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Starting from a minimal physical model of self-propelled hard rods on a substrate in two dimensions,

we derive a modified Smoluchowski equation for the system. Self-propulsion enhances longitudinal

diffusion and modifies the mean-field excluded volume interaction. From the Smoluchowski equation we

obtain hydrodynamic equations for rod concentration, polarization and nematic order parameter. New

results at large scales are a lowering of the density of the isotropic-nematic transition and a strong

enhancement of boundary effects in confined self-propelled systems.
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Self-propelled particles consume energy from internal
or external sources and dissipate it by actively moving
through the medium that they inhabit. Assemblies of in-
teracting self-propelled particles (SPP) exhibit rich collec-
tive behavior, such as nonequilibrium phase transitions
between disordered and ordered (possibly moving) states
and novel long-range correlations. Biologically relevant
systems that belong to this class include fish schools,
bird flocks [1], bacterial colonies [2], and cell extracts of
cytoskeletal filaments and associated motor proteins [3]. A
nonliving realization may be a vibrated monolayer of
granular rods [4]. Collections of SPP have been the focus
of extensive experimental [3–5] and theoretical studies in
recent years. A number of distinct theoretical approaches
have proved fruitful for understanding the complex dynam-
ics of these nonequilibrium systems. These include nu-
merical studies of simple models [6–9], inspired by the
seminal work of Vicsek [10], and phenomenological con-
tinuum theories based on general symmetry arguments
[11]. Recent work on deriving the hydrodynamic equations
from specific microscopic models has led to some insight
into the origin of the collective behavior of these systems
[12–16]. An important open question that we address here
is the modification induced by self-propulsion in the steric
effects arising from the shape of the particle and the
signature of this modification in the large scale physics
of the system.

In this Letter we consider a physical model of self-
propelled hard rods that interact with each other solely
through excluded volume. The rods move on a passive
substrate. Self-propulsion is modeled as a nonequilibrium
velocity v0 along the direction of the rods’ long axes. The
goal of our work is to understand how self-propulsion
modifies the diffusion processes and the mean-field
Onsager excluded volume interaction [17]. Using the tools
of nonequilibrium statistical mechanics we derive a modi-
fied Smoluchowski equation that differs from the familiar

version for thermal hard rods [17] in three respects. The
first and obvious modification is a convective mass flux at
the self-propulsion speed v0 along the direction of orien-
tation of the rod. Second, self-propulsion enhances the
longitudinal diffusion constant Dk of the rods, according

to Dk ! Dkð1þ v2
0=kBTÞ. This enhancement arises be-

cause self-propelled particles perform a persistent random
walk [18]. Living cells also exhibit modified Brownian
dynamics [19] that can be modeled as a biased random
walk on suitably coarse-grained scales. Finally, the mo-
mentum exchanged by two rods upon collision is rendered
highly anisotropic by self-propulsion thus modifying the
Onsager form of the excluded volume interaction. This
leads to novel anisotropic forces and torques from steric
repulsion in the Smoluchowski equation.
These modifications of the Smoluchowski equation have

dramatic consequences for the properties of the system on
hydrodynamic scales. This is illustrated by two examples.
First, we show that the additional momentum transfer from
self-propulsion lowers the density of the isotropic-nematic
transition, thereby providing a microscopic identification
for the physical mechanism responsible for the enhance-
ment of orientational order observed in numerical simula-
tions of motility assays [8]. Second, we demonstrate that
self-propulsion greatly enhances the effect of confinement
and the role of boundaries.
The microscopic model.—We consider quasi two-

dimensional hard rods of length ‘ and thickness 2R con-
fined to a plane, as shown in Fig. 1. The ith rod is charac-
terized by the position ri of its center of mass and a unit
vector ûi ¼ ðcos�i; sin�iÞ directed along its long axis.
Each rod free-streams on the substrate, until it collides
with another rod. The collision results in instantaneous
linear and angular momentum transfer such that the total
energy, linear and angular momenta of the two rods are
conserved [20]. The microdynamics of the system is gov-
erned by coupled Langevin equations,
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Tði; jÞvi þ Fûi � � i � vi þ �iðtÞ; (1)

