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406 Chapter 9

Such so-called Janus particles are typically
made by coating one side of the colloid with
a catalyst for a reaction that takes place in
the fluid; see figure 4.18. Figure 4.19 shows
various examples of rod-like active particles
which tend to align.

Well-known examples of molecular motors
are kinesin and myosin. For more infor-
mation, see section 3.6.2 and the illustra-
tions of molecular motors in figure 3.11 and
figure 3.12.

Figure 9.2. A flock of birds. Albert
Beukhof/Shutterstock. Schools of fish sim-
ilarly exhibit coordinated movement.

identifies the symmetries of the building blocks and the appropri-
ate order parameter for the relevant collective phases, very much
as in passive matter. Figure 9.1 illustrates this with four examples
that we will encounter in this chapter.

The first experimental system, illustrated in the top row of figure
9.1,is composed of colloids that can self-propel in a given direction
at a certain speed. In the presence of orientation-aligning inter-
actions the colloids tend to move along a common direction; the
proper order parameter is therefore a polar vector.

The second example illustrated in the figure concerns biopolymers,
such as microtubules or actin filaments, with molecular motors that
apply force dipoles along the direction in which they are oriented.
On large scales, this mixture can exhibit nematic order describ ed by
the vector order parameter of liquid crystals, the director 7 intro-
duced in section 6.1.4. If the particles are, however, self-propelled in
a direction that undergoes a random walk without alignment (sim-
ilarly to bacteria that run and tumble), density is the appropriate
scalar order parameter, as illustrated in the third example.

The final example concerns so-called living crystals made of em-
bryos, volvox algae, or driven colloids that constantly spin instead
of self-propel. In this case, a tensor order parameter describing
strains is needed to describe the system, as in ordinary solids. In
addition, one could also add a field describing the local spinning
rate of the particles Q(r, t) in the hydrodynamic description.

Throughout this chapter we will use the order parameter descrip-
tion to discuss the hydrodynamics equations that capture the mi-
croscopic source of activity relevant to all of these models.

9.2 Flocking

Flocking is perhaps the most paradigmatic example of collective
behavior in active matter systems. Active constituents, like flying
birds, self-organize into complex patterns over length scales which
are very large compared to the size of a bird, see figure 9.2. Within
the flock, nearby birds fly in the same average direction, while on
large scales the average flight orientation typically varies. In this
section, we will see how traditional physics approaches canbe used
to construct a rich explanatory framework to model flocking.

9.2.1 The Vicsek model

Flocking can be described within a simplified setting usually
referred to as the Vicsek model.? This model makes a drastic
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Figure 9.3. Left: in the Vicsek model the direction of the velocity of the red bird particle in the center of the dashed circle is updated
to be the average orientation of all particles within that circle (the red and blue ones), plus a random noise term. The four snapshots
of simulations of the Vicsek model for various densities and noise strengths on the right illustrate that flocking occurs for low noise
strength.! For small densities and noise the particles form flocks which move in random directions, while for large densities and small
noise an ordered phase emerges with all particles moving on average in the same direction. Adapted from Vicsek et al., 19952,

simplification and views a flock of birds as a set of particles which
in each time step move a fixed distance forward in the direction in
which they are oriented. However, their flight direction is updated

in each time step to become equal to the average orientation of the At www.complexity-explorables.org/ vou
birds within some finite range R plus noise, as illustrated on the can play with simulations of the Vicsek
laft side of ﬁgure 9.3 model. The website contains many other in-

In the two-dimensional Vicsek model, each particle is characterized
by the position 7; and #;, where f; is the orientation angle of particle
2 with respect to some fixed axis. The update rule for the positions
and angles of the particles is

cos b;(t)
nf;(t) |’ (9.1)
0i(t + At) = (6(2))r.s +mi(1),

7i(t + At) = 75(t) +vort

with vy denoting a characteristic self-propulsion speed, At the char-
acteristic time between steps, and the average angle defined as

