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We analyze order-disorder phase transitions driven by noise that occur in two kinds of network models
closely related to the self-propelled model proposed by Vicsek et al. �Phys. Rev. Lett. 75, 1226 �1995�� to
describe the collective motion of groups of organisms. Two different types of noise, which we call intrinsic and
extrinsic, are considered. The intrinsic noise, the one used by Vicsek et al. in their original work, is related to
the decision mechanism through which the particles update their positions. In contrast, the extrinsic noise, later
introduced by Grégoire and Chaté �Phys. Rev. Lett. 92, 025702 �2004��, affects the signal that the particles
receive from the environment. The network models presented here can be considered as mean-field represen-
tations of the self-propelled model. We show analytically and numerically that, for these two network models,
the phase transitions driven by the intrinsic noise are continuous, whereas the extrinsic noise produces discon-
tinuous phase transitions. This is true even for the small-world topology, which induces strong spatial corre-
lations between the network elements. We also analyze the case where both types of noise are present simul-
taneously. In this situation, the phase transition can be continuous or discontinuous depending upon the
amplitude of each type of noise.
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I. INTRODUCTION

In spite of many efforts, only a limited understanding has
been achieved regarding the emergence of collective order in
nonequilibrium systems. While these systems often present
features analogous to the those found in equilibrium, such as
phase transitions and long-range correlations, it is not clear
how to use the powerful tools available in equilibrium statis-
tical mechanics to analyze their properties. To overcome this
problem, it may be useful to consider cases where simple
qualitative characteristics �e.g., the existence and order of a
phase transition� are common to different nonequilibrium
systems with similar properties.

A class of nonequilibrium systems that has sparked in-
creasing interest in recent years is given by models of groups
of swarming agents �1–8�. These are used to describe the
collective behavior of self-propelled agents such as schools
of fish, flocks of birds, or herds of quadrupeds �9–11�. Even
the simplest of these models displays large-scale organized
structures, in which agents separated by distances much
larger than their interaction ranges can coordinate and swarm
in the same direction. If noise is added to the system, this
ordered state is destroyed as the noise level increases. When
the noise reaches a critical value, the system undergoes a
phase transition to a disordered state where agents move in
random directions �2,3�. This phase transition has been quite
thoroughly analyzed through numerical simulations. How-
ever, the lack of a systematic theoretical approach to non-
equilibrium systems has hindered a proper characterization
of the order-disorder phase transition, and there are still
doubts about its basic features even in this simplest of cases
�12–14�.

In this paper we are particularly interested in how this
phase transition might be affected by the way in which the
noise is introduced in the system. Two different types of
noise, which we will call extrinsic and intrinsic, have re-
cently been considered in models of swarming �2,12�. In
these models, at every time step each particle receives a sig-
nal from its neighbors that tells the particle in which direc-
tion to move next. The extrinsic noise consists in that the
signal received by the particle is blurred �because, say, the
environment is not completely transparent and the particle
cannot see its neighbors very well�. As a consequence, the
particle may move in a different direction to the one dictated
by the neighbors. In contrast, in the intrinsic noise case each
particle receives the signal sent by the neighbors perfectly,
but then it may “decide” to do something else and move in a
different direction. Thus, the extrinsic noise can be thought
of as produced by a blurry environment, whereas the intrin-
sic noise comes from the “free will” of the particles, so to
speak; namely, from the uncertainty in the particle’s decision
mechanism. In either case, of course, the net result is that, at
every time step, the particle may move in a direction that
departs from the one dictated by the neighbors.

It has been pointed out that these two distinct types of
noise, extrinsic and intrinsic, can produce very different
order-disorder phase transitions �14�. This can been shown
analytically using a network approach in which the elements,
instead of interacting with the neighbors in a physical space,
interact with any element that is linked to them through a
network connection. This kind of description has been used
to model a large range of dynamics, such as the traffic be-
tween Internet websites or servers, the evolution of an epi-
demic outbreak, the mechanisms triggered by gene expres-
sions in the cell, or the activity of the brain �15–20�. In the
context of swarming systems, the network approach is
equivalent to a mean-field theory in which correlations be-*max@fis.unam.mx
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tween the particles are not taken into account. However, this
approach has the virtue that it allows us to separate clearly
the dynamical interaction rule that determines the dynamical
state of the particles, from the topology of the underlying
network that develops in time and space and dictates who
interacts with who. Therefore, under the network approach it
is possible to focus on the effects that the two different types
of noise have on the dynamics of the system.

Even when the network approach leaves aside some im-
portant aspects of the dynamics of swarming systems �such
as correlations in space and time�, some appealing analogies
can be established between the swarming and network sys-
tems. Indeed, in the simplest swarming models, the dynamics
is defined by giving to each agent a steering rule that uses the
velocities of all agents in its vicinity as an input to compute
its own velocity for the next time step. This algorithm can be
associated to a dynamics on a switching network that links at
every time step all agents that are within the interaction
range of each other. In this context, the network is simply a
representation of the spatial dynamics of the system. How-
ever, it has been shown that this analogy can be pushed fur-
ther successfully and that a static network with long-range
connections can capture some of the main qualitative behav-
iors of simple swarming models �14,21,22�.

In this paper, we compare the properties of the phase tran-
sitions and dynamical mappings of two kinds of network
models to further explore the analogies described above. We
consider models that incorporate three of the main aspects of
the interaction between the particles in swarms: an average
input signal from the neighbors, noise, and, in some sense,
extremely long-range interactions. In the first kind of model
the elements of the network can acquire only two states +1
and −1; whereas in the second, the elements are represented
by 2D vectors whose angles take any value between 0 and
2�. We find that swarming systems and their network coun-
terparts indeed present qualitatively similar behaviors de-
pending on whether the noise is intrinsic or extrinsic. We
also determine numerically that the same qualitative features
arise when the particles are placed on a small-world network,
and we extend our results to the case in which the network
models are subject to both types of noise.

The paper is organized as follows. In Sec. II we present
the model introduced by Vicsek and his group to describe the
emergence of order in swarming systems. In particular, we
focus our attention on how the phase transition seems to
change when the noise changes from intrinsic to extrinsic. In
Sec. III we present a majority voter model on a network,
which is reminiscent of the Ising model with discrete internal
degrees of freedom. This model is simple enough as to be
treated analytically, at least for the case of homogeneous
random network topologies for which we show analytically
that the two types of noise indeed produce two different
types of phase transition. In Sec. IV we introduce another
network model in which the internal degrees of freedom are
continuous �2D vectors�. This model can be treated analyti-
cally in the limit of infinite network connectivity. However,
these results and extensive numerical simulations clearly in-
dicate that the two types of noise again produce two different
phase transitions, which are analogous to the ones observed
in the majority voter model. In Sec. V we discuss the mean-

field assumptions conveyed in the two network models and
how they relate to the self-propelled model. We also show
that the nature of the phase transition produced by each type
of noise does not change when the small-world topology is
implemented, which includes strong spatial correlations be-
tween the network elements. Finally, in Sec. VI we summa-
rize our results.

II. THE VICSEK MODEL

Arguably, the simplest model to describe the collective
motion of a group of organisms was proposed by Vicsek and
his collaborators �2�. In this model, N particles move within
a 2D box of sides L with periodic boundary conditions. The
particles are characterized by their positions x�1�t� , . . . ,x�N�t�
and their velocities v�1�t�=vei�1�t� , . . . ,v�N�t�=vei�N�t� �repre-
sented here as complex numbers�. All the particles move
with the same speed v. However, the direction of motion
�n�t� of each particle changes in time according to a rule that
captures in a qualitative way the interactions between organ-
isms in a flock. The basic idea is that each particle moves in
the average direction of motion of the particles surrounding
it, plus some noise. Two interaction rules have been consid-
ered in the literature, which differ in the way the noise is
introduced into the system. To state these rules mathemati-
cally, we need some definitions. Let Rn�r� be the circular
vicinity of radius r centered at x�n�t�, and Kn�t� be the number
of particles whose positions are within Rn�r� at time t. We

will denote as U� n�t� the average velocity of the particles
which at time t are within the vicinity Rn�r�, namely,

U� n�t� =
1

Kn�t� �
�j:x� j�t��Rn�r��

v� j�t� . �1�

For reasons that will be clear later, we will call U� n�t� the
input signal received by the nth particle v�n. With the above
definitions, the interaction rule originally proposed by Vicsek
et al. can be written as

�n�t + �t� = Angle�U� n�t�� + ��n�t� , �2a�

v�n�t + �t� = vei�n�t+�t�, �2b�

x�n�t + �t� = x�n�t� + v�n�t + �t��t , �2c�

where �n�t� is a random variable uniformly distributed in the
interval �−� ,��, and the noise amplitude � is a parameter
taking a constant value in �0, 1�. The “Angle” function is
defined in such a way that if u� =uei�, then Angle �u��=�. Note
that in this case the direction of the neighbors’ average ve-

locity U� n�t� �the input signal� is computed first and then the
noise is added to this direction. We will refer to the interac-
tion rule given in Eqs. �2a�–�2c� as the self-propelled model
with intrinsic noise �SPMIN�, and to the term ��n�t� as the
intrinsic noise.

