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Abstract

We compare three simple models that reproduce qualitatively the emergent swarming behavior of bird flocks, fish schools,
and other groups of self-propelled agents by using a new set of diagnosis tools related to the agents’ spatial distribution. Two of
these correspond in fact to different implementations of the same model, which had been previously confused in the literature.
All models appear to undergo a very similar order-to-disorder phase transition as the noise level is increased if we only compare
the standard order parameter, which measures the degree of agent alignment. When considering our novel quantities, however,
their properties are clearly distinguished, unveiling previously unreported qualitative characteristics that help determine which
model best captures the main features of realistic swarms. Additionally, we analyze the agent clustering in space, finding that the
distribution of cluster sizes is typically exponential at high noise, and approaches a power-law as the noise level is reduced. This
trend is sometimes reversed at noise levels close to the phase transition, suggesting a non-trivial critical behavior that could be
verified experimentally. Finally, we study a bi-stable regime that develops under certain conditions in large systems. By computing
the probability distributions of our new quantities, we distinguish the properties of each of the coexisting metastable states. Our
study suggests new experimental analyses that could be carried out to characterize real biological swarms.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

For more than two decades, there has been a continuing interest in finding simple models that can describe the
collective motion of groups of self-propelled agents [1–8]. In nature, these systems typically correspond to swarms of
living organisms, such as bird flocks, fish schools, or herds of quadrupeds [9–13]. While their specific biological details
can be very different and quite intricate, in all of these examples the agents are able to achieve a surprising amount of
coordination in their collective displacements, in spite of having no apparent leader or long-range communication
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mechanism. At the origin of this swarming behavior is the ability that groups of agents have to, under certain
circumstances, align and start heading in a common direction. Various models have been introduced to study this
phenomenon [1,4,7,8,14–16]. Among the simplest is the one originally described by Vicsek et al. in Ref. [4]. It was in
this model that numerical computations first showed the emergence of a dynamical phase transition from a disordered
state (in which agents move in random directions) to an ordered one (where they head in approximately the same
direction) as the noise level is decreased or the mean density is increased. More recently, other simple models with
qualitatively similar agent dynamics have been introduced [7,14–16]. Typically, they all describe groups of agents
moving with an imposed non-zero speed and that tend to align with their short-range neighbors. They also focus on
similar order parameters to measure the amount of self-organization in the system, namely: the degree of alignment of
the agents’ headings. When noise is introduced, all these models display a transition from a disordered to an ordered
state, analogous to the one observed in the original model by Vicsek et al. The similarity of these results presents
a challenge, since we are left with no easy way to discriminate which minimal description is best at capturing the
basic swarming mechanisms. Indeed, while a transition to a state where agents move in a common direction is an
essential part of any credible swarming description, this appears to be the generic result of all algorithms that mimic
a reasonable swarm-like behavior.

In this work we introduce a set of global quantities that allow us to better characterize the collective states resulting
from different swarming dynamics. We compare three commonly used simple swarming models and find that,
while the standard order parameters (that measure alignment) behave equivalently in all cases, our newly introduced
quantities provide a more detailed description that can clearly distinguish their properties. These quantities can also be
measured experimentally, allowing further comparison to real swarms. It is important to point out, however, that there
are currently very few experiments that can measure the relative position of all agents in a swarm, which is required
by our averaged quantities. Fortunately, the recent implementation of the experiments described in Refs. [30,32–34],
together with a growing interest in swarming systems by communities in Biology, Physics, and Engineering, makes
us expect more sets of swarming data to be obtained in the near future. It is unclear at this point, though, how these
data sets will connect to our numerical calculations. The data sets recently obtained in Ref. [30], for example, seem to
indicate that the interactions are not based on which agents are within a certain range (as assumed by our algorithms),
but instead on a fixed number of neighboring agents that can be processed by the Starling’s nervous system. For this
situation, most of the results obtained here are therefore not applicable. However, Ref. [30] corresponds to experiments
in a very specific system and there is no reason to expect the many other examples of swarming biological agents to
behave equivalently. In summary, as more experiments become available, the analysis tools that we introduce will
have to be applied in a case by case basis. In some situations, the quantities that we study will only be accessible
through indirect measurements or require additional adjustable parameters. In other situations, the experiments may
unveil dynamic rules that are very different from the ones assumed in our simulations, rendering our tools ineffective
or meaningless. Given the variety of swarms found in Nature and our limited understanding of their mechanisms,
however, we expect that our work can provide a first approach for the analysis of many of them. In some cases it will
have to be adapted to the possibilities and limitations of each particular experiment, but this link to specific systems is
beyond the scope of the current paper. The paper is organized as follows. In Section 2 we describe the models and order
parameters considered. Here we attempt to clarify a long-standing confusion by distinguishing between two different
ways of implementing the model by Vicsek et al. Section 3 presents our main results, comparing various systems
by using the standard and new order parameters. Section 4 uses the cluster size distribution to further investigate the
global states of the system. In Section 5, we apply our analysis techniques to shed some light on a current controversy
regarding the order of the phase transition in the Vicsek model. Finally, Section 6 is our conclusion.