B(t)ri=arg | > e |, 9.2)
J

where the index j runs over all particles within some distance
R from the particle i. For simplicity we take At = 1. The term 7;
represents a stochastic noise and is assumed to be uncorrelated

structive examples of complex systems, in-
cluding one called Flock'n Roll.
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Figure 9.4. Observation by Morin et al,, 2016
of collective motion of colloidal particles in
a long channel with small random obstacles.
Left: global view. The channel contains 5,500
colloids, and it is 7 mm long and about 850
microns wide. The active motion is due to
Quincke rotation, illustrated in figure 4.19(e).
The right-hand image shows an enlargement
of the flocking front in the area indicated
by a red box in the left-hand image, with
arrows indicating the velocity orientation.
Black dots indicate the obstacles used in
these experiments to probe the behavior of
flocking fronts in a random environment. A
sharp density front is clearly visible. Quincke
rotation experiments provide a versatile soft
matter realization for studying flocking as
well as studying front, band, and vortex for-
mation.” Image courtesy of Denis Bartolo.

The argument in this section is inspired by
the lecture notes of Toner, 2018; see also the
review by Vicsek and Zafeiris, 2012.

between particles and between different update times,*

ni(¢) =0, i (£)m; (') = 27y 850 (9.3)

Figure 9.3(b) illustrates the behavior of the model for various den-
sities and noise strengths. For large noise strength, the birds tend to
fly mostly in random directions. But for small noise strength, when
they have a strong tendency to align with their neighbors, they tend
to form flocks. For small densities (upper right snapshot) the birds
cluster in flocks which move in random directions, while for large
densities all birds tend to fly on average in the same direction. These
snapshots are indicative of what has emerged from many detailed
studies, namely that the model exhibits three phases, a disordered,
an ordered homogeneous, and an ordered banded phase in which
the bird density is spatially modulated.

[ntuitively, it is rather easy to understand why the model has a ten-
dency to form flocks with relatively sharp boundaries. The update
rule favors birds in a dense region flying on average in the same di-
rection, making escaping a flock difficult. Moreover, once a lonely
bird in an empty region happens to fly into a flock, it tends to adjust
its flight orientation almost immediately to join the flock. In other
words, there is a strong tendency in the model for the particles to
separate into dense flocks and relatively low density regions.

Flocking behavior of the type seen in such simulations has been
observed and studied in detail in a variety of active matter systems.
Figure 9.4 shows this for the case of active colloids driven by the
Quincke rotation mechanism illustrated in figure 4.19.d.

We will not go into the details of phase diagram and scaling prop-
erties of the Vicsek model here® but will concentrate on the contin-
uum formulations which capture the essence of the behavior, while
providing a good starting point for including additional effects.

9.2.2 Flocking and the Mermin-Wagner theorem

Before we embark on our discussion of phenomenological equa-
tions for active media, it is good to pause for a moment to stress
that in a system at equilibrium, flocking would not happen in two
dimensions. Let us show why.

Suppose we do not let the ‘agents” move (we fix them in space, as
vg = 0), but update their orientation angles ¢; according to (9.1).
Rather than a model for flying birds, we now have a stochas-
tic spin model of the type familiar from equilibrium physics. In-
deed, the update rule of our fixed agents is reminiscent of relax-
ational dynamics of spins, where at each time step the orientation
of each angle is driven toward the average orientation of the spin



and its neighbors. In addition the update rule is affected by noise.
On a regular two-dimensional lattice with spacing a, this update
rule is in fact the discrete form of a noisy diffusion equation,

2
8:6 = DV20 + (7, 1), (D = ‘%) : (9.4)

LE

where (7, 1) denotes white noise with zero mean and D the dif-
fusion constant. Let us now suppose there is orientational order of
these spins and that one of the spins gets oriented in a sufficiently
different direction . What are the consequences of introducing
this “error’ within the static version of the Vicsek model? Accord-
ing to (9.4) the angular variables are given by a noisy diffusion
equation, with the dynamics causing angles to spread diffusively
in time over a distance (see section 3.3.4 on diffusion)

r~ vt (9.5)