The second interaction rule, proposed by Grégoire and
Chaté in Ref. �12�, is given by

�n�t + �t� = Angle�U� n�t� + �ei�n�t�� , �3a�
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v�n�t + �t� = vei�n�t+�t�, �3b�

x�n�t + �t� = x�n�t� + v�n�t + �t��t , �3c�

where �n�t� and � have the same meaning as in Eq. �2a�. In
this case, a random vector of constant length � and random
orientation �n�t� is added to the neighbors’ average velocity

U� n�t�, and then the direction of the resultant vector is com-
puted. We will refer to the model given in Eqs. �3� as the
self-propelled model with extrinsic noise �SPMEN�, and to
the term �ei�n�t� as the extrinsic noise.

One might think that the two interaction rules �2a� and
�3a� are more or less equivalent and should produce qualita-
tively similar dynamical behaviors. However, as mentioned
in the Introduction, there is a clear physical difference be-
tween these two ways of adding noise to the system. In the
SPMIN the uncertainty induced by the noise is in the deci-
sion mechanism �the Angle function�, but not in the input
signal that each particle receives. In contrast, one could say
that in the SPMEN the particles are “short-sighted” and do
not see clearly the signal sent by the neighbors, which is
what causes the uncertainty in this case. Thus, one cannot
expect, a priori, the onset of collective order to be the same
in both the SPMIN and the SPMEN, for the way in which the
noise is introduced in both cases is clearly different, not only
algorithmically, but also physically.

To measure the amount of order in the system we define
the instantaneous value of the order parameter ��t� as

��t� = � 1

vN
�
n=1

N

v�n�t�� = v−1	
U� �t��	 , �4�

where 
U� �t��= 1
N�n=1

N v�n�t� is the average velocity of the entire
system at time t. Thus, if ��t��0 the particles move in ran-
dom uncorrelated directions, whereas if ��t��1, all the par-
ticles are aligned and move in the same direction. In the limit
t→�, the order parameter ��t� reaches a constant value �
=limt→� ��t� that characterizes the steady state behavior of
the system �26�.

In their original work, Vicsek and his group noted the
existence of a phase transition from ordered states
���t�	0� to disordered states ���t��0� as the value of the
noise intensity � increases. We illustrate this phase transition
for the SPMIN in Fig. 1�a�, which was obtained numerically
for a system with N=20 000 particles within a box of sides
L=32. The interaction radius and particle speed used in the
numerical simulation are r=0.4 and v=0.05, respectively. On
the other hand, Fig. 1�b� shows the phase transition for the
SPMEN with exactly the same parameters as in the previous
case. As it can be seen from Fig. 1, the phase transition looks
continuous �second order� for the SPMIN, whereas it is
clearly discontinuous �first order� for the SPMEN.

Numerical simulations performed for larger systems than
the one used in Fig. 1 also seem to indicate that the phase
transition exhibited in the SPMIN is continuous �3–5�. None-
theless, based on numerical simulations, the authors of Ref.
�12� have pointed out that the phase transition may be dis-
continuous regardless of the type of noise, and that the ap-
parent continuity of the phase transition in the SPMIN is due

to strong finite-size effects. For some reason, these finite size
effects are not so strong in the SPMEN, in which the phase
transition is clearly discontinuous. Due to a lack of a general
mathematical formalism to analyze the self-propelled model
�either with intrinsic or extrinsic noise�, the way in which
each type of noise affects the dynamics of the system re-
mains unknown. In what follows we present two simplified
versions of the Vicsek model that can be solved analytically
for the two types of noise. We show that in these simpler
models, the phase transition is continuous for the intrinsic
noise and discontinuous for the extrinsic noise.

III. THE MAJORITY VOTER MODEL

The first network model that we consider consists of a set
of N binary variables v1 ,v2 , . . . ,vN, each acquiring the val-
ues +1 or −1. The value of each vn changes in time and is
determined by a set of kn other elements In
= �vn1

,vn2
, . . . ,vnkn

�, which we will call the inputs of vn.

Thus, at every time step every element vn receives a signal
from its set of inputs In and updates its value according to
that signal. Different ways of assigning the inputs to each
element lead to different network topologies. In this section
we focus on the homogeneous random topology character-
ized by the following two properties. All the elements have
the same number of inputs K, namely, kn=K for all n. The K
inputs of each element are chosen randomly from anywhere
in the system.

Note that this is a directed network, for if vn is an input to
vm, then vm is not necessarily an input to vn. We can think of
this system as a society of N individuals in which every
individual vn can have two opinions �+1 and −1� about an
issue. Each individual’s opinion is influenced by its K friends
�inputs�, who are randomly chosen among the N individuals
in the society. Generally, each individual will tend to be of
the same opinion as the majority of its friends, but with a
given probability it can have the opposite opinion. This prob-
ability of having an opinion opposite to that of the majority
can be considered as a “temperature” that introduces noise in

FIG. 1. Phase transition in the self-propelled model with �a�
intrinsic noise and �b� extrinsic noise. In the first case the phase
transition seems to be continuous, whereas in the second case it is
clearly discontinuous. The numerical simulations were performed
using systems with N=20 000, L=32, r=0.4, and v=0.05.
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the dynamics of the system. Here we consider two ways of
introducing this noise, which are analogous to the intrinsic
and extrinsic noise in the self-propelled model.

We define the input signal Un�t� influencing element vn�t�
as

Un�t� =
1

K
�
j=1

K

vnj
�t� . �5�

This is just the average opinion of the inputs of vn. With this
definition, the dynamics of the system with intrinsic noise is
given by the simultaneous updating of the network elements
according to the rule

vn�t + 1� =  sgn�Un�t�� with prob. 1 − � ,

− sgn�Un�t�� with prob. � ,
� �6�

where sgn�Un�=−1 if Un
0 and sgn�Un�=1 if Un	0. If
Un=0 then we choose for vn�t+1� either +1 or −1 with equal
probability. The noise amplitude � is a constant parameter in
the interval �0,1/2� that represents the probability for each
individual to go against the majoritarian opinion. The above
interaction rule can also be written in a simpler form as

vn�t + 1� = sgn�sgn�Un�t�� +
�n�t�
1 − �

� , �7�

where �n�t� is a random variable uniformly distributed in the
interval �−1,1�. From the above expression it is clear that
this way of introducing the noise is equivalent to the intrinsic
noise of Eq. �2a�, since the noise is added after the sgn func-
tion has been applied to the input signal Un�t�. �Since vn can
only take the values +1 or −1, the sgn function has to be
applied again.�

The other way of introducing the noise, which is equiva-
lent to the extrinsic noise in Eq. �3a�, is given by the inter-
action rule

vn�t + 1� = sgn�Un�t� + 4��n�t�� , �8�

where now the noise is directly added to the input signal
Un�t� and then the sgn function is evaluated. �n�t� and � have
the same meaning as in Eq. �7�. �The factor 4 in the preced-
ing equation is just to guarantee that the phase transition in
this case occurs within the interval �� �0,1 /2�.�

For both types of noise, intrinsic and extrinsic, the major-
ity voter model exhibits a phase transition from ordered to
disordered states. However, the nature of this phase transi-
tion �i.e., whether continuous or discontinuous� depends on
the type of noise. To see that this is indeed the case, we
define the order parameter ��t� for the majority voter model
as

��t� =
1

N
�
n=1

N

vn�t� . �9�

In the limit t→�, the order parameter ��t� reaches a station-
ary value � that depends on the noise intensity �. Figure 2�a�
shows 	�	 as a function of � for the intrinsic noise case �Eq.
�7��, in a system with N=105 and K=3. It is apparent that in
this case the phase transition is continuous. This result is
consistent with the behavior of the SPMIN observed in Fig.

1�a�. Contrary to the above, the phase transition for the ma-
jority voter model with extrinsic noise �Eq. �8�� is discon-
tinuous, as is shown in Fig. 2�b�, which is also consistent
with the behavior observed in Fig. 1�b� for the SPMEN.
Thus, changing the way in which the noise is introduced in
the voter model also changes drastically the nature of the
phase transition.