2. Definitions

2.1. Models

We will consider in this paper three similar models that were designed to be minimal, i.e., to capture the essence of
a swarming behavior while including only its basic components. They are all comprised of N agents defined as point
particles that (for simplicity) are forced to move at the same constant speed s in a two-dimensional periodic square
box of side L . At every time-step, each agent interacts with all agents within a neighborhood of radius R, computes its
new direction of motion, adds some noise, and then advances synchronously with all other agents to a new position.
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It is only in the implementation details that the models differ. We will provide below a thorough description of each
algorithm to avoid previous ambiguities that have been detected in the literature.

Perhaps the first minimal swarming model that displayed a phase transition was introduced by Vicsek et al. in
Ref. [4]. In this model, the next state of the system is computed at every time-step t , given the positions {Exi }i=1,...,N
and the directions of motion specified by the angles {θi }i=1,...,N , by using the relations [17,18]:

θi (t +1t) = Ang

{∑
Zi (t)

EVel
[
θ j (t)

]}
+ η ξi (t)

Exi (t +1t) = Exi (t)+ EVel [θi (t)] 1t.

(1)

Here, the functions Ang and EVel simply map the two-dimensional particle velocity vector to its corresponding heading
angle and vice versa. The set Zi (t) contains all j-indexes of agents within an interaction range R of agent i at time t .
A delta-correlated white noise is introduced through the random variable ξi (t), which is homogeneously distributed
in the [−π, π] interval. This is exactly the algorithm originally introduced in Ref. [4] and we will thus refer to it as
the Original Vicsek Algorithm (OVA).

Unfortunately, under certain computational implementations, the OVA may appear as somewhat unnatural, since it
can also be cast as:

Exi (t +1t) = Exi (t)+ EVel

[
Ang

{ ∑
Zi (t−1t)

EVel
[
θ j (t −1t)

]}
+ η ξi (t −1t)

]
1t, (2)

which implies that two previous time-steps are required to compute the state of the system at t + 1t . Given this,
several authors [14,19–21] have implemented a slightly different version of the OVA, which is equivalent to changing
(t −1t) → t in Eq. (2). The algorithm thus becomes:

θi (t +1t) = Ang

{∑
Zi (t)

EVel
[
θ j (t)

]}
+ η ξi (t)

Exi (t +1t) = Exi (t)+ EVel [θi (t +1t)] 1t.

(3)

When implemented in a computer program, this corresponds to first finding the new directions of motion for all
particles, and then using these to update their positions. In what follows, we will refer to this algorithm as the
Standard Vicsek Algorithm (SVA). Note that in the context of Hamiltonian systems the OVA would correspond to
the Euler method for solving the equations of motion numerically, whereas the SVA would correspond to the leapfrog
method. It is known that these two methods can lead to very different numerical solutions for the same system of
differential equations. In particular, for conservative systems it can be shown that the Euler method does not conserve
the volume in phase space (i.e. it is a non-symplectic integrator), whereas the leapfrog method does conserve the
phase space volume (it is a symplectic integrator) [22–25]. Because of this, the Euler method is considered to be a
bad algorithm for Hamiltonian systems and is never used to integrate the equations of motion numerically. Swarming
models, however, are neither Hamiltonian nor conservative and it is therefore not clear which updating algorithm, the
OVA or the SVA, should be used. While the difference between these two algorithms may appear to be minor, we
will show in the following sections that their results for self-propelled systems can differ strongly, as it occurs for
symplectic and non-symplectic integrators in Hamiltonian systems. Note that even in the limit of 1t → 0 the results
given by these two algorithms may be different, as it happens in the Hamiltonian case.

The third algorithm that we consider is the one introduced by Grégoire and Chaté in Ref. [14], where the authors
analyze results obtained with both this new algorithm and the SVA described above. Here, the noise is included in a
slightly different way, by adding a small vector in a random direction to the sum in Eq. (3). The model becomes:

θi (t +1t) = Ang

{∑
Zi (t)

EVel
[
θ j (t)

]
+ η ni (t) EVel [ξi (t)]

}
Exi (t +1t) = Exi (t)+ EVel [θi (t +1t)] 1t,

(4)
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where ni (t) is the number of neighbors of particle i at time t , which is equal to the number of elements in the Zi (t)
set. We will refer to this last algorithm as the Grégoire-Chaté Algorithm (GCA). It is important to note that this GCA
algorithm has been implemented in the literature in two different ways. In one version the agents always interact if
they are within a certain distance of each other, but in another version they must also be in neighboring Voronoi cells.
In the current work, we will concentrate in this first version of the GCA algorithm and not use any Voronoi tessellation.

