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Abstract 

Fluid neural networks, defined as neural nets of mobile elements with random activation, are studied by means of several 
approaches. They are proposed as a theoretical framework for a wide class of systems as insect societies, collectives of robots 
or the immune system. The critical properties of this model are also analysed, showing the existence of a critical boundary in 
parameter space where maximum information transfer occurs. In this sense, this boundary is in fact an example of the "edge 
of chaos" in systems like those described in our approach. Recent experiments with ant colonies seem to confirm our result. 

1. Introduct ion 

Complex dynamics -including computation- has 

been shown to emerge at the edge of  the transition be- 

tween order and chaos [1,2]. In nonlinear dynamical 

systems [3] ,  cellular automata [2] and large-scale 

coevolution in boolean networks [4] ,  such a transition 

domain is observed involving the emergence of  new 

structural and dynamical properties. In all of  these 

models, order appears to be a compromise between 

two antagonists [ 5 ]: the nonlinear process where fluc- 

tuations are strongly but coherently amplified; and the 

communication (transport, diffusion, etc) process, 

which captures, relays and stabilizes the signals. 

In all the situations mentioned above, the existence 

of  a transition zone between two clearly different types 
of  dynamical regimes has important implications. In 

relation with computation, the so called edge o f  chaos 

has been suggested by Langton as the domain where 

complex computational abilities emerge [ 1,2], close 

to a second-order phase transition. 

An example where self-organization and infor- 

mation transfer (communication) takes place is the 

case of  social insects. Insect societies are a particular 

(though very extended) class of  social organization. 

The global patterns of  behavior are the result of  emer- 

gent phenomena not reducible to the properties o f  

individuals [6].  Recently such emergent behaviour 

has been reported in relation with chaotic dynamics 

in Leptothorax ant colonies [7,8].  Global oscilations 

of  colony activity were reported together with the 

observation that individual behavior can be character- 

ized by means of  low-dimensional strange attractors 

[9] .  The discovery of  activity pulses suggests that 

patterns of  organization occur within the ant colony 

as a single entity. 
In earlier studies, it was observed that the ant colony 

as a whole can make computations not allowed to sin- 
gle ants [ 10]. To decide which of  two food sources 

A and B is better (i.e. if the sucrose concentration C 
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is such that C A > C B o r  C A < CB, see Ref. [5] ), the 
colony (and not the individual ants) can decide by 

means of symmetry breaking [ 11 ]. The asymmetry of 
this decision results from the interaction between the 

random and deterministic aspects of the communica- 

tion involved [ 10]. Here phase transitions are used for 
computation in a set of essentially simple elements, 

which can be called automata. As Langton pointed out 
[2] : "one could use an ant colony as the model for a 

variant form of cellular automaton, one in which each 

individual cell is mobile and can move about semiau- 

tonomously. Each cell would change state by virtue of 

the states of the other cells in its immediate neighbor- 

hood". 
The present study deals with a large class of sys- 

tems characterized by the intrinsic fluidity (elements 

move in space or their connections are not fixed in 

time) and by the existence of neural-like interactions. 

Social insects, collectives of robots, the immune sys- 

tem as well as some human groups can match this 

description (Fig. 1). All these systems are roughly 

7" / 
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Fig. 1. Fluid neural network. (A) A set of automata can move to 
nearest positions and interacts with nearest automata. Black circles 
are inactive elements (Si < 0) otherwise are white. (B) Several 
real systems can be modelized in this way, as ant colonies. 

characterized by: (a) more or less large number of  

elements; (b) some kind of individual dynamical pat- 

terns (when isolated), eventually complex; (c) infor- 
mation transfer when elements interact, being the indi- 
vidual behaviour modified through the interaction and 