The majority voter model is simple enough to be treated
analytically. We can even generalize the model to incorporate
the two types of noise simultaneously. In this generalization,
the value of each element vn is updated according to the
dynamical rule

vn�t + 1� = sgn�sgn�Un�t� + 4�1�n�t�� +
�n�t�

1 − �2
� , �10�

where �n and �n are independent random variables uniformly
distributed in the interval �−1,1�, and �1 and �2 are constant
parameters taking values in the interval �0,1/2�. Thus, if
�1=0 and �2�0, only the intrinsic noise is present, whereas
if �1�0 and �2=0 only the extrinsic noise is present. Inter-
mediate cases are obtained if both �1 and �2 are different
from zero. In what follows we consider separately the case in
which K is finite, and the case in which K is infinite.

A. Case 1: K
�

In Appendix A we present a mean-field calculation show-
ing that, when the network connectivity K is finite, the order
parameter ��t� satisfies the dynamical mapping

��t + 1� = M���t�� , �11a�

where

M��� = �1 − 2�2��
m=1

K

�m
K��1��m, �11b�

and the coefficients �m
K��1� are given by

FIG. 2. Phase transition in the majority voter model with �a�
intrinsic noise and �b� extrinsic noise. In the first case the phase
transition appears to be continuous, whereas in the second case it is
discontinuous. The symbols represent data obtained from numerical
simulations using systems with N=105 and K=3. The solid lines
correspond to the mean-field prediction.
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�m
K��1� = �K

m
� �− i�m−1

4�K�1

 �
−�

�

�cos ��K−m�sin ��msin�4K�1��
�2 d� .

�11c�

In the calculations that lead to the set of equations �11a� and
�11b� one assumes that the network elements vn are statisti-
cally independent and equivalent �see Appendix A�. These
assumptions hold as long as the K inputs of each element are
chosen randomly from anywhere in the system, namely, for
the homogeneous random topology. For other topologies that
introduce correlations between the network elements, such as
the small-world or the scale-free topologies, the mean-field
assumptions do not necessarily apply. However, when they
do apply, the order parameter given in Eq. �9� becomes the
sum of N independent and equally distributed random vari-
ables. Therefore, the determination of ��t� becomes analo-
gous to determining the average position of a one-
dimensional �1D� biased random walk, which can be solved
exactly.

The stable fixed points of Eq. �11a� give the stationary
values �=limt→� ��t� of the order parameter. It is clear from
Eqs. �11a�–�11c� that �=0 is always a fixed point. However,
its stability depends on the values of �1 and �2. Additionally,
from Eq. �11c�it follows that �m

K��1�=0 for even values of m
�because in such a case the integrand in that equation is an
odd function�. Therefore, the polynomial in Eq. �11b� con-
tains only odd powers of ��t� and thus, for each fixed point
�, the opposite value −� is also a fixed point.

To illustrate the formalism, we present here a detailed
analysis of the simple case K=3. However, the results are
similar for any other finite value of K. For K=3, the integrals
in Eq. �11c� can be easily computed �we used MATHEMATICA

�23�� and Eq. �11b� becomes

M��� = �1 − 2�2���1
3��1�� + �3

3��1��3� , �12a�

where

�1
3��1� =

4 + 24�1 − 	1 − 12�1	 − 3	1 − 4�1	
32�1

, �12b�

�3
3��1� = −

8�1 − 	1 − 12�1	 + 	1 − 4�1	
32�1

. �12c�

To determine the stability of the fixed points of the mapping
M��� we have to analyze the value of the derivative
M�����dM��� /d�. If 	M����	
1 at the fixed point, then
that fixed point is stable. Otherwise, it is unstable. We further
divide our presentation in three cases.

1. Subcase 1: �2=0

Let us first show that the phase transition is discontinuous
for the case in which �2=0, namely, when there is no intrin-
sic noise and only the extrinsic noise is present. Under these
circumstances, the fixed-point equation �=M��� becomes

� = M��� = �1
3��1�� + �3

3��1��3. �13�

Using Eqs. �12b� and �12c�, it is easy to see that �=1 and
�=−1 are solutions of the fixed-point Eq. �13� provided that
0��1


1
4 �in addition to the trivial solution �=0 which is

always a fixed point�. From Eqs. �12b�, �12c�, and �13� we
obtain that

M��1� = �1
3��� + 3�3

3��1� =�
0 if 0 � �1 �

1

12
,

12�1 − 1

8�1
if

1

12
� �1 �

1

4
,

1

4�1
if

1

4
� �1.

�
It follows from the above expression that 	M���1�	
1 in the
region 0��1


1
4 , which shows that the fixed points �=1

and �=−1 are stable in this region. For �1	
1
4 the fixed

points �= �1 disappear and the only fixed point that re-
mains is �=0.

Let us compute now the stability of the fixed point �=0.
From Eqs. �12b� and �13� we get

M��0� = �1
3��� =�

3

2
if 0 � �1 �

1

12
,

12�1 + 1

16�1
if

1

12
� �1 �

1

4
,

1

4�1
if

1

4
� �1

�
from which it follows that 	M��0�	
1 for �1	

1
4 , whereas

	M��0�	�1 for 0��1�
1
4 .

The stability analysis presented above reveals that, when
�2=0, the stable fixed points discontinuously transit from
�= �1 to �=0 as �1 crosses the critical value �1

c =1 /4 from
below. Therefore, the phase transition in this case is discon-
tinuous, as is shown in Fig. 2�b�.

2. Subcase 2: �1=0

We now consider the case in which �1=0, that is, when
only intrinsic noise is present. Taking the limit �1→0 in Eqs.
�12b� and �12c� one gets �1

3�0�=3 /2 and �3
3�0�=−1 /2.

Therefore, in this case Eq. �12a� becomes

M��� = �1 − 2�2��3

2
� −

1

2
�3� . �14�

Let us start by analyzing the stability of the trivial fixed point
�=0. From the above equation we get

M��0� = �1 − 2�2�
3

2
,

from which it follows that 	M��0�	
1 only for �2	
1
6 .

Therefore, the disordered state characterized by the fixed
point �=0 is stable only for �2	

1
6 . As �2 decreases below

the critical value �2
c = 1

6 , the disordered phase becomes un-
stable and two stable nonzero fixed points appear. Assuming
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��0, the fixed point equation �=M��� can be solved for �
obtaining

� = � �3 −
2

1 − 2�2
�1/2

.

A stability analysis reveals that the above fixed points are
stable for �2
�2

c �in this region 	M���	
1� and unstable for
�2	�2

c �because in this other region 	M���		1�. Summariz-
ing, the stable fixed points for the case �1=0 are

� = ���3 −
2

1 − 2�2
�1/2

if 0 � �2 � �2
c ,

0 if �2
c 
 �2,

�
where �2

c =1 /6. This result is plotted in Fig. 2�a� �solid line�,
from which it is apparent that the phase transition in the
majority voter model with only intrinsic noise is indeed con-
tinuous. Additionally, for values of �2 below, but close to,
the critical value �2

c at which the phase transition occurs, the
order parameter � behaves as �� � ��2

c −��1/2, which shows
that this phase transition belongs to the mean-field universal-
ity class.

3. Subcase 3: �1Å0 and �2Å0

When both types of noise, intrinsic and extrinsic, are
present in the system, the phase transition is always continu-
ous for any finite value of K. To illustrate this we present in
Fig. 3�a� the graph of M��� for �1=0.1 and different values
of �2. Note that M��� is a monotonically increasing convex
function, and therefore the nonzero stable fixed point appears
continuously as �2 decreases. The same happens if we now
fix the value of �2 and vary the value of �1, as it is shown in
Fig. 3�b�. This behavior is typical of a continuous phase tran-
sition.

Assuming ��0 and using Eq. �12a�, the fixed point equa-
tion �=M��� can be solved for � obtaining

� = �  1

�3
3��1�� 1

1 − 2�2
− �1

3��1���1/2
�15�

For this equation to have real solutions the quantity inside
the curly brackets must be positive. From Eq. �12c� it fol-
lows that �3

3��1��0 for any positive value of �1. Therefore,
Eq. �15� has real solutions only if

1

1 − 2�2
� �1

3��1� .

The values of �1 and �2 for which the equality holds in the
above expression determine the critical line on the �1-�2
plane at which the phase transition occurs. Figure 5 shows
surface plots for the �positive� value of the stable fixed point
� as a function of �1 and �2 for K=3, K=9, K=15, and
K→�. Interestingly, for any finite value of K the phase tran-
sition is always continuous except for the special case
�2=0. Therefore, for any finite K, even a small amount of
intrinsic noise suffices to make the phase transition continu-
ous.