2.2. Order parameters

In the study of swarming models, the most commonly used order parameter is defined to provide a measure of
the degree of alignment of the agents’ velocities. It is equivalent to the normalized magnitude of the total system
momentum (or also, in the context of ferromagnetism, to its magnetization) and is defined by:

ψ(t) =
1

Ns

∣∣∣∣∣ N∑
i=1

EVel[θi (t)]

∣∣∣∣∣ . (5)

An ordered system where all agents are approximately heading in the same direction therefore has 〈ψ〉 ≈ 1 and
a disordered one, where they move in random directions, has 〈ψ〉 ≈ 0. Using this definition, it was first shown in
Ref. [4] that the OVA system undergoes a phase transition from an ordered to a disordered state as the amount of
noise η is increased in the system. The transition was originally thought to be of second order, but this result has been
recently disputed by Grégoire and Chaté in Ref. [14], where they claim that it will always be of first order for large
enough systems. Unfortunately, the difference between a continuous and a discontinuous phase transition can only
be observed here for very large systems, where it is hard to carry out extensive numerical computations. While we
will not attempt to settle this dispute here, we believe that the additional global quantities that we introduce can help
better understand the system’s dynamics close to the phase transition, which may be quite different from the one in
standard equilibrium phase transitions. We also confirm in Section 5 that it appears numerically as indeed a first-order
transition for at least one of the parameter sets presented in Ref. [14] by observing a discontinuous jump in various
global quantities characterizing the system.

It is well known that the particle motion plays an essential role in achieving an ordered state in the presence
of noise [4,19,26]. This motion produces a distribution of particles in space that is non-trivial and strongly
inhomogeneous, with zones of high density where particles aggregate into clusters and large empty regions. Given
that only agents within an interaction range R of each other can communicate, it is natural to define a density-related
global parameter to describe the system as

ρ̃(t) = 〈Cn[Zi (t)]〉i . (6)

Here Cn[·] provides the number of elements in the set (cardinality) and 〈·〉i averages over all N particles. With this
definition, ρ̃ is equal to the average number of neighbors with which each agent interacts at a given moment in time
(including itself) and also corresponds to the local density of interacting particles. It can be easily computed not only in
numerical simulations, but also in actual biological systems provided that we can define sensing criteria that determine
when agents interact. Note that in more realistic situation these may be not only distance related, but could depend
on non-isotropic sensing capabilities, line-of-sight interactions, screening, etc. Unfortunately, this analysis requires
measuring the position of every agent within a swarm, and there are currently very few experiments that do this.
However, a growing interest in the dynamics of swarms within communities in biology, physics, applied math, and
engineering; together with the development of new tracking and detection techniques for biological setups allows us
to expect new experiments to be carried out in the near future. An additional challenge is posed here by the need to use
an interaction rule for computing the local density of interacting agents, since for biological systems the interactions
are mostly ill understood. Here again additional work that will depend on each experiment is needed.

Another order parameter that we will utilize in our analysis is the mean distance to the nearest neighbor

δ̃ =

〈
min

(∣∣Ex j − Exi
∣∣

j∈Zi

)〉
i
. (7)

This quantity has been previously used in the swarming literature [27] but, to the best of our knowledge, not for
characterizing the minimal models considered here. Like ρ̃, it is also related to the local density of agents.
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Fig. 1. Snapshots of the numerical simulations of the three different swarming algorithms considered in this paper. The two top- and bottom-
left panels correspond to moderately ordered states of the OVA, SVA, and GCA models. The figure shows that the OVA produces slightly more
condensed clusters than the SVA for the same amount of noise. The bottom-right panel displays a high-noise SVA simulation for comparison. All
snapshots were obtained using N = 2048 agents in a box of side L = 128 and a particle speed s = 0.1. Each vector shows the position and heading
of an agent. Its displayed length is equal to three times the interaction range R.

The final global analysis tool that we will consider in this paper is the distribution of cluster sizes. A cluster is
defined here as a set of agents that are connected (i.e. within the interaction range of each other) either directly or
through other agents at a given moment in time. Its size is the number of agents it contains. We will further discuss
the properties of this distribution when we use it for our analysis in Section 4.

