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Abstract Nearly close-packed populations of the swim-

ming bacterium Bacillus subtilis form a collective phase, the

‘‘Zooming BioNematic’’ (ZBN). This state exhibits large-

scale orientational coherence, analogous to the molecular

alignment of nematic liquid crystals, coupled with remark-

able spatial and temporal correlations of velocity and

vorticity, as measured by both novel and standard applica-

tions of particle imaging velocimetry. The appearance of

turbulent dynamics in a system which is nominally in the

regime of Stokes flow can be understood by accounting for

the local energy input by the swimmers, with a new

dimensionless ratio analogous to the Reynolds number. The

interaction between organisms and boundaries, and with one

another, is modeled by application of the methods of regu-

larized Stokeslets.

1 Introduction

The fluid dynamics of fast, large self-propelled objects,

ranging from krill to whales, mosquitoes to eagles, is

extensively studied and intuitively understood (Childress

1981). In these cases the Reynolds number Re ranges from

somewhat [1 to enormous. At the other end of the spec-

trum are microscopic swimmers: bacteria, uni- and multi-

cellular algae, and protists: which, although capable of

swimming many body lengths per second, live in the

regime Re � 1. While the essential features of the swim-

ming of individual organisms of this type are known

(Lighthill 1975; Berg 2003), the manner in which the flows

associated with locomotion couple many such swimmers to

each other and to nearby surfaces are only now being fully

explored. Flows generated cooperatively by flagella of

unicellular organisms and by those of multicellular

organisms can also drive significant advective transport of

molecular solutes associated with life-processes (Solari

et al. 2006, 2007; Short et al. 2006).

In this paper we provide experimental and theoretical

insights into the remarkable collective dynamics of a par-

ticular bacterial system, expanding on our original reports

(Dombrowski et al. 2004; Tuval et al. 2005). Much micro-

bio-hydrodynamical research has focused on the morpho-

logically similar swimming bacteria Escherichia coli,

Salmonella typhymurium and Bacillus subtilis. The chief

results described in this paper are derived from our

investigations of fluid dynamical phenomena driven by

individual and collective swimming of B. subtilis.
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Individual cells of these generally non-pathogenic soil

bacteria are rod-shaped (Fig. 1). Their length ranges from 2

to 8 lm, depending on nutrition and growth stage. In

typical experiments they are approximately 4 lm long and

somewhat less than 1 lm in diameter. They are peritri-

chously flagellated: the helical flagella, their means of

propulsion, are distributed randomly over the cell body,

emerging from motors that are fixed within the cell mem-

brane. The shafts are able to rotate at various rates,

typically on the order of 100 Hz. The flagella themselves

are complex polymeric structures approximately 20 nm in

diameter, with a length of 10–15 lm, considerably greater

than a cell’s body, and a helical pitch of *2–4 lm. They

are attached to the motors by a flexible hook which acts as

a universal joint. When a bacterial cell swims smoothly

forward, hydrodynamic interactions between the many

helical flagella cause the formation of a propulsive bundle

within which they co-rotate. The swimming speed of an

individual is approximately 11% of the helix wave speed

(Magariyama et al. 1995, 2001). The motors are fueled by

proton gradients; their direction of rotation is reversible.

Spontaneous reversals may occur as a function of the

surrounding concentration of chemicals and of other fac-

tors and can play a major role in chemotaxis (Berg 1993,

2003). The cell bodies are not polar. The flagellar bundle

can form at either end of a cell, whether E. coli (Turner and

Berg 1995) or B. subtilis (Cisneros et al. 2006), an

important aspect of group locomotion discussed later.

A single swimming bacterium has associated with it an

extensive flow field which is produced entirely by drag

forces on the fluid, exerted forward by the cell body and

backward by the flagella. No wake remains behind moving

cells or cell groups. When a cell stops rotating its flagella,

all motion of the fluid and of the cell ceases. Motor boats

are not analogs. The viscous forces are described by

Slender Body Theory and extensions of Faxén’s and

Stokes’ laws (Pozrikidis 1997). A key feature of these

dynamics is that for an isolated swimmer the net propulsive

force of the flagella must equal the opposing drag force of

the body connected to the flagella, taking into account the

effect of nearby surfaces or other organisms. While the

creeping flow equations are linear and time reversible, in

real world situations these features are only approximate or

worse. Deviations from the ideal occur when flows affect

boundary conditions such as location and orientation of

nearby cells, the speed and directionality of flagella beating

and the deformation of nearby interfaces. Some of these

situations apply to the phenomena discussed in this paper,

e.g., the effect of flows generated by the bacteria on their

own spatial distribution and motional dynamics, which

then modify the flows. A full accounting for these effects is

necessary for a complete theory of the collective dynamics,

but this is not yet at hand. The basic phenomenology of this

collective behavior and its quantification by particle

imaging velocimetry (PIV) are described in Sects. 2 and 3.

The swimming trajectories of living organisms can be

modified by local shear and vorticity. For example, we

describe in Sect. 4, that B. subtilis tend to swim upstream in

a shear flow. Should we ascribe this to hydrodynamic

interactions that passively orient cells which simply con-

tinue to rotate their flagella? Or perhaps might we infer

that, when bacteria experience shear stress, they ‘‘want’’ to

swim upstream? In Sect. 4 we show one example of this

phenomenon, adequate for the purpose of demonstrating its

importance for recruiting individuals into groups of co-

directionally swimming cells. However, the specific

recorded trajectories of more than 60 cells show wide

variations in detail. There may be many microscopic ori-

gins for the recruitment of cells into correlated groups

leading eventually to the collective behavior, but infer-

ences concerning fundamentals of micro-bio-hydro-

dynamics require experiments designed to disentangle

the physics from the biology.

Microorganisms use, exude, and respond to the presence

of biologically significant molecules. Chemical interactions

provide an avenue for change of the collective dynamic.

Emission of molecules involved in signaling, and exudates

of biopolymers that may radically change the viscosity of

the embedding fluid, are both involved in quorum sensing

(Miller and Bassler 2001) and the formation of biofilms

(Kolter and Greenberg 2006). Before occurrence of these

radical events, subtle chemical interactions can influence

the biology and modify the behavior of individual cells.

Even at low concentrations, polymer exudates modify the

properties of the suspension. For instance, we observe that

in slightly aged cultures of still normally motile bacteria,

passive marker particles, as well as the bacteria themselves,

Fig. 1 Two Bacillus subtilis cells about to separate after cell

division. Flagella can be seen emerging from the body. Many of

them have been broken during sample preparation for this transmis-

sion electron micrograph. Scale bar is 1 lm
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can be coupled by polymer strands of cellular origin. We

have observed (unpublished) that the water/air interface

can accumulate bacterially-synthesized polymer surfac-

tants that trap and immobilize bacteria arriving there. A

nominally free surface becomes a stiff, no-slip boundary.