(d) robustness of the global pattern. 
In these systems, the "local field" acting on a given 

element, i.e. the sum over external inputs generated 

from other elements, can change (eventually switch 
[ 12] ) the state of such element. But this change will 

be always bounded in some way and, in this sense, a 

sigmoidal-like response can be used. If  such modula- 

tion is involved and a finite set of states is available 

to each element, the application of the neural network 

(NN) formalism [13] seems justified. If  no move- 

ment is present, and with a suitable choice of con- 
nections, then such a system can perform as an asso- 

ciative memory [ 13 ]. But if the constraint of frozen 

elements and fixed connections is removed, the previ- 

ous possibility of associative memory based on a fixed 

connectivity matrix vanishes. 
The aim of this paper is to explore the dynamical 

properties of this type of systems through a new class 

of formal approach, which we call fluid neural net- 

works. In section 2 the model is described together 

with some general results. In section 3 the macro- 

scopic behaviour and phase space is studied, showing 

the appearance of a critical boundary between the or- 

dered and chaotic regimes and in section 4 the exis- 

tence of computation at the edge of chaos is analysed 

by means of the information transfer among elements. 

2. Fluid neural network 

Here we will define our model, the so called fluid 
neural network (FNN). Our goal is to obtain the sim- 
plest model able to match the previous set of  con- 
ditions. As a theoretical framework, the standard ap- 
proach of neural networks is used, but a new set of 
rules defining local movement and individual activa- 
tion are also introduced. 

A set of N automata is used. The state of each 
automaton (say the ith one) is described through a 
continuous state variable Si(t) E R, at each time step 
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t E N. Each element can move on a two-dimensional 

lattice (Fig. 1A): 

A ( L ) = { ( i , j )  I1 <_i,j <_L} (1) 

and the global state St of  our automata set will be 

described by: 

St = {Sl( t )  . . . . .  Su(t)}  (2) 

as a consequence of  movement. They are also state- 

dependent i.e. Jij will be a simple function of  the states 

of  the actually interacting pair (i, j )  of  automata, i.e. 

Jij = f(S[,  SJ) (5) 

In our case, where two basic states are defined, i.e. 

"active" and "inactive", the connection matrix reduces 

to the following 2 x 2 table: 

Now a set of  rules is defined: 

(a) Neural  ne twork  structure:  the automata are 

considered as some kind of  "neurons" (ants) and in- 

teractions are described as in neural networks [13] 

by means of  a sigmoidal function g ' (x ) .  I f  Sj(t) is 

a given automaton (the spatial dependence is omitted 

for simplicity), the new states are updated following: 

jCB(i) 

where the sum is performed over the eight nearest au- 

tomata (the boundary B(i))  but also the ith automa- 

ton itself: 

S i ( t + l )  = ~ [ g (JiiSi(t) 

q- Z J i j S / ( t ) - O i ) l  (4) 
i~jCB(i) 

w i t h  Jii q= O. For simplicity we use the threshold Oi = 
0. 

(b) Spontaneous  activation: each automaton can 

be either active or inactive and, if active, it moves 

randomly to one of  the eight nearest cells (if  no space 

is available, no movement takes place). In our model 

a given automaton will be active if Si(t) > 0 and 
inactive otherwise. Here this threshold is 0 = 10 -16.  

Once a CA becomes inactive, it can return to the active 

state (with a spontaneous activity level S~; here we 

use Sa = 0.1) with some probability pa. 1 

(c) Coupl ing  matr ix:  the coupling matrix J is not 
fixed. Connections are local and changing over time 

A different possibility can be the removal and introduction of 
elements, as it happens for example in the immune system [ 14]. 

A11 Aj2] 
A =  [A21 /122 

At a given time step, the interaction Jij between the 

ith and the j th  elements is equal to hkt E A by de- 

pending of  the activity states of  the given elements. 

More precisely, Jij will be equal to: All when both 

ants are active, to A12, a21 when one is active and the 

other inactive and to A22 if both automata are inactive. 