@!i

@t
¼ �X

j

Tði; jÞ!i � �R!i þ �R
i ðtÞ; (2)

where vi ¼ @tri and !i ¼ @t�i are the center of mass and
angular velocities, � i is the friction tensor, with �i�� ¼
�kûi�ûi� þ �?ð��� � ûi�ûi�Þ, �R is the rotational friction,

and the mass of the rods has been set to one. The second
term on the right hand side of Eq. (1) describes self-
propulsion as a center of mass force F acting along the
long axis of each rod. This force is nonequilibrium in
origin and arises from an internal or external propulsion
mechanism. The random forces �i and �R

i describe
Markovian white noise with correlations h�i�ðtÞ�j�ðt0Þi ¼
�i

���ij�ðt� t0Þ and h�R
i ðtÞ�R

j ðt0Þi ¼ �R�ij�ðt� t0Þ. For
simplicity we assume the equilibriumlike form �i

�� ¼
2kBTa�

i
�� and �R ¼ 2kBTa�

R=I, with I ¼ ‘2=12 the mo-

ment of inertia of the rod and Ta an effective temperature
defined by these relationships. Finally, the collision opera-
tor Tði; jÞ generates the instantaneous momentum transfer
between rods at contact and is given by

Tð1; 2Þ ¼
Z 0

s1s2

Z
k̂
jV12 � k̂j�ð�V12 � k̂Þðb12 � 1Þ; (3)

where k̂ is the unit normal at the point of contact di-
rected from rod 2 to rod 1, si 2 ½�‘=2; ‘=2� parame-
trize the distance of points along the axis of each rod

from the center of mass, and
R0
s1s2

. . . � R‘=2
�‘=2 ds1 �R‘=2

�‘=2 ds2�ðR12Þ . . . , where R12 ¼ 0 corresponds to the

condition that the two rods be in contact at one point, as

for instance in Fig. 1, where R12 ¼ r1 � r2 þ s1û1 �
ð‘=2Þû2 � 2Rk̂. Also, V12 ¼ v1 � v2 þ!1 � �1 �!2 �
�2, with �i ¼ siûi � Rk̂, is the relative velocity of the two
rods at the point of contact. The operator b12 replaces
precollisional velocities with their postcollisional values,

e.g., bð1; 2Þv1;2 ¼ v1;2 � k̂A, where the momentum ex-

change A is obtained by requiring energy and momentum
conservation. The explicit calculation of the T operator is
given in [21].
Modified Smoluchowski equation.—We are interested

here in the overdamped limit, when inertial effects are
negligible and the low density dynamics is described by
a Smoluchowski equation for the the probability distribu-
tion cðx; tÞ of rods at r oriented in the direction �, with x ¼
ðr; �Þ, The derivation of the Smoluchowski equation is
rather technical and will not be presented here. It can be
carried out in analogy to the case of thermal hard rods and
we only outline the key steps and approximations. (i) First,
using formal statistical physics techniques [22], the noise
averaged dynamics described by the coupled Langevin
Eqs. (1) and (2) can be recast into a hierarchy of coupled
equations for reduced distribution functions, analogous to
the BBGKY hierarchy for Hamiltonian systems. Assuming
a low density of rods, we then neglect two particle corre-
lations and obtain a closed Boltzmann-Fokker-Planck
equation for the one particle distribution function
fðx; p; tÞ, with p ¼ ðv; !Þ. (ii) The probability distribution
is cðx; tÞ ¼ R

p fðx; p; tÞ. If the friction between the rods

and a solvent or substrate is large, the velocities of the rods
decay to a stationary value on microscopic time scales,
much shorter than those controlling the relaxation of the
spatial probability distribution, cðx; tÞ. In this regime we
assume fðx; p; tÞ ’ cðx; tÞfMðpj�Þ, with fM �
expð� 1

2kBTa
ðv� v0ûÞ2 � 1

2kBTa
I!2Þ a Maxwellian distri-

bution centered at the self-propulsion velocity v0û. This
product form is an approximate solution of the noninter-
acting Fokker-Planck equation for large friction. Inserting
this ansatz for fðx; p; tÞ in the Bolztmann-Fokker-Planck
equation and averaging over the velocities p, we obtain the
Smoluchowski equation for cðx; tÞ. We stress that it is
essential to explicitly derive the Smoluchowski equation
from the Fokker-Planck equation to capture the enhance-
ment of longitudinal diffusion (DS) in Eq. (4). (iii) When
carrying out the average over p a further approximation is
required to evaluate the mean force hTð1; 2Þv1iM and torque
hTð1; 2Þ!1iM on a given rod due to all other rods in the
fluid, where h. . .iM ¼ R

p1;p2
. . . fMðp1j�1ÞfMðp2j�2Þ.