We infer that the bacteria are immobilized because the

flagellar motors are too weak to overcome the implied yield

stress. Vigorously shaking a culture bounded by such an

interface frees the bacteria. After shaking stops, the newly

unoccupied surface soon becomes again populated by

bacteria stuck in the inferred interfacial layer of polymer,

while in the bulk fluid many cells swim normally, some

attached to each other by polymers, forming immobile

multicellular clumps. In biofluid mechanics, before reach-

ing definitive conclusions about mechanisms involving free

surfaces: caveat emptor.

On a larger scale, response to chemical gradients can

initiate behavior that creates striking hydrodynamic flows

(Figs. 2 and 3). For instance, respiration of B. subtilis

depletes dissolved oxygen in the fluid medium. Transport

from an interface between the aqueous suspension of these

cells and the surrounding air replenishes it. Bacteria swim

up the resultant gradient of oxygen concentration. In a

shallow suspension the cells swim upward, toward the air.

Accumulation at the interface results in an unstable gra-

dient of mean fluid density, since the bacteria are

approximately 10% denser than water. Such convective

dynamics also occur with swimming cells of algae (Pedley

and Kessler 1992; Hill and Pedley 2005), plants that swim

upward, toward light, and/or because of orientation of the

cells in the earth’s gravitational field. The initial volume

fraction is typically fairly low in these situations, &10–3 or

less. Theoretical approaches can therefore use Navier–

Stokes equations that include a smoothed gravitational

body force proportional to the local concentration of

organisms and their mass density. An additional equation

models transport of organisms due to swimming and

advection by the flow (Hillesdon et al. 1995; Hillesdon and

Pedley 1996; Tuval et al. 2005).

These unstable stratifications evolve in the usual manner

by a Rayleigh–Taylor instability which, in turn, can lead to

highly concentrated populations (Dombrowski et al. 2004,

Tuval et al. 2005) (Fig. 2). These concentrated accumula-

tions of cells support the collective dynamics discussed

here, which were first reported in a more qualitative

manner some time ago (Kessler and Wojciechowski 1997;

Kessler and Hill 1997). Closely related phenomena, jets

and whirls, that occur near the edges of bacterial cultures

that grow and expand on wet agar surfaces have been

reported (Mendelson et al. 1999). Likewise, such phe-

nomena can be seen in concentrated bacterial populations

trapped in suspended thin aqueous films (Wu and Libc-

haber 2000; Sokolov et al. 2007). Models of various types

have been proposed to address these phenomena, from very

simple discrete-particle dynamics not involving hydrody-

namics (Vicsek et al. 1995) to continuum models based on

Fig. 2 Bacillus subtilis cells concentrated at a sloping water/air

interface. This meniscus is produced by an air bubble in contact with

the glass bottom of a bacterial culture 3 mm deep. Near the top of the

image bacteria have accumulated, forming a monolayer of cells

perpendicular to the air/water/glass contact line. Their lateral

proximity and the adjacent surfaces immobilize them. Toward the

bottom of the image the fluid becomes progressively deeper; the

swimming cells exhibit collective dynamics. The accumulation occurs

because bacteria swim up the gradient of oxygen produced by their

consumption and by diffusion from the air bubble. The black specs
are spherical latex particles 2 lm in diameter

Fig. 3 One randomly chosen instant of the bacterial swimming

vector field estimated by PIV analysis. The arrow in the extreme

lower left corner represents a magnitude of 50 lm/s. The turbulent

appearance of the flow is evident here
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ideas from liquid crystal physics (Toner and Tu 1995;

Simha and Ramaswamy 2002a), two-fluid models (Lega

and Mendelson 1999; Lega and Passot 2003), numerical

studies of idealized swimmers (Hernandez-Ortiz et al.

2005) and hydrodynamic models (Aranson et al. 2007).

The emerging consensus is that hydrodynamic interactions

between the bacteria are sufficient to account for the

observed collective behavior, although some models sug-

gest that steric interactions alone in a collection of self-

propelled objects will produce the collective dynamics

(Sambelashvili et al. 2007).

In Sects. 5 and 6 we describe some further mathematical

aspects of modeling individual swimming dynamics and

collective motions in bacterial systems. These results give

insight into the details of flows and forces in the neigh-

borhood of surfaces, and between nearby groups of cells. In

particular, the great reduction in flow between closely-

spaced organisms is argued to play an important role in the

observed dynamics of the collective state, and forms the

basis for a heuristic model for the locomotion of coherent

groups of swimming cells. Section 7 outlines scaling

arguments for turbulent-like behavior at low Re through the

introduction of a new dimensionless quantity reflecting the

power input from swimming organisms. The discussion in

Sec. 8 highlights a number of important open questions for

future work.

2 Collective phenomena: the Zooming BioNematic

(ZBN)

The ZBN collective phase, occurs when the bacterial cells

are very concentrated, i.e., nearly close-packed. They form

codirectionally swimming domains that move chaotically,

giving the appearance of turbulence. As is shown in Sect. 7,

these regions may move at speeds larger than the average

speed of single organisms. Maintenance of a sustaining

environment is required when working with suspensions of

living organisms. Bacillus subtilis require oxygen for

swimming. The dynamics of the ZBN phase, driven by

swimming, continue unabated for hours, suggesting that an

adequate supply of oxygen and nutrients is available to the

bacteria. Molecular transport into the bacterial suspension

from the adjacent air involves molecular diffusion and also

advection by collectively generated streaming. Bacteria

consume *106 molecules of O2 per second per cell. As the

solubility of oxygen is *1017 molecules/cm3, and the

concentration of cells is *1011 cm–3, in absence of

transport into the suspension the oxygen would be gone in

about one second. During experiments on the ZBN, the

typical depth of the suspension is L *5 · 10–3 cm. With

the diffusion coefficient of O2 in water D = 2 · 10–5 cm2/s,

the diffusion time, L2/D is also of order 1 s. A scale for

collective velocity is V * 4 · 10–3 cm/s (Fig. 17 below),

so that the advection time is again approximately 1 s. This

fortuitous combination of characteristic times implies ‘‘just

in time’’ oxygen delivery. The Péclet number, Pe = VL/D,

which measures the relative importance of advection and

diffusion, is therefore of order unity for a small molecule

such as oxygen; it can be considerably greater for larger

molecules. The complex and quite fascinating details of the

transport processes of food, waste products, and of

molecular signals need extensive investigation, another

example of the convolution of biology and fluid dynamics.