In the absence of noise the total angle ¢ is conserved according to
(9.4), meaning that any error or fluctuation will slowly spread out
across the system. For an initial error ), at time ¢ N ( t) spins will
be affected. In d dimensions, we then have

N(#) ~ ()%~ 32, (9.6)

As the error profile spreads out as a Gaussian, the typical size of
the error Af(t) of the affected spins is of order

o t

(9.7)

From this analysis we conclude that if a local perturbation is intro-
duced to agents which were originally ordered, in the absence of
noise, the error decays so the order is reestablished as A#(t) — 0.
We now ask ourselves whether the buildup of perturbations due
to the noise term in equation (9.4) can overcome this decay of
errors—i.e., lead to Af growing in time—if so, we interpret this
to imply that the fluctuations destroy the orientational order and
hence prevent the emergence of a flock.

The noise 1 on a given spin will spread to others as time progresses.
In fact a typical spin will accumulate ¢ ~ r? errors, and the total
collection of spins affected will accumulate a total of N ()t ~ @12
errors during this time. Now, because of the law of large numbers,
the width of the distribution of angles, which gives the magni-
tude of the typical deviation of the spin angle from the average
value, is

V(29)2) ~ ‘/t”f:f(:’;r”rs ! "f:iﬂ ~rlT2 0 (98)
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The derivation, which is similar to the
derivation of a finite-difference method for
solving Laplace’s equation V26 =0 in elec-
trostatics, is presented as problem 9.1. Of
course, diffusion-type spreading of the an-
gular variables is not limited to regular lat-
tices, but on a disordered lattice the effective
diffusion coefficient will depend on the local
lattice connectivity.

The diffusion equation (9.4) implies that the
error spreads out as a Gaussian; see section
3.34.
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The Mermin-Wagner theorem proves that in
equilibrium vector spin models, where the
spins can assume a continuum of orienta-
tions, this continuum symmetry cannot be
broken at finite temperatures in two dimen-
sions.” Note that Hamiltonian models of self-
propelled particles have been recently in-
troduced (Bore et al., 2016) for which the
Mermin-Wagner theorem does hold (Tasaki,
2020). Hence, self—prcl-pulsion alone 1s not
enough to induce long-range order in two
dimensions.

The Toner-Tu approach goes back to the work
by Toner and Tu, 1995. See the reviews by
Toner etal.,, 2005 and Marchetti etal., 2013 for
more extensive discussions and overviews of
these types of models.

Both pand 7 are obtained by coarse-graining
the microscopic description of the flock de-
scribed by the Vicsek model. If we define
the position and local orientation vector of
particle i as 7; and 1i; = [cos 6;, sin 8;],% re-
spectively, p and p'are given by

p(Ft) ="y 8(F-Tilt)),

e = o g
p(m}—mzmamo{r 2(£).

This is a compact formulation of the Toner-
Tu theory. A more complete version is given
in Toner et al., 2005. See problem 9.2 for a
derivation of the Toner-Tu equations from
the Vicsek model.

which diverges for d < 2. This means that for low dimensions, any
amount of noise 1s sufficient to make the spins lose order com-
pletely for large enough systems. In d =2, it can be shown that
V(02) ~v/Inr — oo for a large system, meaning fluctuations will
diverge forany d < 2.Ind>2, though, the static version of the Vicsek
model with noise can sustain the order of the spins.

This analysis, which is a back-of-the-envelope derivation of a
general statistical-mechanics result known as the Mermin-Wagner
theorem, suggests that the emergence of flocks in two-dimensional
computer simulations comes from the non-equilibrium character
of the model.