When v0 ¼ 0, this average can be carried out exactly
and yields the Onsager excluded volume interaction. For
v0 � 0, fM depends on the angular coordinate û. Hence,
averaging over velocities induces orientational correlations
that cannot be incorporated exactly. To make progress, we
neglect the coupling between velocity and angular corre-
lations in calculating velocity-averaged forces and torques.
The result is the modified Smoluchowski equation:

@tcþ v0@kc ¼ DR@
2
�cþ ðDk þDSÞ@2kcþD?@2?c

� 1

I�R
@��ex � r � ��1 � Fex � 1

I�R
@��SP

� r � ��1 � FSP; (4)

FIG. 1. A collision of two self-propelled hard rods (the width
of the rod is exaggerated for clarity). k̂ is a unit vector from rod 2
to rod 1 normal to the point of contact. Points on the side of the
rods are identified by vectors �i.
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where @k ¼ û � r and @? ¼ r� ûðû � rÞ. The convec-

tive term on the left hand side of (4) is a trivial consequence
of self-propulsion and describes mass flux along the long
axis of the rod. The first three terms on the right hand side
of the equation describe translational diffusion longitudi-
nal (Dk) and transverse (D?) to the rod’s long axis and

rotational diffusion (DR). For long thin rods Dk ¼ 2D? ¼
D. At low density D ¼ kBTa=�k and DR ¼ 6D=‘2. A

novel consequence of self-propulsion is the enhancement
of longitudinal diffusion by DS ¼ v2

0=�k. This can be

understood by noting that a diffusing rod performs a ran-
dom walk with a step length x� ¼ ��1

��v�. For thermal

systems the rod’s velocity is isotropic on average and has
magnitude vth �

ffiffiffiffiffiffiffiffiffiffiffi
kBTa

p
. In this case the anisotropy of

diffusion arises solely from the anisotropy of the friction
tensor. For self-propelled rods the step length along the
long direction of the rod is enhanced, yielding an addi-
tional contribution to the longitudinal diffusion coefficient.
Equivalently, longitudinal diffusion of a self-propelled rod
can be reformulated as a persistent random walk where the
rod has a bias �v0 for steps along its long axis [18]. The
next three terms in (4) describe excluded volume effects
within the mean-field approximation due to Onsager. The
corresponding forces and torque can be derived from the
familiar excluded volume potential as �ex ¼ �@�Vex and
Fex ¼ �rVex, with Vexðx1Þ ¼ kBTacðx1; tÞ

R
�12

R
û2
jû1 �

û2jcðr1 þ �12; �2; tÞ, with �12 ¼ �1 � �2. Finally, FSP and
�SP describe, within a mean-field approximation, the addi-
tional force and torque due to anisotropic linear and angu-
lar momentum transfer during the collision of two self-
propelled rods,

FSP

�SP

 !
¼ v2

0

Z 0

s1s2

Z
x2;k̂

k̂

ẑ � ð�1 � k̂Þ

 !
½ẑ � ðû1 � û2Þ�2

��ð�û12 � k̂Þcðx1; tÞcðx2; tÞ; (5)

with û12 ¼ û1 � û2. In Onsager’s mean-field model, two
thin rods of length ‘ exchange an average momentum
hj�vji	coll � kBTa=‘ per unit time upon collision, with
hj�vji � ffiffiffiffiffiffiffiffiffiffiffi

kBTa

p
and 	coll ¼ vth=‘�

ffiffiffiffiffiffiffiffiffiffiffi
kBTa

p
=‘. When

rods are self-propelled there are anisotropic contributions
to both the momentum exchanged (hj�vji � v0jû1 � û2j)
and the collision rate (	coll � v0jû1 � û2j=‘). These yield
the new anisotropic steric forces and torques in Eq. (5).
Hydrodynamics.—We now use the modified

Smoluchowski equation to obtain coarse-grained equations
that describe the dynamics on length and time scales long
compared to the rod length and the collision time. In this
regime the dynamics is controlled by the ‘‘slow variables’’
corresponding to the conserved densities (here only the
concentration of filaments 
 ¼ R

û cðx; tÞ) and the fields

associated with possible broken symmetries. In a liquid of
self-propelled rods, both polar and nematic order are pos-
sible, described by a polarization vector Pðr; tÞ ¼R
û ûcðx; tÞ and the nematic alignment tensor Q��ðr; tÞ ¼R
ûðû�û� � 1

2���Þcðx; tÞ, respectively. Since each rod has a
self-propulsion velocity v0û, the polarization is also pro-
portional to the self-propulsion flow field. The equations
for these continuum fields are obtained by taking the
corresponding moments of the Smoluchowski equation
(4) and are given by

@t
þ v0r � P ¼ D
r2
þDQrr: 
Q; (6)