The biochemistry of metabolism and sensory processes

also plays a major role. Recent work (Solari et al. 2006;

Short et al. 2006) describe investigations on diffusive

transport necessarily augmented by advection due to the

motion of flagella. There, the context is an aspect of the

origin of multicellularity in a family of algae. In a sense,

the collective behavior of a bacterial population converts it

too into a type of multicellular ‘‘individual’’ (Shapiro and

Dworkin 1997).

The volume of a single B. subtilis is *1.5 · 10–12 cm3.

Since the bodies are rod-shaped, concentrated populations,

e.g., n – 1011 cm–3, tend to form domains within which the

self-stacked cell bodies are approximately parallel. The

entire high concentration region consists of such domains

separated by regions of disalignment (Figs. 2, 3). All the

cells in one domain swim in the same direction, so that,

unlike the analogous liquid crystals, the domains move and

are dynamically polar. The cell bodies have no intrinsic

polarity; on any one cell, the propelling flagella can flip to

either end of the rod-shaped body. This appears to be one

mechanism for quorum polarity: individual organisms

joining the swimming direction of the majority. A domain

is thus characterized by coherence of body alignment and

polarity, hence coherence of swimming direction. The

domains zoom about; they spontaneously form and disin-

tegrate, giving the appearance of internally maintained

turbulence. The next section describes PIV measurements

of spatial and temporal correlations of velocity, vorticity

and polar alignment.

The dynamical system of cells and water is driven by

rotation of the helical flagella that emerge from the bodies

of the bacteria. The flagella propel (force) the fluid phase

backward; they exert an equal and opposite force on the

bodies from which they emerge. Since the flagella are

typically three times longer than the cell bodies, the flow

generated by the flagella of a particular cell exerts a

backward drag on the bodies of several cells located behind

that particular one. Flows in the interior of domains are

therefore rather small; propulsion arises mostly at the

periphery. Further discussion and relevant calculations

follow in Sects. 5 and 6, which also present results on

cohesive hydrodynamic interactions.
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3 Coherence of polar and angular order: a novel use

of PIV

Our experiments were conducted with B. subtilis strain

1085B suspended in terrific broth (TB) (Ezmix Terrific

Broth, Sigma; 47.6 g of broth mix and 8 ml of glycerin in 1 l

of distilled water). Samples were prepared by adding 1 ml of

–20�C stock to 50 ml of TB and incubating for 18 hours in a

shaker bath at 37�C and 100 rpm. Then, 1 ml of bacteria

suspension (concentration of around 109cells/cm3) was

mixed with 50 ml of fresh TB and incubated for another 5 h.

A single drop of suspension was placed on a glass-

bottomed petri dish to be observed with an inverted

microscope using a 20· bright field objective. This mag-

nification is sufficient to observe individual cells and

produce a reasonably wide field of view. Additional water

reservoirs were placed in the closed chamber to induce

high humidity and avoid evaporative flows at the edge of

the drop. The sessile drop is imaged from below through

the bottom of the petri dish and near the contact line, where

dimensions of the medium are close to a thin layer and self-

concentration mechanisms provide very high accumula-

tions of cells (Dombrowski et al. 2004). Videos were

obtained using a high-speed digital camera (Phantom V5)

at a rate of 100 frames per second and with a resolution of

512 · 512 pixels. Sets of 1,000 frames were subsequently

obtained from each of those videos and processed with a

commercial particle-imaging-velocimetry system (DAN-

TEC Flow Manager) in the cinemagraphic mode. The PIV

system can estimate the most probable displacement of

small rectangular regions in the image by implementing a

simple pattern matching algorithm between two consecu-

tive images (Willert et al. 1991; Keane et al. 1992). A

sampling grid of 42 · 42 windows, each 16 pixels wide

with 25% overlap, was chosen. Each window represents

2.7 lm. Given the displacement of these small evaluation

regions at a given frame rate, a discrete velocity field is

returned for each time step. The observed system is a layer

with a sloping upper surface, varying in thickness from

‘‘zero’’ to *200 lm. These measurements are projections

of a three-dimensional field into the plane defined by the

area of view and the optical depth of field.

Measurement of the coherence lengths and times that

characterize the dynamics of the ZBN can be done by the

implementation of a PIV analysis either on the recorded

motion of passive tracer particles or on the suspended

bacteria themselves. The data presented here uses the latter

technique. Passive tracer data is too sparse when the con-

centration of tracer particles is sufficiently low so as not to

affect the basic phenomena. On the other hand, optical

problems arise in the highly concentrated ZBN phase. The

close-packed cells scatter light, producing distortion and

diffraction effects that reduce the quality of the image.

Individual cells are difficult to resolve in this setup.

Though more work is needed to increase precision of

velocity measures, analysing these diffuse images with PIV

captures well the overall dynamics of the system in a

quantitative way. A snapshot of the velocity field is shown

in Fig. 3; the corresponding vorticity is in Fig. 4.

The motion of the suspension appears turbulent.

Coherent regions, surges, plumes and jets occur intermit-

tently. These domains of aligned motility are hundreds of

times larger than bacterial dimensions, remaining coherent

for a second or longer. Observed cinemagraphically, the

leading segments of such plumes often roll-up into spirals,

then disperse, either spontaneously or due to interactions

with neighboring coherent regions. These observations

relate to the trajectories, the paths of groups consisting of

hundreds or thousands of bacteria. PIV provides only a

quasi-instantaneous snapshot of streamlines associated

with a derived velocity field.

Correlation functions were estimated from the quanti-

tative data. The temporal correlation function of velocity is

defined as the following statistic over the vector field

v(x,t):

Jvðx; tÞ ¼
hvðx; sþ tÞ � vðx; sÞis � hvðx; sÞi

2
s

hv2ðx; sÞis � hvðx; sÞi
2
s

: ð1Þ

The space correlation function is defined as

Ivðr; tÞ ¼
hvðxþ r; tÞ � vðx; tÞix;h � hvðx; tÞi

2
x

hv2ðx; tÞix � hvðx; tÞi
2
x

; ð2Þ

where h�is is the average over time frames and h�ix indi-

cates the average over space coordinates x = (x, y). The

Fig. 4 Vorticity of the swimming velocity vector field shown in

Fig. 3. Color bar indicates vorticity in seconds–1. The graphing

method discretizes vorticity levels
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first term in (2) is also averaged over all angles h of r. Then

Iv(r) depends only on the magnitude r : |r|.