9.2.3 Toner-Tu theory

We saw in section 9.2.1 that flocking does happen in simulations
of the two-dimensional Vicsek model, and that the fact this hap-
pens is intimately related to the out-of-equilibrium character of
fluids composed of self-propelled particles or birds. How should
we modify the familiar hydrodynamic equations derived for pas-
sive fluids to account for this effect? The Toner-Tu theory introduces
a suitable continuum model to account for the collective flocking
behavior observed in the Vicsek model. We discuss it here, since the
approach also provides a nice introduction to continuum modeling
of active media.

In the Vicsek flocking model, neither energy nor momentum is
conserved as a result of the birds” self-propulsion—momentum is
not conserved since the particles have a constant speed relative
to a fixed frame. As a result, the updating rule does not conserve
momentum. The only conserved quantity is the number of birds,
5o the hydrodynamic equations will describe the evolution of their
number density p. Associated with the orientation of the particles
is the coarse-grained local polarization field p: the direction of the
vector p' gives the mean propagation direction of the agents, while
the norm |p] measures the magnitude of the local polarization.
P will be the hydrodynamic variable related to broken rotational
invariance; we will discuss the significance of this in more detail
later in this section. As the particles are self-propelled, the velocity
field is proportional to the polarization, v(7,t) = vop(7, t).

In the Toner-Tu approach, the evolution of the coarse-grained fields
p(7,t) and ©(7, t) is governed by a set of hydrodynamic equations
whose form can be derived using symmetries and conservation
laws. The Toner-Tu equations have the following form:

(9.9)



where ) is a phenomenological parameter, P is the pressure, and
n is a viscosity term that originates from the noise in the Vicsek
model. The first relation is a continuity equation for the density
of particles. The second equation can be thought of heuristically
as being composed of two ingredients. The first four terms are
essentially what we would expect from the Navier-Stokes equation,
while the remaining terms, which read

8,7 = ot — B|7*7, (9.10)

account for the propensity of the system to acquire a common ori-
entation or velocity ¢ through a pitchfork bifurcation (see section
8.2.1). The stationary states of this simple dynamical system cor-
respond to a minimum of an effective potential density 7, of the
form

Fo=—3alt)* + 1817, (9.11)

allowing us to write equation (9.10) as
Oy = — ajf" , (9.12)

v

In figure 9.5 we plot 7, with 3> 0 to ensure that the velocity
remains finite. The potential is parabolic for a < 0 and takes the
familiar bottom shape of a wine bottle for o> 0. To understand
what this means for our hydrodynamic approach, consider the net
average propagation speed (or magnitude of the ‘polarizatation’
) of the birds. When <0, the free energy is minimized for
¥ = 0, corresponding to the situation without any net polarization,
or, equivalently, a zero mean velocity of the particles because all
orientations are equally likely. This is the non-flocking phase.

When a >0, the disordered phase corresponding to @=0 is un-
stable. The lowest energy configuration occurs at any polarization
¥ such that v = +/a/ 3, corresponding to the case in which the
agents align with some finite mean velocity. This is the flocking
state within the phenomenological description, and within this
approach a = () marks the flocking transition.

There are in fact infinitely many equivalent directions along which
the birds could orient. The collective alignment of the flock along
one chosen direction is an example of spontaneous rotational
symmetry breaking. The hydrodynamic equations are invariant
under rotations but their steady-state solution is not.

The Toner-Tu theory presented in this section generalizes the fa-
miliar Navier-Stokes equations of simple fluids to fluids of self-
propelled particles. It allows us, for instance, to account for their
flow in confined geometries as well as their sound propagation
within a swarm—see problems 9.3-9.5.
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We saw in section 1.9—see the note in the
margin of equation (1.49)—that Galilean
invariance requires A1 =1 in the Navier-
Stokes equation. Active matter is not
Galilean-invariant, since the agents move
with a well-defined speed relative to a fixed
background frame (the air for birds, water for
fish). Hence, for active media, Ay # 1. Note
also that in this chapter we write the pressure
as P rather than as p, in order to distinguish
it from the polarization.