In this paper we take for simplicity AO = 1, but qual- 

itatively similar results are obtained when All > 0, 

A12, A21 > 0 and A22 ~_ 0. O u r  choice is based in the 

observation of  ant colonies. Self-interaction and posi- 

tive feed-back (with local excitability) play an essen- 

tial role in colony dynamics [ 15]. 

Here we take q~(z ) = tanh(gz ). When a given indi- 

vidual is in isolation, the previous equation (4) reads 

Si(t + 1) = tanh[/zS/(t) ] (6) 

(here /z = gJii, and Jii > 0) and it can easily be 

shown that for # < / z c  = i, a single point attractor is 

observed: So = 0. For / z  >/&.,  a saddle-node bifurca- 

tion occurs and two possible symmetric states S+ are 

available. In the linear approximation, i.e. S( t + 1 ) = 

[C~seb(O)]S(t) for S = So, we obtain S(t + 1) = 

#S(t) .  If  we define activity as previously, starting 

from S(0) = S~ the state after r iterations will be 

S( r )  = S~/z r, so the time for a given element to inac- 

tivate ( S ( r )  <_ tg) will be 

l og (F )  
7" - - -  (7) 

log(gJ~) 

where F = (O/Sa) - 1. We can see that for a given F, as 

/x = g J/approaches/Zc the transient time r increases, 

with a singularity a t /z  =/xc. Let 

N+ = ~{Si > 0} (8a) 
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Fig. 2. Dynamica l  pat terns  co r r e spond ing  to different phases;  parameters  as before but: ( a )  p = 0 .60,  g = 0.01;  (b )  p = 0.25,  g = 0 .03;  

( c )  p = 0 .20,  g = 0 .10;  (d )  p = 0.80,  g = 0 .10;  (e )  p = 0.40,  g =  0 . I0 ;  ( f )  p = 0.50,  g =  0.40.  

N _  = N - N+ = ~{S i ~ O} (8b) 

If  no spontaneous activation is introduced, in these 

condit ions we will move t~wards a global attractor 

with no active elements, i.e. {Si(oo)  = 0} ; Vi = 

1 . . . . .  N when /x < /Zc and to two alternative global 

states (v ia  symmetry-breaking)  otherwise when ele- 

ments are mobile.  For a frozen lattice, we expect to 

find all the elements belonging to each cluster in a 

given state and for L ~ oo the order parameter ~ = 

N+ - N_ goes to zero. At the other extreme, it was 

shown in a previous paper [ 18] that for Jii = 0 (i.e. 

no self- interact ion),  the automata behaves randomly, 

with statistically equal numbers of  active and inactive 

elements ( /2 = 0) .  Between both extremes, i.e. frozen 

clusters or random, featureless patterns, other macro- 

scopic states are available when rule (b)  is applied. 

The additional rule of  spontaneous activation makes 

possible to maintain our system in far from equilib- 

rium conditions. In doing this, nonequil ibrium con- 

straints can drive our system near some critical state 

where complexity (and computat ion) is expected to 

emerge. 

In previous papers [ 16-19] we have shown that 

several dynamical  regimes can be observed. Here we 

study these regimes by means of  two different param- 

eters: the gain parameter (g)  and the density of  au- 

tomata p = N I L  2, being the other fixed. Some general 

results can be mentioned and are roughly summarized 

in Fig. 2 for several parameter combinations (see Ref. 

[ 18] for a detailed discussion).  For low densities, the 

total number of  active elements over time, i.e. N+ ( t )  

changes chaotically. As p increases, these oscil lat ions 

become more and more ordered, provided that g is 
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not too large nor too low. The gain parameter plays 

an essential role in defining the period of  oscillations. 

Some dynamical regimes have yet been studied in pre- 

vious papers [ 16,18], with very good agreement with 

real data. Here we are interested in obtain a detailed 

parameter space for our model, as well as to give an 

interpretation of  the observed oscillations in Leptotho- 
rax colonies. As will be shown below, the boundaries 

separating different dynamical phases have quite in- 

teresting critical properties. 