Similar definitions are used for the correlation of the

vorticity scalar field X(x, t),

JXðx; tÞ ¼
hXðx;sþ tÞXðx; sÞis � hXðx; sÞi

2
s

hX2ðx; sÞis � hXðx; sÞi
2
s

ð3Þ

and

IXðr; tÞ ¼
hXðxþ r; tÞXðx; tÞix;h � hXðx; tÞi

2
x

hX2ðx; tÞix � hXðx; tÞi
2
x

: ð4Þ

Using these measures on the PIV data, we obtain 1,000

different curves for Iv and IX, one for each time realization,

and 42 · 42 = 1,764 curves for Jv and JX, one for each

possible discrete coordinate in the PIV sampling grid. We

further calculate averages of these sets to show the overall

mean behavior of the correlation functions. Graphs are

shown in Fig. 5. Comparison of the average plots with plots

of individual cases show that, in light of the prevalence of

positive and negative correlations, averaging does not

provide good insights into dynamic events. The oscillations

of correlation are somewhat reminiscent of vortex streets at

high Re.

These analyses reveal correlation lengths of velocity on

the order of 10 lm, which is about a typical vortex radius

in Fig. 4. We also observe anticorrelation extending for

more than 70 lm and coherence in time that persists for at

least a second, suggestively close to the advection time

mentioned at the end of Sect. 1. While these measures

define some characteristic length and time scales of the

system, these curves do not provide information on the

continuity and dominance of extensive coherence of

alignment and collective polar motion. A novel method of

analysis of the velocity field, using the streamlines derived

from PIV (Dombrowski et al. 2004) was employed to

provide that insight.

The local velocity of domains of concentrated bacteria

correlates with the direction of the axis of the cell bodies.

In this way, the direction of the associated streamlines

averaged over suitably chosen areas can provide a measure

of the orientation of a local director vector, traditionally

used to characterize liquid crystalline phases. In this con-

text, the swimming co-direction defines the polarity of

coherent behavior absent from standard liquid crystalline

order (de Gennes and Prost 1993). Spatially rapid devia-

tions of streamline directions from the local average

provide a quantitative measure of the end of coherence

within the projected plane. They may signal the occurrence

of orientational singularities, such as excursions into the

orthogonal dimension or the presence of boundaries that

define unrelated regions of coherence that collide or fold

into each other. Relatively low angle deviations of the

director provide data on the splay and bend parameters that

occur in the analysis of the liquid crystal free energy.

We now introduce a new method of analysis which

consists of defining a scalar field to measure the level of

Fig. 5 Correlation functions

from PIV analysis. (a) Spatial

correlation function of velocity

Iv(r). Four examples,

corresponding to four different

times, are shown in colors; the

black trace is the average over

1000 time realizations. (b)

Temporal correlation function

of velocity Jv(t). Four examples

corresponding to four particular

locations in the field of view are

shown in colors. Black is the

average over space. Plots of the

vorticity spatial correlation

IX(r). (c) and temporal

correlation JX(t). (d) are shown

for four examples and, again in

black, for the average. The

oscillations in c correspond to

alternation in the handedness of

vorticity, as shown in Fig. 4.

Error bars in a and b indicate

typical statistical uncertainties
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coherent directional motion in the velocity field. The

obvious choice is a local average UR = hcos hiR of the

cosine of the angle between adjacent unit vectors of

velocity, averaged over a small region defined by R. This

average over the measured velocity field vij(t) is

URði; j; tÞ ¼
1

NR

X

ðl;mÞ2BRði;jÞ

vijðtÞ � vlmðtÞ
jvijðtÞjjvlmðtÞj

; ð5Þ

where BR(i,j) is a quasi-circular region of radius R, centered

at (i,j), containing NR elements. When UR * 1 the vectors

inside the region BR are nearly parallel. Values close to

zero indicate strong misalignment. Negative values imply

locally opposing streamlines. Resolution and noise level

are determined by the choice of R.

Standard correlation functions based on the velocity

field, as in Fig. 5, hide information on the contiguousness

of correlations. Analyzing the streamline field in this novel

way exhibits the global continuity of angular and polar

correlations. The extent of the resultant sinuous domains

depends on the choice of the averaging area *R2. Large

values of R produce a strong smoothing of the local data,

which may hide the details of the chaotic nature of flow by

means of statistical cancellations. Hence, small values of R

should be preferred. But on the other hand, too small values

of R produce results that are more sensitive to noise in the

raw data or that are biased by the specific shape of the

averaging region, and the particular geometry of the grid

chosen for the PIV analysis. Figure 6 shows the extent of

continuous domains, derived from one data set, using dif-

ferent values of R. The regions colored dark red

corresponds to 0.8 \ UR \ 1, which selects regions of high

coherence. Inside these domains all velocities are parallel

within an angle slightly lower than 37�.

For liquid crystals, the conventional order parameter

involves hcos2hi, thereby avoiding polarity. For the

domains of coherent directional motion considered here,

we can define an order parameter as

PRðtÞ ¼ hURðtÞi; ð6Þ

where this average extends over the entire area, i.e., all

elements of the PIV image at time t. This quantity can be

treated as a time series. We find that PR(t) displays a sta-

tionary value with random fluctuations. Figure 7 shows

histograms of these order parameters. This method of

analysis will be used to determine the onset of the ZBN

phase as a function of cell concentration n.

What is the distribution of values of UR in the whole field

of view for each time step? What fraction of the total area in

the level map of UR do they span? This approach asks for the

probability of finding any given level of coherence in the

flow, or the portion of the total that is spanned by each

contour level in Fig. 6. These area fraction distributions are

Fig. 6 Instantaneous coherence

measure UR (Eq. 5) for R = 1

(a), R = 2 (b), R = 3 (c) and

R = 4 (d). Axes and R are in

PIV grid units (^2 lm each).

Grey boxes in the lower left

corner indicate, in each case, the

size and shape of the local

averaging region used to

estimate the measure. The color
bar on the right indicates scale

levels for values of UR. The

plotting method discretizes the

countour levels. Note the near

absence of dark blue regions,

which would indicate

counterstreaming
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shown in Fig. 8 for four values of R. The data set in [–1, 1] is

partitioned in bins of size 0.2. We see an obvious shift of the

center of the distribution when R is changed. It is interesting

that each distribution is basically constant, concluded by

seeing that fluctuations (error bars) are typically small,

meaning that the fraction of the system with a particular

coherence level stays more or less the same over time. Given

the three-dimensional volume-filling nature of the bacterial

population, this average temporal stability of projected

coherent area implies zero net divergence of swimmers. The

up/down rate of departure is matched by incomers.

Another possibility is that the whole dynamics is limited

to a very narrow layer and is therefore quasi-two-

dimensional. But this is not the case, for we have observed

that cells and clumps of cells or passive tracers tumble and

move in and out of the focal plane, clearly proving that the

dynamics is three-dimensional. Dynamics of recruiting and

dropping of individuals into and out of phalanxes could be

related to the topological details, with clear implications

for mixing and transport phenomena. We expect that this

observation will eventually provide a significant link to a

more complete analysis.