B. Case 2: K\�

In Appendix A we show that for K→� the temporal evo-
lution of the order parameter is still given by the dynamical
mapping Eq. �11a�, where now M��� is

M��� = �
− �1 − 2�2� if � 
 − 4�1,

1 − 2�2

4�1
� if 	�	 � 4�1,

1 − 2�2 if � 	 4�1.
� �16�

Figure 4�a� shows the behavior of M��� for K→�, �1=0.1
and different values of �2, and Fig. 4�b� shows the same kind
of plots but now keeping �2=0.1 and varying the value of
�1. It can be seen from Fig. 4�a� that the phase transition is
discontinuous. Indeed, as �2 decreases below the critical
value �2

c =0.3, the nonzero stable fixed point appears discon-

FIG. 3. �Color online� Graph of the dynamical mapping M��� as
a function of � for K=3. �a� �1=0.1 and different values of �2; �b�
�2=0.1 and different values of �1. Note that in both cases, as the
noise intensity decreases the stable nonzero fixed point appears con-
tinuously. This is always the behavior for finite values of K.

FIG. 4. �Color online� Graph of the dynamical mapping M��� as
a function of � for K→�. �a� �1=0.1 and different values of �2; �b�
�2=0.1 and different values of �1. Note that in both cases, as the
noise intensity decreases the stable nonzero fixed point appears dis-
continuously �indicated by the arrows�. For infinite K, the phase
transition is always discontinuous.
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tinuously �see the point indicated with an arrow in the fig-
ure�. An analogous behavior occurs in Fig. 4�b� when �1
reaches the value �1

c =0.2. Thus, in the limit K→� the phase
transition is always discontinuous �see Fig. 5�. In this sense,
the discontinuity in the phase transition observed when only
extrinsic noise is used can be considered as a singular limit,
either �2→0 or K→�, of a phase transition that is otherwise
continuous.

IV. THE VECTORIAL NETWORK MODEL

The second network model that we analyze, which we
will call the “vectorial network model” �VNM�, is much
closer to the self-propelled model than the voter model pre-
sented in the previous section. As we will see later, the VNM
corresponds to a mean-field theory of the self-propelled
model. It consists of a network with N nodes �or elements�
which, as in the self-propelled model, are the two-
dimensional vectors v�1=ei�1 , . . . ,v�N=ei�N �represented as
complex numbers�. All the vectors have the same magnitude
	v�n	=1 but their orientations �1 , . . .�N in the plane can
change. Each vector v�n is connected to a fixed set of kn other
vectors, In= �v�n1

,v�n2
, . . . ,v�nkn

�, from which v�n will receive an

input signal. We will call this set the inputs of v�n, and con-
sider again the homogeneous random topology in which all
the elements have exactly K inputs chosen randomly from

anywhere in the system. The input signal U� n�t� received by
v�n from its K inputs is defined as

U� n�t� =
1

K
�
j=1

K

v�nj
�t� . �17�

For the interaction between the network elements we con-
sider from the beginning a dynamic rule that already incor-
porates both types of noise, intrinsic and extrinsic:

�n�t + 1� = Angle�U� n�t� + �1ei�n�t�� + �2�n�t� , �18�

where �n�t� and �n�t� are independent random variables uni-
formly distributed in the interval �−� ,��. The noise intensi-

ties �1 and �2, which take constant values between 0 and 1,
are the amplitudes of the extrinsic �Grégoire-Chaté� and in-
trinsic �Vicsek� types of noise, respectively. Note that, while
in the self-propelled model the particles can move and thus
the vectors v�n represent particle velocities, in the VNM the
particles do not move. Rather, they are fixed to the nodes of
the network. For this reason, in the VNM the vectors v�n
cannot be considered as velocities, but just as a given prop-
erty of the particles �such as spin�.

A. Equivalence between the VNM
and the self-propelled model

The main difference between the self-propelled model and
the VNM is that in the former the motion of the particles can
produce correlations in space and time that may couple the
global order with the local density, affecting the phase tran-
sition. Such coupling is not present in the VNM unless we
choose very specific network topologies that change over
time. However, here we are interested only on the effects that
the two different types of noise have on the phase transition.
The VNM is especially suited for this analysis precisely be-
cause of the absence of such complicated dynamical effects
as the coupling between order and density.

Nonetheless, it is important to note that the limit of large
particle speeds of the self-propelled model is well described
by the VNM. Indeed, if the speed of the particles in the
self-propelled model is small enough, then particles that
were within the same interaction vicinity at time t will most
likely remain within the same interaction vicinity at the next
time step t+�t. Therefore, for small particle speeds the spa-
tial correlations between the particles are important. Con-
trary to this, in the opposite limit of large particle speeds, and
because of the noise in the direction of motion of each par-
ticle �whether intrinsic or extrinsic�, particles that at time t
were within the same vicinity will most likely not remain
within that vicinity and end up interacting with different par-
ticles at the next time step t+�t. Therefore, in the limit v
→� of the self-propelled model spatial correlations are lost
in only one time step. More precisely, the particle speeds
must be great enough to separate nearby particles distances
larger than any correlation length in the system at each time
step. This, then, is essentially equivalent to randomly mixing
the particles within the box at every time step, as was done to
obtain Figs. 6 and 7, and is the condition for the mean-field
theory conveyed in the VNM to be applicable.

Figure 6 shows the value of the order parameter � as a
function of the noise intensity � for the VNM with intrinsic
noise only �solid line�, and for the SPMIN with random mix-
ing �symbols� �27�. Namely, instead of updating the positions
of the particles in the SPMIN according to the kinematic rule
given in Eq. �2c�, we just randomly mixed all the particles
within the box at every time step. We used equivalent sys-
tems with N=20 000 particles and adjusted the other param-
eters of the SPMIN in such a way that the average number of
interactions per particle K was the same as for the vectorial
network model �K=5 in Fig. 6�a� and K=20 in Fig. 6�b���.
Analogously, Fig. 7 shows equivalent results but for the
VNM with extrinsic noise only �solid line� and the SPMEN

FIG. 5. Phase transition in the majority voter model. Order pa-
rameter � as a function of the extrinsic noise �1 and the intrinsic
noise �2 for K=3, K=9, K=15 and K→�. Note that for any finite
value of K the phase transition is always continuous except for the
case �1=0. Note also that the phase transition it is always discon-
tinuous for K→�.
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with random mixing �symbols�. As we can see from these
figures, regardless of the type of noise both the self-propelled
model with random mixing and the VNM give the same
phase transition within numerical accuracy. Although the
above results do not constitute a proof, they do suggest that,
in the limit of large particle speeds, the self-propelled model
becomes equivalent to the VNM.

B. Mean-field theory of the VNM

Let us define the average vector U� �t� as

U� �t� =
1

N
�
n=1

N

v�n�t� . �19�

In the context of the self-propelled model, U� �t� is the average
velocity over the entire system. Clearly, the instantaneous

value of the order parameter ��t� is related to this vector

through ��t�= 	U� �t�	. Let ���t� ,��t�� be the polar coordinates

of U� �t�, and PU� �� ,� ; t� its probability distribution function
�in polar coordinates�. Note, then, that ��t� is the first radial
moment of PU� �� ,� ; t�.

As in the voter model, we assume that the network ele-
ments v�n are statistically independent and equivalent. There-
fore, Eq. �19� becomes the sum of N independent and equally
distributed random variables, and the problem of determin-

ing U� �t� is then similar to that of finding the position of a 2D
biased random walk. In Appendix B we present this mean-
field calculation, and show that the temporal evolution of the
Fourier transform of PU� �� ,� ; t� is given by the recurrence
relation

P̂U� ��,�;t + 1� = J0��� + �
m=−�

�
sin�m��2�

2�2�2
Jm���eim�

 �
0

� d��

��
J0�K�1���

�
0

2�

d���P̂U� ���,��;t��Ke−im��, �20�

where the Jm�x�’s are Bessel functions, and � and � are the
Fourier conjugate variables to � and �, respectively. In prin-
ciple, this equation can be solved for any finite value of the
network connectivity K. However, we were able to solve it
only in the limit case K→�. Therefore, we present first the
analytic results for K→�. In the next section we present
numerical results for finite values of K.

C. Case 1: K\�

In the limit K→� the factor �P̂U� ��� ,�� ; t��K appearing in
the second integral of Eq. �20� can be replaced by a Dirac �
function radially centered at K��t�. This leads to

P̂U� ��,�;t + 1� = J0��� + �
m=−�

�

�− i�msin�m��2�
��2

Jm���

 eim��−���
0

� dx

x
J0��x�Jm���t�x� . �21�

From this equation it follows that the order parameter ��t�,
which is the first radial moment of PU� �� ,� ; t�, obeys the
dynamical mapping �see details in Appendix B�

��t + 1� =
sin���2�

��2
�

0

�

J0��1x�J1���t�x�
dx

x
. �22�

The integral on the right-hand side of the above equation
is an instance of the Weber-Schafheitlin integrals �24�. After
the evaluation of this integral, the dynamical mapping for the
order parameter can be written as

��t + 1� = M���t�� , �23a�

where the mapping M��� is

FIG. 6. Phase transition for the VNM with intrinsic noise only
�solid line� and the SPMIN with random mixing �symbols�, both
with N=20 000. For the SPMIN the size of the box is L=32 and the
radius r of the interaction vicinity has been chosen so that the av-
erage number of interactions per particle coincides with the network
connectivity K in the VNM. The two panels correspond to �a�
K=5 �r�0.285� and �b� K=20 �r�0.571�. Note that the phase
transition in this case is continuous and the same for both the VNM
and the SPMIN with random mixing.