3. Entropy, chaos and phase transitions 

In order to characterize the macroscopic behaviour 

of  our system, several measures from information the- 

ory can be used. It can be shown that such quantities 

can in fact serve as measures of  complexity [ 1,5,20] 

and have been chosen for their ability to detect the on- 

set of  correlations near phase transitions. These mea- 

sures will also help us in characterize the parameter 

space of  the FNN. In this section the Shannon- Kol- 

mogorov (SK) entropy [20] will be analysed. Here 

we are interested in the SK entropy as a measure of  

the diversity of  macroscopic states, which can be mea- 

sured from an adequate set of  probabilities {p (j, p) }. 

Let T/ the number of  time steps where exactly j 

elements where active ( j  = 0, 1 ..... N).  Now, if T is 

the total number of  time steps, the relative frequency 

of  j simultaneously active elements will be p(j,  p) = 
Tj/T. The SKE is then defined as: 

N 

S(p) = - - Z p ( i , p )  logp( i ,p)  
i--O 

(9) 

S(p) is upper bounded by smax(p) = log(N)  (if all 

states are equally available) and by smax(p) = 0 if 

only one state is present. The first case is linked with a 

completely random pattern. If  a critical phenomenon 

takes place at intermediate densities, such situation 
will be related with a complex pattern, between both 
extremes. The Shannon entropy provide us with a first 
approach to the complexity of  such dynamical pat- 

terns. In our case, it is expected that for low densi- 
ties S(p) wilt grow until the appearance of  collective 

Fig. 3. Shannon-Kolmogorov entropy S(p) calculated from Eq. 
(9), for several (p,g)-values. Here L = 10 and T = 104 steps 
have been used after 10 3 transients were discarded. 

phenomena. Beyond the onset of  global oscillations, 

S(p) will decrease by means of  correlations. 

In Fig. 3 we can see a characteristic maximum 

in the SK entropy for g E (0.05,0.12)  and p E 

(0.05,0.65) .  Here T = 10  4 time steps were used af- 

ter 103 transients were discarded. Such a maximum 

takes place at a given Pc ~ 0.18 - 0.20 and separates, 

through a smooth transition, the domain of  irregular 

fluctuations linked with low densities from that of  reg- 

ular oscillations. In order to make more obvious the 

existence of  a phase transition, an order parameter can 

be defined. Here we take F(p) ,  defined as 

F(p)  = log(N)  - S(p) ( I 0 )  

which is zero if the elements are independent (when 
S(p) ,~ l og (N) )  but will be nonzero if S(p) de- 

creases as a consequence of  self-organization. In Fig. 

4a we see an example of  the SK entropy for p E 

(0 ,0 .9)  when g = 0.05. In Fig. 4b the corresponding 

order parameter F(p)  also shows a transition zone 
between two states. 

Using the SK entropy, an extensive study of  the 

(p, g)-space shows four dynamical domains, separat- 

ing random behaviour, chaotic attractors, steady states 
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For very small gain values g < gc = 0.025 no phase 

transition arises. Here the entropy allways grows with 

p as the logarithm of  the number of  objects: H ,.~ 

log(N) .  All states tend to be equally represented i.e. 

p( i ,  p)  = 1/N; the automata are roughly independent 
and in this sense the network is "random". Such a sharp 

transition is given in Fig. 6 where the p associated 

with the maximum entropy is plotted against g. For 

g > gc = 0.025, the critical density decreases with 

g as expected. For g < gc the maximum entropy is 

reached for p = 1. 

Now in order to characterize the existence of  infor- 

mation transfer among elements, the joint information 

will be used in the next section. 