4 Recruiting into ZBN domains

The recruiting of swimmers into a co-directionally swim-

ming domain of cells, a phalanx, depends on several

mechanisms. We have discovered, as discussed below, that

individual cells of B. subtilis have a strong tendency to swim

upstream in a shear flow. Similar observations have been

made recently (Hill et al. 2007), in which upstream swim-

ming of E. coli was found immediately adjacent to a surface.

In contrast, our finding is not restricted to motion on the

surface bounding a fluid, but simply in close enough prox-

imity to be in a region of shear. In the context of the ZBN,

shear flows can emerge from groups of co-directionally

swimming cells, for a tightly knit group of propagating cells

generates a backwash flow field, a lateral influx, and a flow

forward, in the swimming direction. These flows, which are

due to incompressibility, are shown in Sect. 5 (Figs. 12 and

13 below). They provide a mechanism for recruiting more

individuals into a phalanx. Another organizing/recruiting

mechanism occurs when one of these bacteria encounters an

obstacle. It can flip the propelling flagella from ‘‘back’’ to

‘‘front’’, resulting in reversal of locomotion, without turning

the bacterial cell body (Cisneros et al. 2006). This action

may be a behavioral manifestation of flagellar dynamics and

orientational instability. Paradoxically, it can aid polar

alignment in groups, just because the individual cells are not

themselves polar. Individual mis-oriented cells can react by

joining a colliding ‘‘obstacle’’, a moving phalanx of others.

Swimming bacteria were suspended in Poiseuille flows

within flat microslides (Vitrodynamics) with a 0.1 mm

lumen. A fine motion linear actuator (Newport 850G) was

used to depress a non-sticking syringe (Hamilton Gastight

#1702) to produce a continuous and smooth fluid flow. This

flow was coupled through a micropipette (*50 lm) which

is inserted into one side of the flat microslide. The velocity

profile was determined by tracking 2 lm fluorescent par-

ticles (Bangs Labs) near the focal plane. By comparing the

out-of-focus beads with their images at known distances

from the focal plane, the depth and velocity of the tracer

particles can be used to determine the 3D velocity field and

the shear. Cell trajectories in these experiments were

visualized by tracking the position of both ends of cells
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through a sequence of images in the plane of focus. The

vector orientation of a cell was determined from the dis-

tance between the ends of the cell and the angle of the

connecting line segment. The angle and length give the

projection of the cell body in the plane of focus. Velocity

of the cells is calculated from the change in position of the

cell from one frame to the next. This velocity represents the

speed and direction that the cell is moving in the lab ref-

erence frame. Due to the external shear stress experienced

by the cell the velocity vector does not necessarily point in

the same direction as its orientation. Data were obtained on

65 individual tracks that exhibit these characteristics, each

modified by idiosyncratic details.

Figure 9 shows one representative trajectory. Reading

from right to left, the trajectory consists of a downstream

segment with the cell oriented across the flow, an upstream

segment, and then again downstream. This behavior may

be entirely hydrodynamic or it may be a behavioral

response to differential shear stress. Orientation of the cell

transverse to the swimming direction occurs in many cases,

but not all. When it does, it implies the dissolution of the

flagellar bundle, with individual flagella emerging

approximately perpendicular to the body axis, as if driven

by the fluid ‘‘wind’’ in which they operate. Our optical

resolution is insufficient to ascertain whether the cell

bodies and flagella are at different levels in the shear field,

a possible explanation of the phenomenon. The interactions

of cells with shear, the deconvolution of cell path lines and

fluid stream lines and analysis of cell body orientation in

relation to swimming direction are current endeavors

covering many such observations.

5 Modeling self-propelled microorganisms

There is a long history of models for the swimming of

individual microorganisms, dating back to classical works

on flagellated eukaryotes (Taylor 1952), ciliates (Blake

1971a), and bacteria (Ramia et al. 1993). Very recent work

has addressed the complex circular swimming of individual

E. coli near surfaces (Lauga et al. 2006), where the specific

interactions between helical flagella and a boundary are

crucial. In this section we wish to return to the very sim-

plest of models to examine the nature of flows in

concentrated populations. In the creeping flow regime

where Re � 1, featuring linearity, superposition and time

independence, a simple model of a self-propelled organism

consists of two parts, a ‘‘body’’ B and an attached

extendable ‘‘thruster’’ T that emerges from B. When forces

within B provide an incremental backward push to T, the

resulting increment of motion generates a surrounding field

of fluid velocity. The motion of B is ‘‘forward’’ with

velocity VB relative to the surrounding stationary fluid; the

motion of T is backward with velocity VT. The velocity

with which T emerges from B is vr. Hence, since T is

attached to B,

VT ¼ vr � VB:

When the respective drag coefficients are RB and RT, force

balance is achieved when

FB ¼ RBjVBj ¼ RT jvr � VBj ¼ RT jVT j ¼ FT ; ð7Þ

where FB and FT are the forward and backward force

magnitudes on the fluid. A schematic diagram of swimmers

and velocities is shown in Fig. 10, where the sphere and the

Fig. 9 Upswimming of bacteria in a shear flow. a Trajectory and

orientation of a particular bacterial cell swimming in a flow, with

velocity in the +y direction, and shear dVy/dz * 1.0 s–1. The small
arrows show the apparent swimming direction and the projection of

the body size on the plane of observation. b Trajectory of the velocity

vectors in the laboratory reference frame. Vector on right indicates

fluid flow direction. The velocity of the bacterium can be transverse to

its orientation
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ellipsoid indicate, respectively, B and T. The rotation rate

of the flagella helix, times the helix pitch, times an effi-

ciency factor, is represented by vr.

For bacteria, T represents the rotating bundle of helical

flagella. An increment of motion consists of a slight turn of

the bundle during an increment of time. For the simplified

case presented here, we ignore rotation. This model gen-

erates the salient features of the fluid flow field that

surrounds a self-propelled organism or, by superposition, a

group of organisms. This model does not intend to elucidate

the development over time of the locomotion of one or more

swimmers, as in the models of Hernandez-Ortiz, et al.

(2005), Saintillan and Shelley (2007), and the asymmetric

stresslet of model of Cortez et al. (2005). Rather, it pro-

duces an instantaneous field of flow over the entire available

space, as required by the time independence of Stokes flow.

We re-emphasize that since the increment of linear dis-

placement between B and T models an incremental turn of

the propelling bundle of flagellar helices, it is inappropriate

to consider an actual finite elongation of the organism fol-

lowed by retraction of T to its original position. Calculation

of the flow field of one or more organisms requires

enforcement of no-slip conditions at bounding surfaces and

at surfaces of the organisms. The computational model

presented below considers B a sphere and T a rod of finite

diameter. Forward and backward velocities, calculated by

force balance, are used to specify VB and VT.