3. Order parameter analysis

We begin by computing the standard order parameter ψ defined in Eq. (5) as a function of the amount of noise for
the OVA, the SVA, and the GCA. The length- and time-scales of the computation are fixed by defining the interaction
range as R = 1 and using 1t = 1. All our data was obtained by integrating the dynamics for over 107 time-steps and
averaging every 104 steps after an initial relaxation time.

Fig. 1 shows three typical snapshots of moderately ordered states computed using the OVA, SVA, and GCA models.
The bottom-right snapshot shows an SVA simulation in its disordered state for comparison. The top panels on Fig. 2
present the results of numerical computations performed with N = 2048 and N = 8192 particles in a periodic square
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Fig. 2. Average degree of agent alignment ψ (top), defined in Eq. (5), and average number of interacting neighbors per agent ρ̃ (bottom), defined
in Eq. (6), as a function of the amount of noise η for three different minimal swarming models and two system sizes. All simulations were set up
with the same mean density ρ = 1/8, either N = 2048 or N = 8192 agents, and the same agent speed s = 0.1. Left panels: OVA and SVA detailed
in Eqs. (1) and (3). Right panels: GCA detailed in Eq. (4). On the top ψ vs. η graphs all models appear to behave similarly, with an ordered phase
at low η and a disordered one at high η. On the bottom graphs, however, the ρ̃ vs. η curves clearly display different properties for each model.

box of side L = 128 and L = 256, respectively. Both cases correspond to the same mean density ρ = 1/8 and use
a particle speed equal to s = 0.1. These parameters, as well as those to be considered later in the paper, correspond
to regimes previously studied in the literature [14,28]. The panels display the usual phase transition for all six cases,
which appears as being of second order for this system size. The main observation here is that the curves only display
small differences: The SVA would seem to have a smaller finite-size effect than the SVA [29] and the scale of η is not
the same for the GCA, which is simply a consequence of the fact that the noise is introduced differently in Eq. (4). No
other qualitative differences are apparent when we only study this quantity.

When we consider ρ̃, however, the three systems become quite distinct. The bottom panels on Fig. 2 show this order
parameter as a function of η for the same runs displayed on the top panels. In spite of the subtle differences between
the OVA and the SVA, the former produces much higher local densities. In fact, for the relevant η values close to
the phase transition, the OVA generates a dynamics where each agent interacts with over thirty neighbors in average,
which is well above what is expected for realistic systems [30]. Note that all tree algorithms produce a too high number
of interacting agents ρ̃ as η is decreased to zero. This is due to the fact that the models contain no repulsive term and it
is only a sort of “thermal pressure” (here, a combination of the agents’ noise and speed) that keeps particles apart. This
is a known shortcoming of these minimal models but it can be disregarded if in the parameter region of interest the
local density does not become exceedingly unrealistic. In the case of the OVA regimes considered here, however, our
computation of ρ̃ shows that unrealistically high densities occur precisely in the parameter regions of interest; there
where the transition is observed. The higher ρ̃ values observed in the OVA can be explained by analyzing the details
of each algorithm. In the OVA, particles are moved in a direction that is computed based on the neighborhood state
at t − 1t , while the SVA uses the neighborhood state at t . The alignment of particles belonging to a locally ordered
group at a given moment in time will therefore persists for two time-steps in the OVA, making it more difficult for
agents to escape the group and thus producing higher local densities.
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Fig. 3. TOP: Average degree of agent alignment ψ (top), defined in Eq. (5), and average number of interacting neighbors per agent ρ̃, defined in
Eq. (6), as a function of noise η for three different minimal swarming models and two system sizes. As in Fig. 2, all simulations were set up with
the same mean density ρ = 1/8 and either N = 2048 or N = 8192 agents, but here the agent speed was set to s = 0.5. Left panels: OVA and
SVA detailed in Eqs. (1) and (3). Right panels: GCA detailed in Eq. (4). On the top ψ vs. η graphs all models appear to behave similarly, with an
ordered phase at low η and a disordered one at high η. As in Fig. 2, however, the ρ̃ vs. η curves on the bottom graphs show different properties for
each model.

Fig. 3 presents ψ vs. η and ρ̃ vs. η curves analogous to the ones in Fig. 2, but for a higher particle speed s = 0.5.
The same qualitative features are found but the ρ̃ values are significantly lower in these cases. This is due to a higher
particle mobility that tends to separate agents more for a given noise level. Note that the differences that we observe
on Figs. 2 and 3 between the simulations produced by each algorithm can only be seen on the ρ̃ vs. η curves and not
on the ψ vs. η curves, which are very similar for all cases. We found an interesting additional feature on the ρ̃ vs. η
curves: they present an interval where the second derivative changes sign, becoming negative at η values right under
the phase transition. This “bump” is present in all three algorithms, but is more prominent for larger N and s values. It
indicates a non-trivial behavior which could be measured in real biological swarms. We will further discuss this effect
in the following sections.