FIG. 7. Phase transition for the VNM with extrinsic noise only
�solid line� and the SPMEN with random mixing �symbols�. The
systems have the same parameters as in Fig. 6: N=2104, L=32,
K=4 �r�0.285� in �a� and K=20 �r�0.571� in �b�. Note that the
phase transition in this case is discontinuous and the same for both
the VNM and the SPMEN with random mixing.
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M��� = �
sin���2���t�

2��1�2
2F1�1

2
,
1

2
;2,� �

�1
�2� if � 
 �1,

sin���2�
��2

2F1�1

2
,−

1

2
;1,��1

�
�2� if � 	 �1

�
�23b�

and 2F1�a ,b ;c ,d� are hypergeometric functions. The fixed
points of M��� give the stationary value � of the order pa-
rameter. In Ref. �14� we have shown that for �2=0, the non-
trivial fixed point of this mapping appears discontinuously as
�1 crosses the critical value �1�0.672 from above. On the
other hand, for �2	0 there is a global factor

sin���2�
��2

which
does not change the discontinuous appearance of the non-
trivial fixed point. Therefore, for any values of �1 and �2, the
phase transition is discontinuous.

Figure 8 shows surface plots of the stationary value � as a
function of �1 and �2 for two different cases: �i� when the
dynamics of the VNM start out from disordered initial con-
ditions ���0��0 in Eq. �23a�� and �ii� when the dynamics
start out from ordered initial conditions ���0��1 in Eq.
�23a��. Let us denote the stationary values of the order pa-
rameter obtained in each of the two cases mentioned above
as �dis and �ord, respectively. It is apparent from Fig. 8 that
�dis and �ord are equal in a large region of the �1-�2 param-
eter space. However, there is also a region in which �dis and
�ord are different. This latter region, where the system shows
hysteresis, is shown in Fig. 9, in which the difference
��=�ord−�dis is plotted as a function of �1 and �2. The
region for which ���0 is a region of metastability where
two stable fixed points exist, the trivial one �dis=0 and the
nonzero fixed point �ord. It is clear from these results that the
VNM with K→� exhibits a discontinuous phase transition
for any nonzero value of the extrinsic noise �1. On the other
hand, for �1=0, the amount of order in the system decreases
as �2 increases. However, there is no phase transition in this
case since �=0 only when �2 reaches its maximum value
�2=1. �In ferromagnetic systems, �2=1 would correspond to
infinite temperature.� In other words, for infinite connectivity
and zero extrinsic noise, the order in the system can never be
destroyed by the intrinsic noise, unless it reaches its maxi-
mum value. However, in the presence of both types of noise,

extrinsic and intrinsic, the phase transition is always discon-
tinuous.

D. Case 2: K finite

As it was mentioned before, we do not have an analytic
solution of Eq. �20� for finite values of K. Nonetheless, nu-
merical simulations show a phase transition that is continu-
ous in one region of the �1-�2 parameter space, and discon-
tinuous in another region. This is qualitatively different from
the phase transition observed in the majority voter model,
which was always continuous for any finite value of K �ex-
cept for �2=0�.

Figure 10 shows � as a function of �1 and �2 for different
values of K. The results reported in this figure were obtained
through numerical simulations of the VNM for systems with
N=20 000. The figures on the left correspond to disordered
initial conditions ���0��0�, whereas those on the right cor-
respond to ordered initial conditions ���0��1�. The differ-
ence ��=�ord−�dis as a function of �1 and �2 is plotted in
Fig. 11. It is apparent from these figures that, except for the
case K=3, there is a region of hysteresis where ���0. This
region grows as K increases, but it does not seem to cross the
square �0,1� �0,1� of the �1-�2 parameter space from one
side to the other �as it does for K→��. This implies that the
phase transition is discontinuous along the boundary of the
region in which ���0, but it is continuous along the bound-
ary where �→0+ and ��=0.

It is worth emphasizing that for �1=0, namely, when there
is no extrinsic noise, the VNM always undergoes a continu-
ous phase transition from ordered to disordered states as the
intensity of the intrinsic noise �2 increases. This is consistent
with the behavior originally reported by Vicsek et al. for the
SPMIN �see Fig. 1�a��. On the other hand, for �2=0, i.e., in
the absence of intrinsic noise, the phase transition in the
VNM is discontinuous as a function of the extrinsic noise
amplitude �1, which is consistent with the phase transition
observed in the SPMEN �see Fig. 1�b��.

V. WHAT DO WE MEAN BY “MEAN-FIELD” THEORY?

In the computations of these two network models we have
used the “mean field” assumption that all the network ele-

FIG. 8. Phase transition in the VNM with K→�. The left panel
corresponds to the phase transition obtained starting out the dynam-
ics from a fully disordered condition ���0��0�, whereas for the
panel on the right the dynamics were started from fully ordered
initial conditions ���0��1�. In both cases the phase transition is
discontinuous for any nonzero value of the extrinsic noise ampli-
tude �1. These plots were obtained by numerically finding the fixed
points of M��� given in Eq. �22�

FIG. 9. Difference ��=�ord−�dis between the two surface plots
displayed in Fig. 8. The region for which ���0 is the region of
metastability where the system exhibits hysteresis. Note that this
region crosses the entire square �0,1� �0,1� in the �1-�2 plane
from one side to the other.
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ments are statistically independent and statistically equiva-
lent, though we consider arbitrary values of K �the number of
particles that interact�. This leads to phase transitions that
can be continuous or discontinuous depending upon the val-
ues of �1 and �2. However, a frequent �and frequently
equivalent� view of what constitutes a “mean field” theory
entails the assumption that every particle interacts with all
the other particles in the system. This second assumption is
akin to the case K→�, for which the phase transition is
always discontinuous and, in general, of a different nature
than the one obtained for finite K.

In our network models, the assumption of statistical inde-
pendence is certainly true for the homogeneous random to-
pology in which the K inputs of each element are randomly
chosen from anywhere in the system. In this case, the prob-
ability for two distinct elements v�m and v�n to have at least
one of its K inputs in common is of order 1 /N. In the ther-
modynamic limit N→� this probability is zero. Therefore,
for large systems all the elements have different sets of in-
puts and are indeed statistically independent.

For other topologies, such as small-world, a large fraction
of the network elements share inputs even in the thermody-
namic limit. For this topology the assumption of statistical
independence is no longer valid. However, the qualitative
behavior of the phase transition obtained for the VNM on
small-world networks, in which the short-range interactions
induce spatial correlations between the network elements, is
similar to the one observed for the homogeneous random
topology described so far. Figure 12 shows the phase transi-
tion in the VNM on small-world networks. To generate this

figure we used the standard Watts-Strogatz small-world algo-
rithm �16–18�, placing the elements on a 2D square lattice.
Initially each element v�n has K=5 inputs, which are chosen
as its four first-neighbors and the element v�n itself �i.e., we
allow self-interactions�. Then, with probability p each input
connection in the network is rewired to a randomly chosen
element. Thus, if p=0 we have a regular square lattice,
whereas if p=1 the topology becomes homogeneously ran-
dom. This latter case is where our mean-field theory results
are exactly applicable.

Figure 12�a� corresponds to the case in which there is no
intrinsic noise ��2=0� and only the extrinsic noise is present,
and Fig. 12�b� shows the opposite case where there is no
extrinsic noise ��1=0�. The different curves in each figure
correspond to different values of the rewiring probability p.
Note that the nature of phase transition, i.e., whether continu-
ous or discontinuous, does not change with the rewiring
probability p. What changes is the critical value of the noise
at which the phase transition occurs, but the continuity of the
phase transition does not change with p. This is important
because for small values of p there are strong spatial corre-
lations in the system generated by the first-neighbor interac-
tions in the small-world network. However, even in the pres-

FIG. 10. Surface plots show the order parameter � as a function
of the extrinsic and extrinsic noise amplitudes �1 and �2 respec-
tively, for K=3, K=9 and K=15. The graphs were obtained through
numerical simulation for systems with K=2000 elements. The pan-
els on the left correspond to random initial conditions, whereas the
panels on the right correspond to fully ordered initial conditions.
Note that, except for the case K=3, there is a region of hysteresis
where the phase transition is discontinuous.