6 Flows and forces

Each organism consists of one sphere (body B) of radius aB

and a cylinder (flagellum bundle T) of length ‘, radius aT

along the z-axis, as depicted in Fig. 11. The figure also

shows an infinite plane wall which will be included in some

of our computations. When the wall is present, it is located

at xw = 0. The head has velocity (0,0,VB) and the tail has

velocity (0,0,VT).

The approximate balance of forces is achieved as fol-

lows. The drag force on an isolated sphere moving at

velocity (0, 0, VB) is

FB ¼ RBVB ¼ 6plaBVBð0; 0; 1Þ; ð8Þ

where l is the fluid viscosity and RB represents the drag

coefficient for the sphere. The force required to move a

cylinder of length ‘ and radius aT along its axis with

velocity (0, 0, VT) is

FT ¼ RT VT ¼
4pl‘

lnð‘2=a2
TÞ � 1

VTð0; 0; 1Þ; ð9Þ

where RT is the drag coefficient of the cylinder. Force

balance requires FB + FT = 0 which yields

VT ¼ �
3

2

aB

‘
lnð‘2=a2

TÞ � 1
� �

VB: ð10Þ

Given the instantaneous velocities of the head and tail of

the organism, our goal is to compute the surface forces that

produce these velocities at all the surface points. For this

we use the method of Regularized Stokeslets (Cortez 2001;

Cortez et al. 2005). Briefly, the method assumes that each

force is exerted not exclusively at a single point, but rather

in a small sphere centered at a point xk. The force

distribution is given by

FðxÞ ¼ Fk/ðx� xkÞ; ð11Þ

where / is a smooth narrow function (like a Gaussian) with

total integral equal to 1. The limit of /(x) as the width

(given by a parameter e) approaches zero is a Dirac delta

d(x). The role of the function / is to de-singularize the

velocity field that results from the application of a single

force. For example, given a force Fk/(x) centered at xk and

using the regularizing function

/ðxÞ ¼ 15e4

8pðjxj2 þ e2Þ7=2
; ð12Þ

the resulting velocity is

uðxÞ ¼ 1

8pl

� �
gk

ðjx� xkj2 þ e2Þ3=2
; ð13Þ

where

gk ¼ ½jx� xkj2 þ 2e2�Fk þ ½Fk � ðx� xkÞ�ðx� xkÞ: ð14Þ

This is called a Regularized Stokeslet (Cortez 2001;

Cortez et al. 2005). For a collection of N forces distributed

on a discrete set of points covering the surfaces of the

Fig. 10 Diagram of a model swimmer showing VB and VT relative to

the fluid, and the velocity vr of T out of B

Fig. 11 Perspective view of the sphere-stick model and the wall
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sphere and cylinder, the resulting velocity obtained by

superposition is

uðxÞ ¼ 1

8pl

� �XN

k¼1

gk

ðjx� xkj2 þ e2Þ3=2
: ð15Þ

Equation (15) is the relationship between the forces

exerted by the organisms on the fluid and the fluid velocity

when there are no walls bounding the flow. This formula is

used as follows: the surfaces (sphere and cylinder) of all

organisms are discretized and an unknown force is placed

at each point of the discretization. We assume that the

velocities of all spheres and all cylinders are known to be

VB and VT (they can be different for different organisms).

Then Eq. 15 is used to set up and solve a linear system of

equations for the surface forces of all organisms

simultaneously. For N surface points per organism and M

organisms, the size of the linear system is 3NM · 3NM.

This ensures that the velocity on any one organism that

results from the superposition of the Stokeslets on all

organisms exactly equals the given boundary condition.

For the computations with flow near an infinite plane

wall, the boundary conditions of zero flow at the wall are

enforced using the method of images. The image system

required to exactly cancel the flow due to a singular

Stokeslet was developed by Blake (1971b). It requires the

use of a Stokeslet, a dipole and a doublet outside the fluid

domain, below the wall. This image system does not

enforce zero flow at the wall when using the regularized

Stokeslets in Eq. (15). However, the image system can be

extended to the case of the regularized Stokeslet through

the use of regularized dipoles and doublets. The details,

discussed in Ainley et al. (2007), show that for any value

of e [ 0, the system of images for the regularized Stokeslet

exactly cancels the flow at the wall and reduces to the

original system derived by Blake as e ? 0. The result of

the images is a variation of Eq. (15) but the procedure to

determine the forces is as before.

We consider first a single organism moving parallel to

an infinite plane wall. The table below shows the dimen-

sionless parameters used. Since the cylinder is simply a

way of representing the effect of the flagellum bundle and

the sphere is a simplification of the cell body, the specific

dimensions of these elements do not exactly correspond to

the organism. However, for a model motor rotating at

75 Hz and a helical flagellum with pitch 3 lm, the wave

speed is 225 lm/s. The observed swimming speed of an

organism is about 11% of the wave speed, or about 25 lm/s.

Thus, the length scale used for the dimensionless param-

eters was L = 25 lm so that the dimensionless sphere

speed is 1. A cell body of radius 2.5 lm has dimensionless

radius 0.1, and so on. All parameters except for VT were

chosen as dimensionless values representative of the

problem. The cylinder velocity VT was computed using

Eq. (10).

Parameter Description

aB = 0.1 Radius of the sphere

aT = 0.02 Radius of the cylinder

‘ = 0.4 Length of the cylinder

VB = –1.0 Velocity of the sphere

VT = 1.8718 Velocity of the cylinder

In all simulations presented here, the discretizations

resulted in 86 points per sphere and 88 points per cylinder.

This give a maximum discretization size (longitudinal or

latitudinal distance between neighboring particles) of h

= 0.0524. The regularization parameter was set to e
= 0.0571 which is slightly larger than the discretization

size. This is a typical choice based on accuracy consider-

ations (Cortez et al. 2005).

Figure 12 shows the fluid velocity in a plane parallel to

the wall and through the organism, and the flow in a plane

through the organism and perpendicular to the wall. The

contour lines are at 5, 10, 25, 50, 75 and 90% of the

maximum speed. Those contours reveal the extent of the

fluid disturbance created by an organism. Figure 13 shows

the streamlines of the instantaneous velocity field, reveal-

ing circulation patterns.

Consider now two organisms next to each other pre-

scribed to move parallel to an infinite plane wall and to

each other. The parameters are the same as those used in

the previous example. Just as in the case of a single

organism, the flow pattern suggests that the flow tends to

‘‘push’’ the organisms toward the wall and toward each

other. This can be quantified by computing the total forces

exerted by the organisms on the fluid in order to move

parallel to the wall and to each other. Figure 14 shows the

velocity field and the resulting forces exerted on the fluid

by each of the two organisms. It is apparent that there is a

component of the force pointing away from the wall,

indicating that this component is needed to counteract the

attraction effect of the wall in order to keep the organisms

moving parallel to it. Similarly, the component of the force

pointing away from the neighboring organism is required

to counteract the attraction induced by the flow field, as

noted in earlier work (Nasseri and Phan-Thien 1997).