The third-order parameter that we will analyze is the mean distance to the nearest neighbor δ̃. This quantity has the
advantage that it can be easily and unambiguously computed given only the agent positions. In contrast to ρ̃, it does
not depend on R, and can therefore be extracted from experimental data without any further assumption regarding the
biological interactions among individuals, which are often poorly understood. Fig. 4 displays δ̃ vs. η curves for the
same s = 0.5 runs presented on Fig. 3. The qualitative behavior of δ̃ is opposite to that of ρ̃: As the local density rises,
the distance to the nearest neighbor decreases and vice versa. More precisely, in all numerical simulations tested, the
approximate relation ρ̃ ∝ δ̃−2 was verified (data not shown). This is what would result from randomly positioning
ρ̃ neighbors within a distance R of each agent. Our analysis thus suggests that δ̃ may provide an effective way of
gauging the density of interactions within a swarm, since it can be readily computed using experimental data such as
the one collected in Refs. [30,34].
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Fig. 4. Average distance between nearest interacting neighbors δ̃, defined in Eq. (7), as a function of the amount of noise η for three different
minimal swarming models and two system sizes. The simulations are the same that were used on Fig. 3. All δ̃ curves follow a behavior that is
opposite to the one of their corresponding ρ̃ curves on Fig. 3 (bottom panels).

Fig. 5. Average degree of agent alignment ψ (left panel) and number of interacting neighbors per agent ρ̃ (right panel) as a function of the amount
of noise η for a GCA model with mean density ρ = 2. Each simulation contains N = 2048 agents moving at a speed s = 0.5. In this regime, the
order-to-disorder phase transition appears as clearly discontinuous and ρ̃ develops a prominent peak just below the critical noise.

One of the interesting properties of the GCA is that it can display a sharp discontinuous phase transition in certain
regimes, even for relatively small system sizes [14,21]. In order to study these cases, we computed ψ , ρ̃, and δ̃ as
a function of η for the same parameters used in Ref. [14]: N = 2048, s = 0.5, and a mean density of ρ = 2,
significantly higher than the one that we have considered up to now. The left-side panel of Fig. 5, which is equivalent
to the one published in Ref. [14], shows that ψ(η) evidences a clearly discontinuous phase transition in this regime.
The right-side panel displays a novel feature: ρ̃ increases sharply just under the critical noise value. It presents the
same “bump” observed on the bottom panels of Figs. 2 and 3, but here more pronounced and delimited at the high η
end by a discontinuous jump in ρ̃. An analogous but opposite behavior, as in the previous case on Fig. 4, is followed
by the δ̃ vs. η curve (data not shown). This is further evidence of the existence of an underlying generic mechanism,
which remains to be understood, that increases the local agent density close to the phase transition in these minimal
swarming models.

Finally, it is important to point out that in all the cases that we studied and even at very high-noise levels, the
average local density ρ̃ generated by the dynamics was much higher than the mean density ρ that would result from
an homogeneous agent distribution. This confirms that clustering is a prominent feature in these swarming models.
We should also point out that all the plots in this section were presented as a function of the amount of noise η, which
may not be an easy parameter to control in biological experiments. However, given that swarming data is scarce and
that we do not know a priori what future experiments may be able to measure and control directly or indirectly, we
have presented our results in this way, which is standard in the context of numerical swarm analyses and traditional
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phase transitions in physics. Additional work will be needed to find out how the features described here in terms of η
will translate to specific signatures in a given future experiment.

4. Cluster size distribution analysis

In this section, we will further analyze the OVA, SVA, and GCA swarming simulations by computing their
distribution of cluster sizes. In previous work, we had shown that the SVA typically produces clusters of all sizes
that are continuously forming and breaking apart, and that the distribution of cluster sizes resembles a power-law in
its ordered phase [20]. We found no characteristic cluster size but that instead the probability of having larger clusters
decays smoothly with size. We will extend here this analysis to consider the cluster distribution of all three models in
a larger range of parameters.

We define a cluster as a group of agents that are interacting either directly or via other agents at a given moment
in time. Two agents are therefore in the same cluster if they are within the interaction range R of each other or if they
are connected by a path of interacting agents. The size of a cluster is then given by the number n of agents it contains.
Note that the shape of a cluster is not constrained here by any condition on its contour, since our swarming dynamics
contain no effect resembling surface tension.