Fu

a <0

% =

Figure 9.5. The effective potential F, in the
Toner-Tu theory (9.11) for different values of
a. For a <0 (blue) F}, has a stable min-
imum at v =0, which corresponds to the
disordered phase. For o> 0 (yellow) the
curve has stable minima at v # (), indicating
alignment at finite polarization. Compare to
figure 2.19.
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Figure 9.6. Simulations of self-propelled par-
ticles interacting via a pairwise Lennard-
Jones radial potential in a periodic domain
in simulations by Martin et al., 2021b.7 The
snapshot shows the occurrence of motility-
induced phase separation. The two average
densities corresponding to the dense and di-
lute clusters (pg = 0.9 and pg = 0.5) are in-
dicated in yellow and pink, respectively.

oo

For a review of motility-induced phase sep-
aration, see Cates and Tailleur, 2015.

The mechanism of motility-induced phase
separation is reminiscent of traffic jams on
highways: for sufficiently high density of
cars p, the average driving speed v(p) de-
creases with density, dv/dp < 0. This behav-
ior of v( p) shares some similarities with that
leading to the formation of shocks, fronts,
and domains in the nonlinear wave equa-
tion Ap+ 8[u(p)p]= DB%p, which is a
simplified model for phenomena like traffic
flows; see, e.g., Whitham, 1974. In the regime
Adu/dp < 0, traffic is prone to the sponta-
neous emergence of traffic jams due to vari-
ations (‘fluctuations”) in the speeds of indi-
vidual cars.

9.3 Motility-induced phase separation

Motility-induced phase separation is a manifestation of the phe-
nomenology of self-propelled particles that, unlike flocking, does
not necessitate the presence of interactions that align the (flight)
orientation of individual particles or agents. In essence this phe-
nomenon relies on two ingredients.

First, particles naturally accumulate where the position-dependent
propulsion speed v(7) is low. Second, the self-propulsion speed
v(7) decreases with the local density p(7), ie., 5 < 0. Once these
two conditions are met, a feedback loop is created that makes
a uniform suspension unstable. Instead, a phase-separated state
emerges in which a dilute active gas coexists with a dense liquid
with reduced motility; see figure 9.6.

9.3.1 Active Brownian particles

Motility-induced phase separation happens quite generally, butitis
instructive to consider a concrete model of self-propelled particles
that, unlike the Vicsek model, does not display orientation-aligning
interactions. In this model, self-propelled particles, called active
Brownian particles, satisfy the following Langevin dynamics:

F(t) =v(F(t))m(0(t), 0(t)=+/2Dgn(t),  (913)

where 7 is the position of the particle, nis a Gaussian white noise,
Dy is the angular diffusion constant, and 7.(f) = [cos 0, sin 6] is
the unitary vector with orientation 6. The corresponding Fokker-
Planck equation for the probability distribution P(7*, ) reads

9, P(F,0) = —7(8) -V [v(F) P(7,8)] + DeOpe P(7,0),  (9.14)

where V denotes the spatial gradient and 1 is the average orien-
tation. In simple terms, these equations describe a gas of non-
interacting particles that self-propel with a position-dependent
speed while the orientation angle ¢ of their velocity undergoes a
random walk.

9.3.2 The mechanism behind the instability

To study the mechanism of instability that leads to motility-induced
phase separation, we first write an approximate closed-form equa-
tion for the density,