These results agree with experiments (Sokolov et al. 2007)

showing that two bacteria swimming near each other,

co-directionally, continue for long distances in these

parallel paths.

We next compute the flow around several organisms

placed in a common plane above the wall. The velocity is

determined in that plane in order to visualize the effect of
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the prescribed motion of the group. Figure 15 shows the

velocity around the organisms and a close-up view of the

flow between some of them, while Fig. 16 shows the

streamlines for the same configuration. The computed

geometries and magnitudes of the flows generated by the

locomotion provide some understanding of the forces

between swimming organisms and between organisms and

adjacent no-slip surfaces. The forces on each swimmer

(Fig. 14) show the attraction of the cells to each other and

to the nearby plane.

Additional computations show that in the absence of the

plane, the vertical components vanish (by symmetry), and

the horizontal attractive components diminish. The attrac-

tive force is due to transverse flow toward the organism

axis (Fig. 12), required by conservation of volume: the

body propels water forward, the tail pushes water back-

ward, leaving a central region of inflow due to lowered

pressure. In the absence of the nearby plane, the influx is

weaker because of cylindrical symmetry. The same influx

can be seen toward the centers (between body and tail) of

organisms which are members of a multi-organism phalanx

(Fig. 15). Transverse flows between the body of a follower

and the tail of a preceder are also seen in the upper image

of Fig. 15. Whether a sum over transverse flows in a 3D

domain consisting of many close-packed organisms pro-

vides net radial cohesion remains to be seen.

Figures 15 and 16 also show the flows that penetrate or

surround a group. It is evident that there is very little front-

to-back penetration of fluid. The exchange is mostly lateral.

The leading heads push water forward, the tail-end cells

push water backward, generating much of the collective

forward propulsion. The low velocities of flow in the

interior (lower panels of Figs. 15 and 16) imply compen-

sating forces and relatively little advective communication
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between cells, as discussed in the introduction. Similar

calculations performed on groups of ten cells, and on

staggered pairs show that the associated interior flows are

weak, but vortical regions, as in Fig. 16, or even more

spectacular, can significantly enhance transport of sus-

pended particles or molecules.

7 Turbulence at Re � 1?

To the casual observer, the ZBN phase of a concentrated

suspension of swimming B. subtilis appears turbulent.

More quantitatively, the analysis of the collective dynam-

ics, using PIV based on the motion of the bacteria can

reveal not only the correlation functions discussed earlier,

but the entire distribution of velocities. Such statistical

information can form the basis of analysis of the energy

flows in these systems, from the ‘‘injection’’ scale of
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and a closer view of the velocity between them (bottom)
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individual bacteria up to the system size. In this section we

briefly discuss that velocity distribution and offer some

dimensional analysis regarding an effective Reynolds

number for these flows.

One important feature of the ZBN is that the collective

speeds of coherent subpopulations of bacteria can be

greater than the swimming speeds of individual cells. The

distribution of speeds of uncorrelated cells of B. subtilis

was shown to be approximately Maxwellian over an entire

population (Kessler and Hill 1997). The swimming speed

of individual cells can vary greatly even over observation

times as short as one second (Kessler et al. 2000). When

these locomoting cells form a phalanx, they all have

approximately the same velocity. The histogram of speeds

from our PIV studies, over the entire data set, regardless of

angles between streamlines, is again approximately Max-

wellian (Fig. 17, black curve). Can the analysis be

improved by selecting data over only those regions where

the angles between streamlines are smaller than some

specified value, i.e., for regions of directional coherence?

Does greater co-directionality correlate with a lesser vari-

ation in speeds within a domain? Using three thresholds of

U, 0.8, 0.9 and 0.95, we obtain histograms of the speeds

found in progressively more co-linear regions (Fig. 17, red,

blue, green curves). These distributions are not Maxwell-

ian; there is a finite lower threshold. This threshold

measures the minimum speed required for coherence, for

the swimming organisms to form a phalanx. The tail of the

distributions at maximum velocity does not change

appreciably for different values of U, indicating an upper

limit of speed for these particular bacteria, a limit likely

associated with physical constraints on the mechanism of

propulsion. It is significant that the most probable value of

the speed, the peak of the distribution, increases with

higher values of U, and that the width of the distributions

does not decrease. Speeds are greater in regions of greater

coherence. The spread of velocities occurs because the

histograms include data for many coherent domains.

Let us turn now to the question of how to understand the

existence of a turbulent dynamic at a formally low Re.

Considering the suspension as a simple fluid, the conven-

tional Reynolds number, the ratio of inertial and viscous

forces, is

Re ¼ UL

m
;

where m is the kinematic viscosity, the mean collective

velocity U * 5 · 10–3 cm/s, L * 10–2 cm is a typical

correlation length (Fig. 5). Thus, Re � 1 for the typical

value m * 10–2 cm2/s. An increase of m due to suspension

effects further decreases Re. How can the quasi-turbulence

be sustained?
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Fig. 16 Streamlines of the velocity field around several organisms
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0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

V [µm/sec]

P
(V

)

Fig. 17 Experimentally observed distribution of velocities as a

function of their angular spread. Within localities where angular

spread is defined by U (Eq. 5) with R = 2, velocity distributions are

plotted as histograms for U2 [ –1.0, black; U2 [ 0.8, blue; U2 [ 0.9,

red and U2 [ 0.95, green. These plots imply that improved collective

co-directionality correlate with higher mean speeds and displacement

of lower thresholds of probability to higher speeds. The black
histogram includes measurements of the magnitudes of all velocities,

codirectional or not; it is approximately Maxwellian. Its lower mean

than the colored curves indicates that the collective codirectional

locomotion of cells is associated with speeds that are on average

higher than those for uncorrelated ones
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One can analyze the observed dynamics by considering

the force or power densities produced by the swimming

organisms. A suitable dimensionless ratio can be con-

structed from the Stokes force that a single bacterial cell

must exert to move itself at velocity v,

f ¼ clav; ð16Þ

where a is a characteristic length scale for the cell, l is the

viscosity of the medium and c is a geometrical factor of

order 101 (for a sphere in an infinite medium c = 6p). If

there is a concentration of n cells per unit volume the force

density is

Fn ¼ cnlav: ð17Þ

On the scale of the coherent structures, the viscous

dissipation force density in the collective phase is

estimated as

Fl ¼
lU

L2
; ð18Þ

where lU/L is the collective shear stress. Then, based on

these arguments, we define the dimensionless ‘‘Bacterial

swimming number’’ Bs,

Bs ¼ Fn

Fl
¼ cna3 L

a

� �2
v

U

� �
: ð19Þ

For the nearly close-packed ZBN phase, n * 1011 cm–3.