Figs. 6 and 7 display the cumulative distributions of cluster sizes for the same runs presented in Section 3. Like
before, the curves were computed by averaging data from 103 snapshots or more, taken every 104 time-steps and after
reaching a statistical steady state [31]. The cumulative nature of the distributions means that each point in a C(n)
curve gives the probability of having a cluster containing n agents or more. We present two panels per row, one for
s = 0.1 and one for s = 0.5, each one displaying various curves for different values of η.

Our first observation is that all three systems follow a similar qualitative behavior that can be summarized as
follows. At high-noise values, the system typically has an exponentially decaying cluster-size distribution. As η is
decreased, the fraction of large clusters increases and C(n) approaches a power-law distribution with a cutoff at high
n values. It is unclear from our data if this power-law approaches any well-defined asymptotic exponent as η goes to
zero. In fact, when η is identical to zero all agents must eventually coalesce into one giant cluster in any finite system,
so this exponent must vanish. This makes the analysis of the η → 0 limit much harder, since finite-size effects become
increasingly important as the probability of having all N agents in the same cluster grows. Larger simulations would
therefore be required to explore this limit, which is computationally very demanding since the relaxation dynamics
will slow down as the noise is decreased. With the current data we can only state that for ρ = 1/8 we measure
exponents at low-noise values that are typically between n−1/2 and n−3/4, which we include as reference lines on the
figures. This is consistent with our previous results in Ref. [20] for a case with ρ = 0.4, but corresponds to shallower
asymptotic slopes than the ones obtained for the high density case (ρ = 2) presented on Fig. 7. Note that we are
describing here the cluster size distribution curves loosely as being close to an exponential or to a power-law. We do
not intend to imply that the curves are ideally fitted by these distributions. Instead, we are simply referring to the large
n behavior of the distribution curves as presenting a sharp cutoff (similar to the one in an exponential distribution) or a
long tail (like the one typically found in a corresponding power-law distribution), and focusing on what appears to be
the asymptotic behavior of these curves. An interesting anomaly occurs in the cluster size distributions displayed on
the center and bottom panels of Fig. 6 and on Fig. 7. As the noise level is lowered, C(n) first approaches a power-law
as expected, but then curves back to an exponential-like distribution at intermediate noise levels before converging
again towards a power-law as η approaches zero. This behavior seems to be related to the η intervals where the second
derivatives of the ρ̃(η) and δ̃(η) curves change sign, as pointed out in Section 3 (see the bottom panels of Figs. 2–5).
The curving towards an exponential distribution at intermediate noise values appears to occur only at the lower η
end of this “bump” in the ρ̃(η) curves, where their slope is either positive (Fig. 3 – bottom – and Fig. 5) or the least
negative (Fig. 2 – bottom). The relation between ρ̃ and C(n) is non-trivial, however, as it changes in each case. Indeed,
for the SVA and the GCA simulations with ρ = 1/8, the C(n) curves that are closest to a power-law at intermediate
noise levels occur near the local maximum of ρ̃. This can be seen by looking at the bottom panels of Fig. 3 and the
right-side panels of Fig. 6 at η ≈ 0.13 and η ≈ 0.3, respectively. In contrast, the most power-law-like C(n) curve
reached by the GCA computations with ρ = 2 at intermediate noise levels is obtained at η = 0.62, above the value
at which ρ̃ jumps to its local maximum as the noise is decreased to η = 0.615 (see Figs. 5 and 7). Note that the
former case appears to be more natural since ρ̃ grows together with the fraction of large clusters. The latter case is
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Fig. 6. Cumulative distribution of cluster sizes (in number of agents n) of OVA (top), SVA (center), and GCA (bottom) simulations at various noise
levels. Each curve corresponds to a run that was used to compute one point on Fig. 2 or Fig. 3. All simulations were carried out with N = 8192
agents moving at speeds s = 0.1 (left panels) or s = 0.5 (right panels) and mean density ρ = 1/8. In the OVA case the fraction of large clusters
increases as the noise level is decreased, with C(n) approaching a power-law distribution. In the SVA and GCA cases most curves also approach a
power-law as the noise level is decreased, but this trend is reversed in the η = 0.13 to η = 0.07 and η = 0.2 to η = 0.4 intervals, respectively.

somewhat anomalous since the fraction of large clusters drop as ρ̃ jumps to its peak when the noise level is reduced
from η = 0.62 to η = 0.615. The system here becomes a more tightly connected set of smaller clusters.