4. Informat ion  at the edge o f  chaos  

and periodic oscillations (see Fig. 5). For high g- 

values, the automata collapses to a steady state where 
all individuals are active and the FNN remains in a 

fixed point. I f  lower g are used, coherent oscillations 
are obtained, as mentioned before. And as g is more 

and more reduced, such coherent behaviour becomes 
more and more irregular. The boundary separating 

the chaotic domain from oscillations is determined 
through the maximum entropy. This (p, g)-points are 
those where the maximum of  S(p )  is reached. 

The maximum entropy obtained in the previous sec- 

tion is linked, as shown by Haken [23] to critical 
fluctuations. At the critical density the global activity 
starts to control the individual automata, and the fluid 

neural network begins to show collective behaviour. 
Now we will extend our discussion to emergent com- 

putational properties, and other macroscopic quanti- 

ties from information theory must be used. 
In order to determine if two elements cooperate 

in the support of  computation, the mutual informa- 
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tion [ 1,20] between two mobile automata will give us 

a characterization of such information exchange. For 
two arbitrary elements, say the ith and the j th ones, we 

can follow the dynamical evolution of their states, i.e. 

Some relevant inequlatities can 
[20] in particular 

be easily obtained 

{ ) 0~= Si(t) ..... S i ( t+m) ( I1 )  O<_l[~(Ai, A i) <_H#(Ai)+H#(Aj) (19) 

Oa~ = {Sj(t) ..... Sj(t + m) } (12) 

during m = 10 4 time steps (after 10 3 transients are 

discarded). Here fl indicates a set of parameters (i.e. 
fl = (g,p~, Sa, 0)). We will restrict our attention to 

the new sets Ai~(p), A~(p) whose elements ai(t) are 

defined as ai(t) = 1 if Si(t) > 0 and ai(t) = 0 oth- 
erwise, and are in fact the observed states in experi- 

mental situations (say active/inactive ants). Thus we 

define 

AiB = {ai(t) ..... ai(t + m) } (13) 

{ ) A~= aj(t) ..... a j ( t+m)  (14) 

which provides a description in terms of an "alpha- 

bet" involving only two letters (we have a markovian 

coarse-graining [ 5 ] ). 

Let Pi(r) the probability of finding the ith automata 

in the rth state ( r  C {0, 1}) and let Pij(r,s) be the 

joint probability of find simultaneously the ith au- 
tomata in the state r and the j th one in the state s, i.e. 

Pij(r, s) = P[ {ai = r} N{aj = s}l. All probabilities 

were calculated using m time steps. The information 
transfer between these elements will be 

l#(ai, Aj) = H~(Ai)+HB(Aj)-H~(Ai ,  Aj) (15) 

being HB(Ai) the Shannon entropy of the ith object, 

i.e. 

H#(ai) = - Z P/(r)  log 2 Pi(r) (16) 
r 

H#( Aj) = - Z Pj(r) lo82 pi(r) (17) 
r 

and Ht~(Ai, A j) the joint entropy, defined as: 

H#( Ai, Aj) = - Z ~ Pq(r, s) log 2 Pij(r, s) 
r s 

(18) 

since Hfl(Ai, Aj) > O. Following two given individ- 

uals over time, we calculate the entropy and infor- 

mation transfer between both automata. In Figs. 7a,b 

some of our results are sumarized. Here for small den- 

sities p << Pc, we have P i ( I )  << Pi(O) ; as a con- 
sequence of diluted interactions and the small proba- 

bility of activation, HB(Ai) is small. When p is large 

(p --~ 1) we have P/(0) << P i ( I )  because of global 

activation. At pc, we have Pi(O) ~ Pi ( I )  and the in- 
dividual entropy reaches a maximum. The joint en- 

tropy nB(Ai, A j) always decreases with p: the joint 

probability Pij ( 1, 1 ) ~ 1 as p ~ 1. 
As a consequence, a maximum in information trans- 