@tPþDRP� �P �Qþ v0r �Qþ v0

2
r
þ �0

�
3ðP � rÞP� 1

2
rP2 � Pr � P

�
¼ Dbr2Pþ ðDspl �DbÞrr � P; (7)

@tQþ 4DR

�
1� 



IN

�
Qþ v0F ¼ ��00

�
3

5
P � rQþ 1

48
Qr � Pþ 1

48
Gþ 1

96
F

�
þDQ

4

�
rr� 1

2
1

�

; (8)

where F�� ¼ ð@�P� þ @�P� � ���r � PÞ and G�� ¼
Q��@�P� þQ��@�P� � ���Q�@�P. All � parameters

in Eqs. (7) and (8) are proportional to v2
0 and vanish in the

absence of self-propulsion. All diffusion constants are
enhanced by self-propulsion via additive terms propor-
tional to DS. Finally, we have suppressed in Eqs. (6)–(8)
excluded volume corrections to the diffusive terms, non-
linear terms of second order in gradients, and corrections to
the convective terms beyond linear in v0. The complete
hydrodynamic equations with explicit expressions for the
various coefficients can be found in Ref. [21].

The stable homogeneous stationary solution of Eqs. (6)–
(8) are the bulk states of the self-propelled system. Two
such states are possible: an isotropic state, with 
 ¼
constant, P ¼ 0, Q�� ¼ 0, and a nematic state, with 
 ¼
constant, P ¼ 0 and Q�� � 0. We find that hard core

interactions and self-propulsion modeled simply as a
body force do not to generate a bulk polar state, with P �
0. This result is corroborated by numerical simulations of
self-propelled rods on a substrate, that have observed large
correlated regions of finite polarization, but not an ordered
bulk state [9]. Other effects, such as shape or mass distri-
bution asymmetry of the driven particles or many-body
hydrodynamic interactions not included in our model, may
lead to a macroscopic polar (moving) state. To this day no
microscopic mechanism capable of giving rise to polar
long-range order of self-propelled units in bulk has been
convincingly demonstrated.
Self-propulsion does have a profound effect on the

isotropic-nematic transition which occurs at the density


INðv0Þ ¼ 
N=ð1þ v2
0

5kBT
Þ, where 
N ¼ 3=ð�‘2Þ is the

Onsager transition density. The transition occurs where
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the coefficient of the term linear in Q�� on the right-hand

side of Eq. (8) changes sign, signaling the unstable growth
of nematic fluctuations. This enhancement of orientational
order has been observed in numerical simulations of actin
motor assays, where actin filaments move on a substrate
grafted with motor proteins [8]. It arises from the addi-
tional torque �SP that self-propelled rods experience upon
collision as compared to thermal rods. This enhances en-
tropic ordering and aligns the rods [23].

Although no bulk polar order is possible in our system,
self-propulsion greatly enhances the length scale over
which polarization fluctuations decay. As a result, bounda-
ries are very important in self-propelled systems. To illus-
trate this we consider a self-propelled 2d hard rod fluid
confined in a channel of width L, as shown in Fig. 2. We
assume that the boundaries induce polarity by forcing all
rods to align in the same direction, i.e., Pxð�L=2Þ ¼
PxðL=2Þ ¼ P0. In this geometry the density is constant.
One can easily solve for the polarization profile across
the channel with the result PxðyÞ ¼ P0 coshðy=�Þ=
coshðL=2�Þ, where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Db=DR

p ¼ ‘=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5=2þ v2

0=kBT
q

is the boundary layer width over which the polarization
penetrates in the channel. In the absence of self-propulsion
�� ‘, i.e., a finite polarization at the boundary decays (via
rotational diffusion) over a length �‘. For large self-
propulsion velocity, �� jv0j. If L� � the entire channel
is effectively polarized. We expect that the boundary layer
length � also sets the scale of correlations in bulk systems.
Finally, as shown in [15], Eqs. (6)–(8) yield two important
properties of fluctuations in self-propelled systems. First,
the isotropic state can support soundlike propagating den-
sity waves for a range of wave vectors above a critical
value of v0. Second, large number fluctuations always
destabilize the homogeneous nematic state. We refer the
reader to Ref. [15] for a description of both results.

In summary, we have analyzed a simple model that
captures two crucial properties of self-propelled systems:
the orientable shape of the particles and the self-
propulsion. Using the tools of nonequilibrium statistical
mechanics we have derived a modified Smoluchowski

equation for SPP and used it to identify the microscopic
origin of several observed or observable large scale
phenomena.
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FIG. 2 (color online). The polarization in a channel of width L
for �=L ¼ 0:2 (solid) and �=L ¼ 0:6 (dashed).
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