FIG. 11. Difference ��=�ord−�dis between the surface plots
displayed in Fig. 10. The region of metastability where ���0
grows with K. However, for any finite value of K this region does
not cross the entire square �0,1� �0,1� in the �1-�2 plane.
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ence of such spatial correlations, the phase transition appears
to be discontinuous for the extrinsic noise and continuous for
the intrinsic noise. One advantage of the VNM is that the
finite-size effects are much smaller than in the self-propelled
model. Therefore, the continuous or discontinuous character
of the phase transition can be very well observed with N
=20 000 particles.

VI. SUMMARY AND DISCUSSION

Although the self-propelled model proposed by Vicsek et
al. is one of the simplest models that we have to describe the
emergence of collective order in groups of organisms, its
analytic solution remains an open problem. Indeed, due to
the lack of an analytical approach to analyze the dynamical
properties of the model, it has not been possible to charac-
terize unambiguously some of its most basic features. In this
work we have been particularly interested in how the way in
which the noise is introduced in the system may affect the
nature of the phase transition. The original numerical simu-
lations of the self-propelled model with intrinsic noise pro-
posed by Vicsek and his group, seem to indicate that the
system undergoes a continuous phase transition �2�. In con-
trast, the extrinsic noise later introduced by Grégoire and
Chaté generates a phase transition that is clearly discontinu-
ous �12�.

To determine the effect that each type of noise can have
on the phase transition, we have presented two network mod-
els that capture some of the main characteristics of the inter-
actions in the self-propelled model and that can be handled
analytically. These two network models, which we call the
majority voter model and the vectorial network model, can
be considered as mean-field representations of the original
self-propelled model. In fact, we have shown numerically
that the self-propelled model with random mixing, which is
obtained in the limit of very large particle speeds, is indeed
equivalent to the vectorial network model.

When the number of interactions per particle is finite, our
numeric and analytic results for the two network models

show that, in the absence of extrinsic noise, the phase tran-
sition driven by the intrinsic noise is continuous, in accor-
dance with the interpretation reported for the original Vicsek
model �SPMIN� in Ref. �2�. While our results do not validate
Vicsek’s original interpretation, the consistency with it is en-
couraging in that it might help to find out the causes, other
than the type of noise, by which the phase transition may not
be of second order in the SPMIN. In the opposite case,
namely, when there is no intrinsic noise and only the extrin-
sic noise is present, the phase transition is discontinuous,
which is consistent with the behavior reported by Grégoire
and Chaté for the SPMEN �12�.

For intermediate cases in which both types of noise are
present, and for finite network connectivities, the situation is
more complicated: The voter model exhibits a phase transi-
tion that is always continuous, whereas for the vectorial
model there is a region in the noise-parameter space where
the phase transition is continuous, and another region where
it is discontinuous. In this later case, the region of disconti-
nuity grows as the network connectivity increases. In the
limit of infinite network connectivities and in the presence of
both types of noise, the phase transition is always discontinu-
ous in both the voter model and the vectorial model.

Furthermore, numerical simulations indicate that our
mean-field results appear to hold qualitatively also for the
VNM with small-world topology. For this topology the
mean-field assumptions are not strictly valid due to the exis-
tence of strong spatial correlations induced by the first-
neighbor connections.

An interesting question that arises from these results con-
cerns the actual behavior of self-propelled models under the
influence of both types of noise. While our results may de-
scribe adequately the high velocity regimes, at lower veloci-
ties spatial correlations may build up giving rise to different
phenomena. Yet, even the determination of the nature of the
phase transition for pure intrinsic noise has been subject of
controversy �5,12,13�, so a detailed unambiguous numerical
survey of the effects of both noises on self propelled models,
at various velocities and densities, is a rather formidable
task. However, such a survey could help determine to what
extent can the stationary collective features of the network
systems agree quantitatively with those of the corresponding
swarming models. It has been suggested that the coupling
between global order and local density could make the phase
transition in the self-propelled model discontinuous regard-
less of the type of noise �13�. However, it is not clear how
such coupling intervenes in the onset of collective order in
the self-propelled model, nor how it can change the phase
transition from continuous to discontinuous. In this direction,
a model similar to the Vicsek model with intrinsic noise but
with binary interactions only, has been reported in Ref. �25�.
In that work, the authors find an apparently continuous phase
transition, which is destabilized by long-wavelength density
perturbations. The authors remark that an instability of this
type might be behind the wavy behavior frequently observed
in simulations of self-propelled models. Whether this insta-
bility survives or not when many simultaneous interactions
are present, this kind of effects are presently beyond the
scope of simple mean-field descriptions of swarming models.
Clearly, to understand the actual behavior of swarming sys-

FIG. 12. �Color online� Phase transition in the VNM on small-
world networks. �a� In the absence of intrinsic noise, the extrinsic
noise produces a discontinuous phase transition regardless of the
rewiring connectivity p. �b� The phase transition is continuous for
all values of p when only the intrinsic noise is present.
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tems and to determine to what extent the results obtained for
the network models presented here can actually be applied to
the self-propelled model, further analysis is still required.
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APPENDIX A: ANALYTIC RESULTS
FOR THE MAJORITY VOTER MODEL

In this appendix we present the computation leading to
Eqs. �11a�–�11c� and �16�. Let us start by defining the quan-
tities

�n�t� = 4K�1�n�t� , �A1a�

un�t� = �
j=1

K

vnj
�t� , �A1b�

sn�t� = un�t� + �n�t� . �A1c�

With these definitions, the dynamical interaction rule Eq.
�10� can be rewritten in the equivalent form

vn�t + 1� =  sgn�sn�t�� with prob. 1 − �2,

− sgn�sn�t�� with prob. �2.
� �A2�

Let �n�t� and Pn
+�t� be the probabilities that vn�t�=1 and

sn�t�	0, respectively. From Eq. �A2� it is clear that �n�t�
and Pn

+�t� are related through

�n�t� = �1 − �2�Pn
+�t� + �1 − Pn

+�t���2. �A3�

The first term on the right-hand side of the above equation
accounts for the case in which sn�t�	0 and the sgn function
is evaluated. The second term takes into account the case in
which sn�t�
0 and the �sgn function is evaluated.

Now, we introduce the mean-field assumptions used in
this computation:

�a� The probabilities �n�t� and Pn
+�t� are the same for all

the elements in the network �i.e., they are statistically
equivalent�. Thus, from now on we will drop off the sub-
script “n” in these quantities and use the notation �n�t�
=��t� and Pn

+�t�= P+�t�.
�b� The network elements vn are statistically independent.

This implies that the sum un�t� defined in Eq. �A1b� can be
considered as the sum of K independent and identically dis-
tributed random variables.

Note that the order parameter ��t�= 
vn�t�� can be ex-
pressed in terms the probability ��t� as ��t�= 
vn�t��
= �1���t�+ �−1��1−��t��=2��t�−1, from which we obtain

��t� =
1 + ��t�

2
. �A4�

Equation �A3� can then be written in terms of the order pa-
rameter ��t� as

��t + 1� = 2�1 − 2�2�P+�t� + 2�2 − 1. �A5�

The next step in this calculation consists in expressing P+�t�
as a function of ��t�, or equivalently, as a function of ��t�.
To this end, let Pv�x , t�, Pu�x , t�, Ps�x , t�, and P��x� be the
probability density functions of the random variables vn�t�,
un�t�, sn�t�, and �n�t�, respectively. �Note that P��x�, the
probability density function of the noise, is independent of
time.� From Eq. �A1� it follows that

Ps�x,t� = �Pu � P���x,t� , �A6�

where “�” denotes a convolution. Analogously, since un�t� is
the sum of the K-independent random variables
vn1

�t� , . . . ,vnK
�t�, all equally distributed with the PDF

Pv�x , t�, then Pu�x , t� is the K-fold convolution of Pv�x , t�
with itself, and therefore, Ps�x , t� becomes

Ps�x,t� = �Pv � ¯ � Pv

K times

� P���x,t� . �A7�

It is convenient to transform the above equation to Fourier

space �in the variable x�. Denoting as P̂v�� , t�, P̂u�� , t�,
P̂s�� , t�, and P̂���� the Fourier transforms of the correspond-
ing PDF’s, we obtain

P̂s��,t� = �P̂v��,t��KP̂���,t� . �A8�

We have now to consider two cases separately, the case for
which K
�, and the case K→�.

1. Case 1: K
�

By definition of ��t�, we have that

Pv�x,t� = ��t���x − 1� + �1 − ��t����x + 1� ,

where ��x� is the Dirac delta function. Therefore �28�,

P̂v��,t� = ��t�e−i� + �1 − ��t��ei�.