Taking the velocity ratio of order unity, a of order 10–4 cm,

and L & 10–2 cm, the observed correlation length,

Bs * 104. This ‘‘alternative Reynolds number’’ explains

the possibility of a turbulent dynamics when Re � 1. The

large magnitude of Bs sweeps away details on the

assumptions of parameters values. Note that even though

the fluid dynamics is produced by the motion of flagella, so

energy is injected locally into the system, the perceived

turbulence is associated with large scales when compared

with the cell-flagella complex.

This result can also be obtained via the standard non-

dimensionalization of the Navier–Stokes equation with an

included force/volume exerted by the swimming organ-

isms. This appears as the divergence of the deviatoric stress

tensor R; where a typical form of stress tensor would be

R � cnla2vr; where again a is a characteristic size of the

swimmer, and where the dimensionless tensor r encodes

the internal orientations of the swimmers. Hence, the fluid

flow u is described by

q
Du

Dt
¼ �rpþ lr2uþ cnlacv; ð20Þ

where q is the mean density of the suspension, we have

introduced the local velocity v, and c is a function that

models the propulsive force of one organism. c accounts

for the fact that a single organism exerts on the fluid equal

and opposite forces, displaced by approximately one

organism length. Eq. 20 applies only to the case of rather

low concentrations of bacteria. Dividing this equation by

the term lU/L2 delivers a new dimensionless number Bs0,
based on stresses, as the magnitude of the forcing term:

Bs0 ¼ cnlac
jvj

lU=L2
c ¼ cnL2ac

v

U

� �
: ð21Þ

This dimensionless ratio is similar in spirit to Bs, except

that now U and L ought to arise out of (20) as parameters

that give a particular scale to the system. Note that both Bs

and Bs0 are essentially geometric factors, the viscosity

having cancelled (Tuval et al. 2005). Avoiding vectorial

aspects of these arguments, a power-based ratio Bsp can be

defined as Fnv/FlU, yielding

Bsp ¼ cna3 L

a

� �2 v

U

� �2

: ð22Þ

Observing that v/U * 1, we note that Bs ^ Bsp.

We now sketch the outline of a model that uses the

results of experiments together with an extrapolation of the

calculation results in the previous section, e.g., Figs. 15

and 16. To estimate the collective velocity U of a phalanx,

we consider a cylinder of aligned co-directionally swim-

ming bacteria each swimming with the mean velocity v

(Fig. 18). The propulsion of the cylindrical domain is due

to the forces exerted on the fluid by the flagella emerging

from one or more layers of cells at the rear of the cylinder.

The bodies of cells at the front push fluid forward. Trans-

verse flows enter and leave the side of the cylinder, with

presumably a net volume conserving, and perhaps tempo-

rarily stabilizing influx. The concentration of bacteria per

area is n2/3, the area is pR2, and S layers of cells contribute

the force f (Eq. 16). Assuming the drag of the cylinder is

ClLU, we find

Fig. 18 Schematic diagram of a phalanx, a coherent domain of cells

swimming to the left with collective velocity U. Arrows indicate

direction of transverse fluid flow as in Figs. 15 and 16 due to the

collective motion inside the domain
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U ¼ pc

C

� � SR2an2=3

L

� �
v: ð23Þ

This result is independent of the fluid viscosity. For

R = 10–3cm, L = 10–2 cm, a = 10–6 cm, n2/3 = 2 · 107 cm–2

and Spc/C = 10, we obtain a phalanx moving faster than an

individual, U = 1.8v, indicating that a more formal version

of this approach may prove useful.

8 Discussion

This paper has described how hydrodynamics and biolog-

ical behavior of a concentrated population of swimming

microorganisms can combine to produce a collective

dynamic, the ZBN, with interacting nematic-like domains

that exhibit quorum polarity of propagation with spatial

and temporal correlation. Relevant experiments on indi-

vidual cell motility, and a novel approach for

understanding locomotion and for calculating the flows that

surround swimmers, provide ingredients for a realistic

theoretical model of this complex two-phase system.

Dimensional analysis demonstrates that the observed

speeds of the collective domains are plausible, and that the

occurrence of ‘‘turbulent‘‘ dynamics at Re � 1 can be

understood by considering the input of (swimming) energy

from the occupants of the fluid.

We demonstrate that the results of PIV, obtained from

high frame rate video microscopy images of the swimming

cells, i.e. under difficult circumstances, can provide useful

data on velocity and vorticity distributions, the latter

exhibiting a rather satisfying alternation of signs, some-

what like vortex streets. It should be remembered that the

PIV data were obtained from the bacteria, the motile sus-

pended phase, not from added tracers in the water.

Moreover, we have developed a novel measure of angular

alignment (and deviation), based on the velocity vector

field. That analysis shows the remarkable spatial extent of

continuous alignment, as well as singular regions of

defects. Whereas averages over many quasi-instantaneous

correlations of vorticity and velocity show decays of order

one second, the alignment data exhibits remarkable

stability.

Transport of biologically significant molecules, for cell-

cell communication, supply of nutrients and elimination of

wastes, and for respiration can be greatly enhanced by the

chaotic advection that accompanies the intermittent colli-

sions, reconstitution and decay of the zooming domains.

We have proposed a heuristic model of the formation of

propagating coherent regions whose ingredients are the

transverse flows and inward forces that accompany swim-

ming (Fig. 14), up-flow swimming in shear flows (Sect. 4),

flipping of flagella at obstacles (Cisneros et al. 2006), and,

of course, geometrically determined stacking (steric

repulsion).

What determines the breakup of domains? Extrapolating

from Fig. 15 and calculations, not shown here, for pha-

lanxes comprising more swimmers, the flow inside a

domain is quite weak. The supply of oxygen to the interior

cells (note Fig. 16) would be insufficient to maintain

average levels of concentration. The interior cells will

therefore swim transversely, up the gradient of oxygen

concentration, or swim ever more slowly; both scenarios

imply breakup. The swimming velocity distribution of

individual cells is approximately Maxwellian, and very

oxygen dependent (Kessler and Wojciechowski 1997). The

uniform speed of cells in phalanxes is therefore quite

remarkable. The decay time of averaged correlations is

about one second (Fig. 5) and oxygen supply times (Sect.

1) are about the same. This would seem to be more than a

coincidence. There are other possible contributors to the

decay of coherence. Interior cells may begin tumbling in

search of a more favorable chemical environment; pha-

lanxes that collide break up; the head end of elongated

domains, as in Fig. 18, may buckle (we occasionally

observe very explicit cases of roll-up); instability of

nematics (Simha and Ramaswamy 2002b) may also be a

factor. The problem of understanding this intermittency

clearly demands further work.
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