R = / d6P(7,0,1). (9.15)
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synchronization

flocking

pattern formation

Figure 9.17. Nonreciprocal interactions be-
tween two species, R (Red) and B (Blue),
induce a phase transition from static align-
ment to a chiral motion that spontanecusly
breaks parity. Top: nonreciprocal synchro-
nization. Angular variables with nonrecip-
rocal interactions drawn as robots sponta-
neously rotate either clockwise or counter-
clockwise, despite no average natural fre-
quency (wm =0 in equation (9.63)). Middle
row: non-reciprocal flocking. Self-propelled
particles run in circles despite the absence of
external torques. Bottom: space-time plots of
an example of pattern formation with non-
reciprocal interaction. A one-dimensional
stationary pattern starts traveling, either to
the left or to the right as in the chiral case,
when nonreciprocal interactions are turned
on. The figure represents an experimental
observation of a moving oil-air interface (so-
called viscous fingering). Adapted and re-
produced with permission from Fruchart et
al., 2021.%°

incoming ones in a manner set by their spinning direction. Odd
viscosity is not related to energy dissipation and, unlike standard
(even) viscosity, cannot be derived from an entropy production rate
equation, very much as an odd-elastic coefficient cannot be derived
from variations of an elastic potential energy.

Hydrodynamic theories of active fluids capture several striking
phenomena observed in experiments, including the instability
shown in figure 9.16.

9.8 Nonreciprocal phase transitions

Non-equilibrium systems are typically modeled by stochastic pro-
cesses that violate detailed balance. As a result, the steady states of
these systems are characterized by nonvanishing probability cur-
rents between microstates, and they exhibit entropy production. A
simple example is a system composed of three states with cyclic
clockwise transition rates. The steady state is reached when the
probabilities of being in each state are equal. This system is not at
equilibrium even if it possesses a Boltzmann distribution with con-
stant energy because it does not obey detailed balance. Similarly,
physical systems with absorbing states—states out of which tran-
sitions have zero probability—clearly violate detailed balance.?
Flocking states are a non-equilibrium example of such behavior.
Nonreciprocal phase transitions describe the transitions from and
to these non-equilibrium steady states.

When we discussed the flocking transition in terms of the Toner-Tu
theory of section 9.2.3, we associated the transition with a pitch-
fork bifurcation arising from minimizing a quartic potential (see
section 8.2.1 for a brief summary of the pitchfork bifurcation). The
analysis of chapter 8 showed that bifurcations to time-dependent
states (such as traveling waves) are typically non-potential. We now
consider an example of this in active matter, in which nonrecipro-
cal interactions lead to time-dependent phases that spontaneously
break parity (mirror symmetry).*!

9.8.1 Chiral phases in nonreciprocal active matter

We can illustrate the main features of nonreciprocal active matter
with the following model:

030, = i, + Z Jmn Hin[:ﬁn = H'mJ . i ”m(f)u

T

(9.63)

which can be thought of as a simple extension of the Vicsek model.
When the agents are at fixed positions, this model is known as the



Kuramoto model, which was introduced to study the synchroniza-
tion of coupled oscillators with phase angles f,. It qualitatively
describes the collective behavior of clocks ticking, neurons firing,
or fireflies flashing.’? With strong enough coupling, a synchro-
nized state emerges where all oscillators evolve in phase with the
same frequency.

In our case, the variable #, describe the angle in the plane of the
velocities with which the agents move, so that the positions 7}, in
the plane are given by

Oy = 10 (‘”’”‘ ‘9) (9.64)

sin Ay,

An agent m tends to align with an agent n when J,;, >0, or to
antialign when J,,, < 0. The standard Vicsek flocking model cor-
responds to Jyy, > 0. In the absence of interactions and noise the
agents all rotate independently with their own frequency wy,. For
positive J;,;,, there is a critical coupling at which a transition takes
place, from incoherent rotations or motion to synchronized rota-
tion (when the positions are fixed while wy;, # 0) or to flocking when
the particles move according to equation (9.64).