The above equation can be written in terms of ��t� by using
the relationship given in Eq. �A4�, which gives

P̂v��,t� = cos � − i��t�sin � . �A9�

On the other hand, �n�t� is a random variable uniformly dis-
tributed in the interval �−4K�1 ,4K�1�, from which it follows
that

P̂���� =
1

4K�1�
sin 4K�1� . �A10�

Substituting into Eq. �A8� the results given in Eqs. �A9� and
�A10� we obtain

P̂s��,t� = �cos � − i��t�sin ��Ksin�4K�1��
4K�1

= �
m=0

K

�− i�m�K

m
��cos ��K−m���t�sin ��m


sin�4K�1��

4K�1�
. �A11�
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Since P+�t� is the probability that sn�t�	0, then

P+�t� = �
0

�

Ps�x,t�dx .

Therefore, taking the inverse Fourier transform of Eq. �A11�
and integrating the result from 0 to � we obtain

P+�t� =
1

2 �
m=0

K

�m
K��1����t��m, �A12�

where the coefficients �m
K��1� are given by

�m
K��1� = �K

m
� �− i�m

�4K�1
�

0

� �
−�

�

�cos ��K−m�sin ��m


sin�4K�1��

�
ei�xd�dx . �A13�

Although it is not obvious from the above expression, it hap-
pens that �0

K��1�=1. To show that this is indeed the case, let

us define the function Ĝ��� as

Ĝ��� = �cos ��Ksin�4K�1��
4K�1�

.

Note that Ĝ��� is a symmetric function and that Ĝ�0�=1.
With this definition, the coefficient �0

K��1� can be written as

�0
K��1� = 2�

0

� 1

2�
�

−�

�

Ĝ���ei�xd�dx = 2�
0

�

G�x�dx ,

where G�x� is the inverse Fourier transform of Ĝ���. Since

Ĝ��� is symmetric, then G�x� is also symmetric and therefore

�−�
� G�x�dx=2�0

�G�x�dx. Additionally, since Ĝ�0�=1 then
�−�

� G�x�dx=1, from which it follows that �0
K��1�=1.

For m�1 we can exchange the order of integration in Eq.
�A13� by multiplying the integrand by e−�x. After performing
the integral over x and then taking the limit �→0 we obtain

�m
K��1� = �K

m
� �− i�m−1

�4K�1

 �
−�

�

�cos ��K−m�sin ��msin�4K�1��
�2 d� .

�A14�

Using the fact that �0
K��1�=1, Eq. �A12� can be written as

P+�t� =
1

2
�1 + �

m=1

K

�m
K��1����t��m� .

Finally, substituting the above result into Eq. �A5� we obtain

��t + 1� = �1 − 2�2��
m=1

K

�m
K��1����t��m. �A15�

2. Case 2: K\�

By definition �see Eq. �A1b�� un�t� is the sum of K inde-
pendent and identically distributed variables, each with aver-

age ��t� and variance 1− ���t��2. Therefore, for very large
values of K the central limit theorem allows us to approxi-
mate Pu�x , t� by a Gaussian with average K��t� and variance
�2=K�1− ���t��2�

Pu�x,t� �
exp�−

�x−K��t��2

2K�1−���t��2� �
�2�K�1 − ���t��2�

.

With this approximation, Eq. �A6� becomes

Ps�x,t� =
1

8K�1
�2�K�1 − ���t��2�

�
−4K�1

4K�1

exp�−
�x − y − K��t��2

2K�1 − ���t��2� �dy ,

where we have used the fact that P��x� is a constant normal-
ized function defined in the interval x� �−4K�1 ,4K�1�.
From the above expression we can obtain P+�t� by integrat-
ing Ps�x , t� from 0 to �:

P+�t� =
1

8K�1
�2�K�1 − ���t��2�

�
0

� �
−4K�1

4K�1

exp�−
�x − y − K��t��2

2K�1 − ���t��2� �dydx .

Performing the change of variable x=Kx�, y=Ky�, the above
expression transforms into

P+�t� =
1

8�1
�2�

K �1 − ���t��2�

�
0

� �
−4�1

4�1

exp�−
�x� − y� − ��t��2

2
K �1 − ���t��2� �dy�dx�.

In the limit K→� we have

lim
K→�

exp�−
�x�−y�−��t��2

2
K

�1−���t��2� �
�2�

K �1 − ���t��2�
= ��x� − y� − ��t�� ,

where ��¯� is the Dirac delta function. From the last two
equations above it follows that, in the limit K→�, the prob-
ability P+�t� acquires the simpler form

P+�t� =
1

8�1
�

0

� �
−4�1

4�1

��x� − y� − ��t��dx�dy�.

After performing the integrals in the above expression we
obtain

P+�t� = �
0 if ��t� 
 − 4�1,

1

8�1
���t� + 4�2� if 	��t�	 � 4�1,

1 if ��t� 	 4�1.
�

This last result combined with Eq. �A5� gives Eq. �16� of the
main text.
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APPENDIX B: ANALYTIC COMPUTATION
OF THE PHASE TRANSITION FOR THE

VECTORIAL NETWORK MODEL

The dynamics of the vectorial network model �VNM� are
given by the interaction rule

�m�t + 1� = Angle��
j=1

K

v�mj
�t� + K�1ei�m�t�� + �2�m�t� ,

�B1�

where �v�mj
� j=1

K are the K inputs of v�m, and �m�t� and �m�t� are
independent random variables uniformly distributed in the
interval �−� ,�� and 0��1 ,�2�1. Let us define the extrin-
sic noise vector n�e and the intrinsic noise ni as

n�e = K�1ei��t�, ni = �2� .

We will denote as Pn�e
�r ,�� the PDF �in polar coordinates� of

the extrinsic noise n�e and as Pni
��� the PDF of the intrinsic

noise ni. As for the majority voter model, it is convenient to
define the quantities

u�m�t� = �
j=1

K

v�mj
�t� , �B2�

s�m�t� = u�m�t� + n�e�t� . �B3�

Let �vm ,�m�, �um ,�m�, and �sm ,�m� � be the polar coordinates
of the vectors v�m�t�, u�m�t�, and s�m�t�, respectively. We will
denote as Pv�m

�vm ,�m ; t�, Pu�m
�um ,�m ; t�, and Ps�m

�sm ,�m� ; t� the
PDF’s of these three vectors, respectively. In Table I we sum-
marize the relevant quantities appearing in this calculation.

Note that neither Pn�e
�r ,�� nor Pni

��� depend on time or on
the subscript m of v�m, whereas the PDF’s of v�m�t�, u�m�t�, and
s�m�t� depend on both time and the subscript m. However, as
a mean-field approximation, we again assume that all the
vectors v�m statistically equivalent and statistically indepen-
dent. In this case, the functions Pv�m

�vm ,�m ; t�, Pu�m
�um ,�m ; t�,

and Ps�m
�sm ,�m� ; t� are the same for all the vectors in the net-

work and the subscript m can be omitted.

1. Order parameter

To measure the amount of order in the system, we define
the instantaneous order parameter ��t� as

��t� = � 1

N
�
m=1

�

v�m�t�� = 	
v��t��	 , �B4�

where we have defined 
v��t��= 1
N�m=1

� v�m�t�. Under the mean-
field assumptions, all the vectors v�m are equally distributed
with the common probability distribution Pv��v ,� ; t�. Then

v��t�� can be computed as follows.

Let P̂v��� ,� ; t� be the Fourier transform �in polar coordi-
nates� of Pv��v ,� ; t� �the variables � and � are the polar co-

ordinates of Fourier conjugate vector �� corresponding to v��.
A cumulant expansion of P̂v��� ,� ; t� up to the first order
gives

P̂v���,�;t� � 1 − i
v��t�� · �� + ¯ , �B5�

Denoting as � the angle between 
v��t�� and �� , and using the
fact that ��t�= 	
v��t��	, Eq. �B5� can be written as

P̂v���,�;t� � 1 − i��t�� cos � + ¯ . �B6�

Thus, a first order cumulant expansion of P̂v��� ,� ; t� directly
gives us the order parameter ��t�. The objective of the cal-

culation is to find a recurrence relation in time for P̂v��� ,� ; t�
based on Eq. �B1�. From this recurrence relation we will
obtain the dynamical mapping that determines the temporal
evolution of ��t�.

2. Recurrence relation for P̂v�(� ,� ; t)

Note first that, since 	v�m	=1 for all m, then Pv��v ,� ; t� can
be written as

Pv��v,�;t� =
��v − 1�

v
P���;t� , �B7�

where P��� ; t� is the PDF of the angle ��t� of v��t�. From Eq.
�B1� it follows that P��� ; t�, Ps��s ,� ; t�, and Pni

��� are related
through

P���;t + 1� = �
−�

� ��
0

�

sPs��s,� − �;t�ds�Pni
���d� .