As a final note, let us point out that in most cases the transition towards a power-law distribution occurs very
gradually in the C(n) curves as the noise level is decreased, and that it is only apparent when we focus on relatively
large n values. This implies that the cluster-size distribution analysis is, unfortunately, not a good tool for detecting
the phase transition or identifying its order. It does, however, produce additional information on the agents’ spatial
distribution and can be used to better understand the critical behavior and the main characteristics of each phase. In
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Fig. 7. Cumulative distribution of cluster sizes (in number of agents n) of GCA simulations at various noise levels. Here the density is ρ = 2,
higher than in Fig. 6. Each curve corresponds to a run used to compute one point on Fig. 5, with N = 2048 agents moving at a speed s = 0.5.
The left panel displays noise values from η = 0.45 to η = 0.615 and the right one from η = 0.615 to η = 0.66. As in the center and bottom rows
of Fig. 6, while most curves slowly approach a power-law for decreasing noise levels, the reverse trend is also observed here in the interval from
η = 0.615 to η = 0.62.

the next section we will use this and other tools to clearly distinguish the two coexisting phases that are present on the
bi-stable regime first described in Ref. [14].

5. Bi-stability analysis of a large system

In Refs. [14,29] Grégoire and Chaté claim that all three minimal models (the OVA, SVA, and GCA) present a first-
order phase transition in the thermodynamic limit. They argue that this transition may only appear to be of second
order in some finite-size systems (such as in the top panels of Figs. 2 and 3) when the size L of the simulation box is
smaller than a certain crossover length-scale L∗(ρ, s). The L > L∗ condition would be required to develop density
bands that become metastable to a long-wavelength instability below the critical noise value, giving rise to a first-
order transition with a hysteresis region where the ordered and disordered phases coexist. As part of their evidence, a
bimodal distribution is shown in Ref. [14] for the order parameter ψ in a large (N = 32 768) SVA simulation close to
the phase transition. However, Nagy, Daruka, and Vicsek claim in Refs. [4,28] that the OVA and SVA transitions are
always of second order for small enough particle velocities. They argue that for larger s values one can indeed observe
a discontinuous transition, but that this is only due to the finite-size effects of the periodic boundary conditions, which
help generate the density bands and give rise to an artificial symmetry breaking that produces the ordered phase.

In this section, we will apply our analysis tools to explore more in detail the collective behavior at the phase
transition in the same regime studied in Refs. [14,28]. While the order of the phase transition in the thermodynamic
limit is still a matter of controversy that we will not address here, we hope that our approach will help elucidate the
mechanisms behind the transition and ultimately contribute to clarify its nature.

Figs. 8 and 9 were computed for an SVA with ρ = 1/8, N = 32768, and s = 0.5, where Grégoire and Chaté had
reported a bimodal P(ψ) distribution in Ref. [14]. We used a noise value of η = 0.1915, placing the system very close
to the phase transition. The statistics was accumulated by averaging every 104 time-steps after an initial relaxation
time and integrating the dynamics for 107 steps. On Fig. 8 we confirm that ψ presents indeed a bimodal distribution,
which is apparent on the top right panel. In addition, the figure displays the PDF of ρ̃ (bottom-right panel) and the
combined two-dimensional PDF of ψ and ρ̃ (left-side panel) [31]. It distinctly shows that in this regime there are
two well-defined coexisting solutions: one with a higher degree of alignment and higher local density, and one with
less alignment order and lower local density. As the noise level is increased, the local maximum of the disordered
state becomes more prominent while the other one shrinks, vanishing at the critical noise level. This confirms that the
transition is discontinuous, at least in this numerical example. Additionally, the typical correlation function between
ψ and ρ̃ (which corresponds here to the steepest descent path between the local maxima in the two-dimensional PDF)
follows an approximate ψ ∝

√
ρ̃ − ρ̃0 relation indicated by a solid curve on the left panel. Such relation seemed to

remain the same for various noise values close to the phase transition (data not shown), with the distribution exploring
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Fig. 8. Probability distribution of the degree of agent alignment ψ and number of interacting neighbors per agent ρ̃ for an SVA simulation with
ρ = 1/8, N = 32768, s = 0.5, and η = 0.1915 (close to the critical noise value). The left panel presents a density plot displaying a bimodal
distribution on the two-dimensional (ρ̃, ψ) space. The overlaid solid curve corresponds to a ψ ∝

√
ρ̃ − ρ̃0 relation. The right panels present the

same data separately as P(ψ) and P(ρ̃) distributions.