fer is obtained, separating the ordered and disordered 

domains, as expected when computation emerges at 

the edge of chaos. For a given set of parameters the 

ll3(Ai, Aj) plot is given. At p = pc (here Pc ~ 0.18) 
the onset of ordered dynamics matches the maximum 

information transfer. Following previous studies, we 
also plot the entropy-information transfer picture. As 

shown in Fig. 7b, we observe a maximum value of in- 

formation (the one observed at the critical point) for 

a given entropy, say H~. For high entropies, i.e. H~ > 

H~, information transfer through the system is diffi- 

cult because low densities make contact sparse and a 
given activation event do not spread. For low density 
values, where H~ < H~, coherent behavior gives birth 
to memory effects: after a given activation, informa- 

tion spreads but individuals remain at the same state 

for a long time. At the edge between both tendencies, 

the entropy is sufficiently low to store information but 
sufficiently high to enable information to propagate. 
The recent evidence from ant colonies where the crit- 
ical density matches the values obtained in our au- 
tomata can be the fingerprint of emergent computation 
at the edge of chaos [ 21 ]. 
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5. Transient length 

An additional dynamical measure of the edge 
of chaos is provided by means of the transient 
length. Transients diverge in the vicinity of critical 

points [22]. If a probabilistic description is used, a 
steady probability distribution can be calculated (say 
{Ps(r)})  by averaging over a long number of time 
steps. We can also calculate a time-dependent set of 
probabilities {P(r ;  t)} by following our system over 
time. In such a way the second set tends asymptot- 
ically to {Ps(r)} and we can measure how many 
time steps are necessary in order to have enough 
information (less uncertainty) about our system. 

In our study we will use the so called information 
gain (or Kullback information) [5,23] defined as 

[P(r;t) ] 
Kz(t) = Z P(r;t)log[ p---~-~j 

r 

(20) 

being {Ps(r)} the stationary probability distribution 
(calculated from m = 104 steps) and {P(r;t)} the 
probability distribution calculated until the tth time 
step. As previously defined, r C {0, 1 }. Obviously, we 

have 

~ _ P ( r ; t )  = l,  ~ P s ( r ) = l  
r r 

and Kt~(t) has also the important property Ki3(t) >_ 0 
where equality holds if and only if Ps(r) = P(r; t) 
for all r. Information gain is a very useful measure in 
systems far from equilibrium described by probability 
measures. It has been used for example as a quantita- 
tive characterization of phase transitions in lasers as 

well as in neural computation [23]. 
The time variation of Ki3(t) can be obtained by 

deriving the previous definition (20) and we obtain 

the equation: 

x--~r o)(rlrt)P(r/; t) 
o ,  - z - . t  

r : ~ r  / 

-o~(r'lr)P(r;t) ]log[ P(r;t) ] 
L Ps(r) J 

(21) 

where o) ( r ] / )  are the transition probabilities of the 

master equation 

OP(r,t) 0------7-'- : Z [  w(rlrt)p(r';t) - oa(r'lr)P(r;,) ] 
r t 

(22/ 

In our model, P(r, t) is the probability of find the 
automaton in active (r  = 0) or inactive (r  = 1) state, 
after t time steps. Here {w(r l r ' )}  is the set of transi- 
tion probabilities between these states. 
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Fig. 8. Transient length r obtained from (23) using n = 100 sam- 
ples. The information gain K~(t) ,  defined in (20) was estimated 
following a single automaton over r time steps. This transient 
length becomes maximum at the critical density. 

yond the critical point, the automata remain now ac- 

tive for a long time because frequent interactions. In 

both cases, one of the extreme stationary probabilities 
wins over the other one, and it becomes more easy to 

reach the steady distribution. For the critical point, a 

mixture between both dynamical regimes appears and 
as a consequence the probability distribution spreads 

out (we have greater diversity of activity patterns). 
This result is an additional support of our conjec- 

ture. At the critical point, it takes longer to describe 

what is going on than it does when far from Pc. As in 

elementary CA [ 1,2], the critical boundary supports 

both static (uniform patterns) and propagating struc- 

tures (waves of activation). Both patterns form the 

basis for signals and storage. 

