obtained using Green’s theorem. According to this result the discon-
tinuity in the normal derivative of G is a delta function. The final equation
is obtained by calculating u at the interface and satisfying the boundary

condition ur =1 — x(X,). The result is

—_ a — — — — —
l—I—c./d:r:Ln(xa)WG(xﬂ,x’s) =/d:c'sG(X3,x's)vn(x’s), (9.18)
where the integral on the left-hand side is the potential due to a dipole layer
of strength —ck, which provides a discontinuous jump in the field from 1 in

the interior to 1 — k on the interface.

Next one parametrizes the interface by using the variables 0(s) and
s, where 0(s) is the angle between the normal to the curve and a fixed
direction in space, and st is the total arc length. The angle 0(s) is defined
as a function of the distance (arc length) s along the interface. The equations

of motion for these quantities are (Kessler et al 1984)

d0(s)/0t = —9v,, /3s (9.19)

ar

ds7/dt = /0 dsi(a)u,fs). (9.20)

The following procedure is used to determine the development of the inter-
face. At any fixed time the discretized 0(s;) is given, thus we can construct
the curve X, by quadrature. The integral equation (9.18) is rewritten as a
discrete matrix equation for v, (X,,). After having solved the corresponding
system of linear algebraic equation for v, (X,,), (9.19) and (9.20) are used to

step the interface forward in time using a predictor-corrector method.

The main limitation of the above procedure is represented by the num-

ber of grid points M required for discretizing the arc length. There is a
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Figure 9.12. Snapshots of the interface growing out from a
fourfold seed. This figure was obtained by the boundary integral

method. The axes are in the units of the capillary length (Sander

et al 1985).

cohdition depending on the surface tension which sets an upper limit for dis-
tance between the grid points, thus M increases with the total arc length.
Since M is the number of columns of the matrix to be set up in Eq. (9.18),
in a medium-scale calculation with a fourfold symmetric object (Sander et
al 1985) one reaches the computational limit when M is about 4000. Fig.
9.12 shows a typical interface at this limit demonstrating the difficulty of
obtaining a structure close to the complexity of a DLA type fractal pattern
using the boundary integral approach. Furthermore, the displayed pattern
seems to be space filling rather than becoming increasingly sparse (the latter

property would indicate the fractal nature of the interface).

The boundary integral method is particularly suitable for the inves-
tigation of the effects caused by a small amount of controllable anisotropy
(Kessler et al 1984). Let us assume that the angular dependence of the

surface tension in the boundary condition (9.4) is of the form

ur = —do[1 + ecos(nb)]x, (9.21)
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Figure 9.13. (a) Growth of a fourfold interface obtained for K =
5. (b) From the scaling of the area of the pattern in Fig. 13a with
its radius the estimate D ~ 1.72 can be obtained for the effective
fractal dimension (Sander et al 1985).

where € is a small parameter and n = 4 for a pattern with four preflerred
growth directions. According to the numerical simulations with various ¢, the
';i’nisotropy of the surface tension has to be larger than a well defined threshold
value (close to 0.1 for n = 4) in order to give rise to dendritic growth with
stable tips. However, the calculated patterns are again of relatively simple

structure because of the above mentioned computational limitations.

One possibility to obtain more complex interfaces is to change the
curvature dependence in the boundary condition (9.4) arbitrarily to ¥,
where K is an odd positive integer (Sander et al 1985). Obviously, for large
K small curvatures have no effect, which corresponds to an effective decrease
of the surface tension. Consequently, the typical curvature increases to a K-
dependent value, and more complex patterns using the same number of grid
points can be obtained. The zero surface tension limit can be simulated
by K — oco. In the diffusion-limited aggregation model there is no surface
tension except for an upper cutoff for the surface curvature provided by
the lattice spacing. A calculation with K > 1 is expected to simulate the
deterministic version of DLA, but it should be noted that the real physical

growth is determined by the boundary condition with K = 1.
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Fig. 9.13a shows a representative pattern obtained for K = 5. (In
these calculations the term x(xX,) in (9.18) has to be replaced with £ (x,).)
The fractal dimension of the object bounded by the interface can be estimated
by determining the scaling of its area with its radius of gyration It;. The
resulting plot (I'ig. 9.13b) suggests that one can associate a fractal dimension
D =~ 1.72 with the object shown in Fig 9.13a, although it does not possess a
high degree of complexity.

As we have seen, the boundary integral method directly provides a set
of velocities vy, (Xs;) = v; corresponding to the motion of the j-th grid point
on the interface. Let us introduce p; = v;/} . vj, the set of normalized
velocities, which has a relation to the growth probability measure defined
e.g. for DLA. Obviously, the local velocity of the interface determines the
distance by which the interface advances during the next time step, and this
distance is linearly proportional to the growth probability in a cluster growth
model (both are given by the gradient of the associated fields). This analogy
can be used to compare the multifractal properties of DLA clusters and the
continuous interfaces generated by the boundary integral method with a
boundary condition similar to (9.4), but depending on the surface curvature
z’Lccording to k¥ (Ramanlal and Sander 1987). Defining p;(¢) as the average
normalized velocity in the i-th region of size € one can use the formalism

described in Chapter 3. to calculate the spectrum of fractal dimensionalities

fle).

To determine f(a), the generalized fractal dimensions Dg are eval-
uated numerically for the final stage of growth in Fig. 9.13a, by plot-
ting In) " pI(e) as a function of Ine and measuring the slope in the region
16 < € < 100. The functions ¢g, fq; and f(c) are subsequently calculated
using (3.11) and (3.13-3.15).

The result for f(«) is shown in Fig. 9.14. It is in reasonable agreement
with the multifractal spectrum obtained for DLA clusters (see Section 6.1.4.).
(There is a region about the numerically singular point ¢ = 1 where no data
are given.) One can use two methods to subtract estimates from f(a) for the
fractal dimension D. TFirst, in a large system its maximum, fpaz, is equal

to D. In the present case finar =~ 1.627. Second, one obtains another value
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for the fractal dimension from the relation (6.31) D = 1 4+ amin =~ 1.684,
where amin is the smallest measured value of a. Since with growing size
fmaz 18 increasing while a,,;n is decreasing, one is led to the conclusion that
the fractal dimension of the continuous interfaces used to simulate continuum
DLA has to be in the range 1.627 < D < 1.684. Further careful analysis of the
results suggests a value close to 1.65. This estimate is different from D ~ 1.71
obtained from large scale simulations of the diffusion-limited aggregation
model. The relevance of this discrepancy is not clear because of the relatively

small size of the investigated patterns.

In conclusion, investigations based on the boundary integral method
demonstrate that i) noise is not a necessary ingredient of an algorithm pro-
ducing DLA-type patterns since they can be grown using deterministic equa-
tions, ii) this result is supported by multifractal analysis and iii) the fractal
dimension of oflf-lattice DLA clusters in the asymptotic limit may be ap-
proximately equal to 1.65. However, studies of larger systems are needed for

making more definite statements.