Now consider two copies of the Vicsek model describing two
species, labeled 1 and 2. Without interaction between the two
species, each has its own order parameter (average velocity) de-
scribing the flocking. The behavior of the model becomes espe-
cially interesting, however, when there are interactions between the
species. When the interactions are reciprocal, .J12 = J21, we find, in
addition to a disordered phase, two static phases where #; and 2
are (anti)aligned, in analogy with (anti)ferromagnetism. When the
interactions are nonreciprocal, .JJi2 # Ja1, a time-dependent chiral
phase with no equilibrium analogue emerges between the static
phases. In this chiral phase, parity is spontaneously broken: i
and ¥ (the two species are represented in red and blue in fig-
ure 9.17) rotate with a fixed relative angle A¢, either clockwise or
counterclockwise, at a constant rotation rate Q. = d;6, where ¢
is the angle between (71 + 72)/2 and a fixed direction. The chiral
phase is caused by the frustration experienced by agents with op-
posite goals: species 1 (red) wants to align with species 2 (blue) but
not vice versa. This dynamical frustration results in a ‘chase and
run away’ motion of the order parameters 0} and 5.

Figure 9.17 illustrates the aligned-to-chiral transition in flocking as
well as in synchronization and pattern formation.®® The bottom
row of the figure illustrates a strong link with the formation of pat-
terns as discussed in chapter 8: in pattern-forming non-equilibrium
systems, nonreciprocal interactions can similarly lead to a transi-
tion from stationary to moving patterns, and the methods of the
theory of pattern formation and dynamical systems can be used to
understand general features of the phases and phase transitions.
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Interestingly, Rayleigh-Bénard convection in
rotating cells is described by a nonrecipro-
cal model, in which the nonreciprocal effects
affect the nonlinear terms describing mode
interactions. See the note in the margin of
equation (8.54).



9.11 Problems

Problem 9.1 The Vicsek model as a noisy diffusion equation

In this problem we illustrate how the Vicsek model (9.1) for fixed
agents, i.e., v; =0,0ona two-dimensional lattice reduces to the noisy
diffusion equation (9.4).

a. A sketch of the system is shown in figure 9.28, where we have
represented agents as fixed spins on a square lattice. Show that the
update rule (9.1) reduces in the case where a < R < a2 to

B(Fi+1)= : (H(F, t) + Z B(7 + &F.,t]) + n(7, t),
* AF=+aéz,y
(9.82)
where the sum runs over all four near neighbor lattice directions
and the vector 7 marks the lattice points.

b. Make the assumption that (7", t) varies smoothly as a function
of space and time, and perform an expansion to lowest order in the
gradients. Show that this leads to equation (9.4) with a diffusion
coefficient D = a? /5.

¢. You may wonder why truncating the above expansion to the
lowest order in the gradients is justified. Compare with problem 3.4
part d, and argue that the above procedure does give the exact
asymptotic long time diffusion result.

d. Consider the case in which v/2a < R < 2a and show that this
gives the diffusion constant ) = 2@ [3,

Problem 9.2** The Dean equation: Coarse-graining the Vicsek
model to obtain Toner-Tu equations

In problem 3.10 we discussed the Dean equation for fluctuating
variables. In this problem we show how the method can be used
to derive the coarse-grained Toner-Tu equations from the Vicsek
model. Let us consider N active particles moving in a plane.
Each particle is described by a position 7; and an angle #;, with
i=1,....N. The dynamics of the population is described by the
set of equations

ri(t) =von[0;(1)], (9.83)
N
8;(t) =m(t) + Y _ Jijsin[0;(t) — 6i(t)], (9.84)
=1
where
() = (cos(8),sin(#))” (9.85)

gives the local orientation of the agent, and #;(t) are Gaussian
white noises with (n;(f)} = 0 and
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Relevant coding problems and solutions for
this chapter can be found on the book’s
website www.softmatterbook.online under
Chapter 9/Coding problems.

Figure 9.28. The Vicsek model on a square
lattice with agents (spins) fixed on the lattice
sites. The circle of radius R marks the area
with spins that are included in the updating
of the central spin, the dark dot. As you can
see, only nearest neighbors are included in
the updating in the case drawn.

This problem is an application of the analysis
by Dean discussed in problem 3.10.