6. Discussion 

It can be shown from the positivity of these proba- 

bilities [ 5 ] that 

OK~ < 0 (23) 
Ot - 

i.e. information gain always decreases with time. This 
inequality holds equally well in isolated and noniso- 
lated systems subjected to permanent nonequilibrium 

constraints [5]. At this probabilistic level, the prob- 

lem of multiplicity of solutions and instability simply 
does not arise. 

Starting from an arbitrary initial condition, we first 

calculate the stationary distribution for the ith automa- 

ton i.e. we calculate {Ps(0), P.~( 1)} over the coarse 

grained trajectory A#, as previously defined. Using m 

time steps, such stationary distribution is reached and 
the time-dependent probabilities {P(0;  t),  P(1 ; t) } 

are then estimated. The transient length ~- is defined 

as the first time step such that 

K~( r )  < e (24) 

being here • = 0.0025. As shown in Fig. 8, ~- shows 
also a maximum value at p ~ 0.2 for the parame- 
ters given. Below the critical point, the automata re- 
main inactive for long periods of time and they change 
state essentially by means of random activation. Be- 

In this paper, several properties of FNN have been 
studied. It is our belief that this automaton can be a 

very useful framework for several complex systems, 

such as insect societies or the immune system. As 

in standard NN, where the elements are oversimpli- 

fied structures, nevertheless network computation has 
proved to be robust to noise and changes in detailed 

rules. Concerning insect societies, Wilson stated: "an 
individual social insect processes less information than 

an individual solitary insect, but as part of  an aggrega- 

tive activity, the social insect contributes to more com- 

plex computation. The colony works as a single or- 

ganism" [24]. In other words, very simple automata 

can be used as the basis for our network. Using phase 

transitions, a given set of these automata become a 
"single organism". 

At the critical density Pc (for g > gc ~ 0.025) the 
entropy S ( p ) ,  as well as the information transfer I/~ 
become maximum. In this parameter space, adding el- 

ements to our FNN shows a clear deviation from the 

maximum entropy ( H  ~ log(N),  as expected for in- 
dependent automata) and close to the instability point 
information is able to increase due to critical fluctu- 
ations. In a recent study [25] it has been shown that 
f- /~ fluctuations are in fact present in this critical do- 
main, as expected for a system in a critical state, as 
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the dynamical counterpart of our results. Such fluctu- 

ations are also observed in ant colonies [25]. 

The maximum information transfer 1~ also shows 

the point where computational properties can emerge, 

at the edge between the ordered and the chaotic 
phases. Interestingly, the key parameter is nothing 
but the number of automata involved. In Leptotho- 

rax ant colonies, it has been shown that certainly the 

number of individuals is not arbitrary: as the criti- 

cal density Pc ~ 0.2 is approached, ants change the 
colony boundaries to reach again the critical value 

[21]. Other investigations have also shown, now in 

other species of ants, that contact rate regulates the 

ant network [26], playing a crucial role in macro- 

scopic patterns of behavior, as well as in the spread 

of information [27]. 

As early shown by Haken [23] fluctuations drive 
nonlinear systems to explore new states. In our sys- 

tem such fluctuations are present in terms of random 

activation events and random movement in space. In 

[23] it was also shown that the performance of a self- 

organizing system will depend on a compromise be- 
tween: (a) large fluctuations on flat potential curves 

(adaptability) and (b) small fluctuations in deep po- 

tential valleys (in order to have reliability). In Haken's 
view, it was conjectured that the size of fluctuations 

is controled by means of the number of components. 
In Leptothorax ant colonies, such a control of reliabil- 

ity and adaptability by means of density is observed, 
and a theoretical interpretation is provided through our 

model. 
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