Fig. 9. Cumulative distribution of cluster sizes (in number of agents n) for the same simulation used in Fig. 8, with ρ = 1/8, N = 32768, s = 0.5,
and η = 0.1915. The solid curve corresponds to the distribution measured when the system is in the ordered regime (when ψ > 0.15) and the
dashed one, when it is in the disordered regime (when ψ ≤ 0.15). It is apparent that each regime of the bimodal distribution on Fig. 8 has a different
distribution of cluster sizes.

different regions of the correlation as we varied η. This suggests that the typical relation between ψ and ρ̃ may be a
robust feature that could be probed experimentally. Note that such analysis only requires measuring the position and
orientation of all agents and does not depend on any parameters, adjustable quantities, or additional biological details.

In order to further characterize the two metastable solutions in the bimodal distribution, we computed their
characteristic cluster sizes separately using the following procedure. For every snapshot considered in the statistics,
we determined if the system was in the ordered or the disordered phase based on the value of ψ . If ψ ≤ 0.15 (which
corresponds to the local minimum of P(ψ) that separates both regimes) the snapshot’s cluster size distribution was
added to the disordered regime statistics and if ψ > 0.15, it was added to the ordered regime statistics. Fig. 9 displays
the resulting two curves on the same graph. It is apparent that the two coexisting regimes are also distinguished by
their distribution of cluster sizes. In the ordered regime the distribution is closer to a power-law while in the disordered
one it is more exponential-like, decaying faster as n grows. The dynamics in this case therefore explores intermittently
two distinct metastable regimes: an ordered one with a higher degree of alignment, higher mean local density, and
higher fraction of large clusters; and a disordered one with a lower degree of alignment, lower mean local density, and
lower fraction of large clusters.
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6. Conclusion

We have examined various global statistical quantities that characterize in new ways the collective behavior of
swarming systems. In contrast to previous analyses, we concentrate not only on the agents’ orientation but also on
their spatial distribution. We focused in this paper on three well-known minimal models that display similar features
when analyzed with standard tools. By computing the new quantities, we were able to better characterize and clearly
distinguish the dynamics of the three cases. Our study, however, does not need to be restricted to minimal numerical
models, but is susceptible to be applied to more realistic algorithms or to experimental systems.

Our investigations led us to unveil previously unnoticed properties of the minimal models considered. We found
that the lack of a repulsive effect produces regimes where each agent interacts with an unreasonably high number of
neighbors at every moment in time. This can strongly hinder the applicability of these models if it occurs within the
region of interest. The original model studied by Vicsek et al. Ref. [4] (which we referred to as OVA), for example,
presents certain (otherwise realistic) parameter regions where the system can only organize to start swarming when
each agent is interacting on average with close to 50 neighbors. This is an order of magnitude above what is expected
for most biological swarms. We conclude that the OVA is not a practical option for simulating swarms within this
regime since the high number of neighbors is not only unrealistic, but also slows down substantially the numerical
computations. This suggests that the quantities considered here should be monitored within any simulation to verify
that they behave properly.

Another property revealed by our analysis concerns the curves that trace the average number of interacting
neighbors per agent (or local density of interacting agents) and the mean distance to the nearest neighbor as a function
of the amount of noise. We discovered that, in all three minimal models, there is an interval of noise values just below
the phase transition where the sign of their curvatures change, producing a higher number of neighbors and smaller
distances to the nearest neighbor than otherwise expected. This feature appears to be connected to a change in the
relation between the distribution of cluster sizes and the amount of noise. In the usual situation, we found that this
distribution is closer to a power-law for low-noise levels and that it approaches an exponential as the noise is increased.
In the interval where the curvature changes, however, this trend is reversed. Our analysis suggests that there may be a
universal behavior that characterizes this family of non-equilibrium phase transitions close to the critical noise.

Perhaps more important than the specific conclusions reached for the models studied in this paper is the fact that
the quantities we introduced can be computed in other more realistic systems. Indeed, various experiments have been
recently set up to measure the position and motion of each organism in biological swarms [30,32–34]. While these
experiments differ strongly (some deal with large swarms in three dimensions, such as Ref. [30], while others only
trace the trajectories of a few individuals in two dimensions), they all coincide in the facts that they explore individual
and collective interactions by studying the details of each agent’s motion and in that they were published within the
last four years. This recent focus on the detailed behavior of biological swarms prompts us to expect a greater number
of swarming experiments to be carried out in the near future in a larger variety of biological systems. The question then
will become how to summarize the accumulated data into meaningful statistical quantities that provide a good measure
of the global state of the system. In this context, we have shown that our analysis tools can be used successfully to
characterize such systems. In particular, all the quantities that we introduced can be computed in experiments, only
requiring the agent positions in time and, in some cases, an estimation of the interaction range. In situations where the
control parameters cannot be easily specified, we have also shown that the correlation between the measured quantities
can be used to extract meaningful information. We look forward to the analysis of experimental data with the tools
that we have explored numerically in this paper.
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