�B8�

Since s��t�=� j=1
K v�mj

�t�+n�e�t�, and each of the vectors v�mj
�t� is

distributed with the PDF Pv��v ,� ; t�, it is clear that Ps��s ,� ; t�
depends on P��� ; t�. Therefore, Eq. �B8� is a recurrence re-
lation in time for P��� ; t�. This recurrent relation is best

solved in Fourier space. Denoting as P̂s��� ,� ; t� the Fourier
transform of Ps��s ,� ; t�, the above equation can be written as

TABLE I. Notation guide for the different quantities involved in
the calculation of the phase transition of the VNM. We have omitted
the subscript m in the PDF’s since we assume that all the network
elements v�m are statistically equivalent.

Scalar
ni=�2��t�

vector

Amplitude
�2

polar coor.
PDF
Pni

���
Fourier transform

p̂m

n�e�t�=K�1ei��t� �r ,�� Pn�e
�r ,�� P̂n�e

�� ,��
v�m�t�=ei�m�t� �v ,�� Pv��v ,� ; t� P̂v��� ,� ; t�

u�m�t�=� j=1
K v�mj

�t� �u ,�� Pu��u ,� ; t� P̂u��� ,� ; t�
s�m�t�=u�m�t�+�� �t� �s ,��� Ps��s ,�� ; t� P̂s��� ,� ; t�
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P���;t + 1� =
1

�2��2�
−�

�

d��
0

�

sds�
0

�

�d��
0

2�

d�

P̂s���,� − �;t�Pni
���eis� cos��−��. �B9�

Since P��� ; t�, P̂s��� ,� ; t�, and Pni
��� are periodic functions

of their angular arguments ��, �, and � respectively�, we can
expand these functions in Fourier series as

P���;t� = �
m=−�

�

�m�t�eim�, �B10�

P̂s���,� − �;t� = �
m=−�

�

�m��;t�eim��−��, �B11�

Pni
��� = �

m=−�

�

p̂me−im�, �B12�

where �m�t�, �m�� ; t�, and p̂m are given by

�m�t� =
1

2�
�

−�

�

P���;t�e−im�d� , �B13�

�m��;t� =
1

2�
�

−�

�

P̂s���,�;t�e−im�d� , �B14�

p̂m =
1

2�
�

−�

�

Pni
���e−im�d� . �B15�

Substituting Eqs. �B10� and �B11� into Eq. �B9�, carrying out
the integration over � and taking into account Eq. �B15� we
obtain

�
m=−�

�

�m�t + 1�eim�

= �
m=−�

�

�i�mp̂m�
0

�

sds�
0

�

�d��m��;t�Jm�s��eim�,

where we have used the integral representation of the Bessel
function Jm�x�= �−i�m

2� �0
2�ei�mz+x cos z�dz. It follows from the last

expression that

�m�t + 1� = imp̂m�
0

�

sds�
0

�

�d��m��;t�Jm�s�� .

�B16�

Exchanging the order of integration in the last expression,
and using the identity

�
0

�

sJm��s�ds =
����

�
�m,0 +

m

�2 ,

where ���� and �m,0 are the Dirac and Kronecker delta func-
tions, respectively, Eq. �B16� becomes

�m�t + 1� = �i�mp̂m��m,0�m�0;t� + m�
0

�

�m��;t�
d�

� � .

�B17�

Note that Eq. �B17� is a consequence of the recurrence rela-
tion given in Eq. �B8�, which in turn follows directly from
the dynamic interaction rule Eq. �B1�. Now we have to
project the probability distribution function Ps��s ,� ; t� onto
the unit circle by forcing the vector s��t� to have unit length at
time t+1, and thus becoming v��t�. To do so, we take the
Fourier transform of Pv��v ,� ; t� given in Eq. �B7�, which
when evaluated at time t+1 gives

P̂v���,�;t + 1� = �
0

2�

P���;t + 1�e−i� cos��−��d� . �B18�

Substituting into the above equation the form of P��� ; t�
given in Eq. �B10� �evaluated at t+1�, we obtain

P̂v���,�;t + 1� = 2� �
m=−�

�

�− i�m�m�t + 1�Jm���eim�,

�B19�

where we have used the integral representation of the Bessel
function Jm���= �i�m

2� �0
2�ei�mz−� cos z�dz. Now we use the value

of �m�t+1� given in Eq. �B17�, which leads to

P̂v���,�;t + 1� = 2�p̂0J0��� + �
m=−�

�

2�mp̂mJm���eim�

 �
0

�

�m���;t�
d��

��
. �B20�

To complete the projection of P̂v��� ,� ; t� onto the unit circle
in a closed form, it only remains to find �m�t� as a function of

P̂v��� ,� ; t�. Since s�t�=� j=1
K v�mj

�t�+n�e�t�, and we are assum-
ing that all the v� j are statistically independent, then

P̂s���,�;t� = �P̂v���,�;t��KP̂n�e
��,�� , �B21�

where P̂n�e
�� ,�� is the Fourier transform of the PDF of the

noise vector n�e=K�1ei�. Since � is uniformly distributed in

the interval �0,2��, it follows that P̂n�e
�� ,��=J0�K���.

Therefore, we obtain

P̂s���,�;t� = �P̂v���,�;t��KJ0�K��� . �B22�

Substituting the above expression into Eq. �B14� we obtain

�m��;t� =
1

2�
J0�K����

0

2�

�P̂v���,�;t��Ke−im�d� .

�B23�

Finally, combining this result with Eq. �B20�, we obtain the

desired recurrence relation for P̂v��� ,� ; t�:
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P̂v���,�;t + 1� = 2�p̂0J0��� + �
m=−�

�

mp̂mJm���eim�

 �
0

� d��

��
J0�K�����

0

2�

d��

�P̂v����,��;t��Ke−im��. �B24�

3. Dynamical mapping for K\�

Equation �B24� is a complicated recurrence relation the
exact solution to which is way out of our hands. However,
for large values of K, namely, for a large number of interac-
tions per particle, we can use the central limit theorem to

approximate �P̂v��� ,� ; t��K as

�P̂v���,�;t��K � exp− iK
v��t�� · �� −
K

2
�� · C�t� · ��� ,

where 
v��t�� and C�t� are the first moment and covariance
matrix of Pv��v ,� ; t�, respectively. With this approximation,
Eq. �B24� becomes

P̂v���,�;t + 1� = 2�p̂0J0��� + �
m=−�

�

mp̂mJm���eim�

 �
0

� d��

��
J0�K�����

0

2�

d��

e−iK
v��t��·��� −�K/2���� ·C�t�·��� e−im��.

Making the change of variable x� =K��� in the above expres-
sion, we obtain

P̂v���,�;t + 1� = 2�p̂0J0��� + �
m=−�

�

mp̂mJm���eim�

 �
0

� dx

x
J0��x��

0

2�

d��

e−i
v��t��·x�−x�·C�t�·x�/2Ke−im��.

We can go a step further in the large-K approximation and
neglect the term 1

2Kx� ·C�t� ·x� appearing in the exponent inside
the integral of the last expression, which gives

P̂v���,�;t + 1� = 2�p̂0J0��� + �
m=−�

�

mp̂mJm���eim�

 �
0

� dx

x
J0��x��

0

2�

d��e−i�m��+
v��t��·x��.

�B25�

Now, we can write 
v��t�� ·x� = 	
v��t��	x cos���−��, where ��
and � are the angles in Fourier space of x� and 
v��t��, respec-
tively. The second integral on the right-hand side of Eq.
�B25� becomes

�
0

2�

e−i�m��+
v��t��·x��d�� = �
0

2�

e−i�m��+	
v��t��	x cos���−���d��

= e−im��
0

2�

e−i�m�+	
v��t��	x cos ��d�

= e−im�2��− i�mJm�	
v��t��	x�

= e−im�2��− i�mJm���t�x� ,

where we have used the fact that ��t�= 	
v��t��	. Substituting
this result into Eq. �B25�, we obtain

P̂v���,�;t + 1� = 2�p̂0J0��� + �
m=−�

�

2��− i�mmp̂mJm���

 eim��−���
0

� dx

x
J0��x�Jm���t�x� . �B26�

Now, recalling that Pni
��� is a constant normalized function

in the interval �−��2 ,��2�, with 0��2�1, its Fourier
transform p̂m is given by

p̂m =
sin��m�2�
2�2m�2

. �B27�

Thus, 2�p̂0=1 and Eq. �B26� can be written as

P̂v���,�;t + 1� = J0��� + �
m=−�

�

�− i�m2�mp̂mJm���

 eim��−���
0

� dx

x
J0��x�Jm���t�x� .

�B28�

Finally, expanding both sides of the above equation up to the
first order in �, and recalling Eq. �B6� for the left-hand side,
we obtain the recurrence relation for the order parameter

��t + 1� = 2�p̂1�
0

�

J0��x�J1���t�x�
dx

x
. �B29�

This is Eq. �22� of the main text.
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